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Government Regulation in

Transplantation



Organ Transplantation

• Organ transplantation is often the only treatment option for several

end-stage diseases

• Growing transplant volume over the last few decades

Number of solid-organ transplants in the US, 1991-2018
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Lung Transplantation

• Lungs are the fourth-most transplanted

organ in the US

• Constituted about 7% of all transplants

in 2018

• Sparsely studied in the OR literature

• Afford some modeling advantages

(more later)
Six largest single-organ transplants

in the US by volume in 2018
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Transplant Regulations

Two sets of regulations in the past 20 years (CMS and OPTN)

CMS OPTN

In Effect 2007–2019 2000–Present

Criteria Frequentist Bayesian (more stringent)

Lose Medicare/Medicaid? Yes Yes**

Medicare and Medcaid pay for a majority of transplants

at most programs in the United States

Because of the severity of CMS penalties (i.e. potential loss of

Medicare/Medicaid reimbursement), these regulations have been more widely

studied—we focus on them here

**Possible but less likely
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Transplant Regulations

• We describe CMS regulations (OPTN are similar)

• In 2007, Centers for Medicaid & Medicare Services (CMS) noted large

variability among outcomes across programs

• Introduced regulations to incentivize better post-transplant outcomes

Not all transplant programs are created equal: Graft failure

per 10 transplants across different programs (Dickinson et al., 2008)
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CMS Conditions of Participation (CoPs)

The CoPs evaluate transplant programs over 2.5-year evaluation windows

Time

t

6 mos.

2.5 years

Window

Five windows are ‘active’ at any time
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CMS Conditions of Participation (CoPs)

In a single window, patients arrive and receive transplants

Jan
2014

Jul
2014

Jan
2015

Jul
2015

Jan
2016

Jul
2016

Jan
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Jul
2017

Evaluation Window
patient arrivals/transplants

Outcomes observed

Data
reported

8/43



CMS Conditions of Participation (CoPs)

One year later, program reports to CMS

(i) all recipient-donor data, and

(ii) O = patient deaths/graft failures within one year of transplant

Jan
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Jul
2014

Jan
2015

Jul
2015

Jan
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Jul
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Jan
2017

Jul
2017

Evaluation Window
patient arrivals/transplants

Outcomes observed

Data
reported
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CMS Conditions of Participation (CoPs)

CMS computes survival function for each recipient; obtains expected number of

deaths E

Jan
2014

Jul
2014

Jan
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Jul
2015
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Jul
2016
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Jul
2017

Evaluation Window
patient arrivals/transplants
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CMS Conditions of Participation (CoPs)

Program is flagged if O is

“much larger” than E

In particular, if the following crite-

ria are violated:

1. O ≤ E + 3,

2. O ≤ 1.5E , and

3. p-value ≤ threshold

OPTN uses a slightly different

function to compare O/E
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Penalties for Flagging

• Penalties associated with flagging can be severe

• Program must establish a remediation plan with CMS

• Negative publicity

• Temporary or permanent shutdown

• Estimated costs can run into tens of millions of dollars (USD)

• OPTN penalization perceived as less severe, but concerns remain 1 2

1Andreoni, American Journal of Transplantation, 2020, 20(8); 2026-2029
2Schold, Current Opinion in Organ Transplantation, 2020, 25(2); 158-162
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Response to the CoPs

• Widespread criticism from the medical community

• Risk-adjustment does not account for pre-transplant outcomes,

co-morbidities, other mitigating factors (Weinhandl et al., 2009)

• CoPs unable to identify truly underperforming programs; prevalence of false

flagging (Massie and Segev, 2013)

• Programs forced to become risk-averse to both recipients and donors (Jay

and Schold, 2017)
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Response to the CoPs

ProPublica,

October 2018

STATNews,

August 2016

The Oregonian,

July 2019
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Response to the CoPs

Empirical evidence suggests that when programs are flagged,

their volume decreases

Cause of this decrease is debated

• Programs reject risky patients to reduce chances of future penalization?

• Patients choosing to seek care at better programs?

• Temporary adjustment while programs “re-group”?
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Research Question

Do CMS and OPTN regulations create incentives for
programs to reject patients?

Model a program which seeks to:

1. Maximize transplant volume

2. Control risk of penalization by OPTN/CMS
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Where Our Model Fits

Potential

Patient

Program

Decision
Waiting List

Rejected

Receives

Transplant

Death

Success

Yes

No Receives and

accepts match

Survives

one year

post-

transplant
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OR Literature

National/governmental perspective:

• Zenios et al.(2000)–kidney allocation

• Kong et al.(2010)–allocation region design

• Akan et al.(2012)–liver allocation

• . . .

Individual/patient perspective:

• Alagoz et al.(2004, 2007a, 2007b)–liver acceptance

• Sandıkçı et al.(2008, 2013)–patient perspective of waitlist

• . . .

Program/medical perspective:

This work (first from a program’s perspective)
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Clinical Literature

Editorial/opinion articles:

• Abecassis et al.(2009) - CoPs threat to innovation

• Schold and Axelrod (2014) - Bayesian approach to CoPs

• Hamilton (2013) - Impact of CoPs on patients

Simulation/data-driven:

• Massie and Segev (2013) - prevalence of false flagging

• Schold et al.(2013) - flagging and decline in volume

• Dolgin et al.(2016) - removal from liver transplant waitlist

Optimization: This work
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Optimization Model



Idea Behind the Model

Each week, a batch of patients arrives

Each patient modeled by two numbers, c and e, where

1− c = P

[
survives receives

one year transplant

]
→ according to program

1− e = P

[
survives receives

one year transplant

]
→ according to CMS

Program model is a better predictor of patient survival
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Assumptions

1. [Mild] Program probability 1− c is the true survival probability

Programs build higher fidelity prediction models with more robust data

than CMS (Chan et al., 2019)

2. [Medium] Survival probabilities independent of donor information

Most factors associated with lung transplant failure depend on recipient,

not donor (Diamond et al., 2013)
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Assumptions

3. [Medium] Patients receive transplants immediately after acceptance

Median wait times for lung transplants less than six months – approx. 2

years for kidneys (OPTN database).

Short wait-time compared to length of evaluation window

4. [Mild] Patient arrivals are Poisson

Common in the literature (e.g. Zenios (2000) and Shechter et al. (2005))

and is also consistent with Houston Methodist data
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Decision variables

Current patients: binary variables zj for whom to accept from current pool of

candidates

Future patients: uit ∈ [0, 1], fraction of type i patients accepted in week t

But what is a “type i” patient?
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Classifying future patients

To control flagging risk, need to predict future patients

Define patient classes (indexed by i)

Class i has 3 associated values:

1− ci = Survival probability (program)

1− ei = Survival probability (CMS)

λi = Mean # patients to arrive each week

Note that patients with different physiology could be grouped together because

the regulations only care about patient-risk
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Our Model

Zit = number of type i patients to arrive in week t,

Zit ∼ Poisson(λi )

Aj
it = 1 iff patient j of type i accepted in week t,

Aj
it ∼ Bernoulli(uit) for all j = 1, . . . ,Zit

Decision variable:

uit = fraction of type i patients accepted in week t
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Our Model

Yit = number of type i patients accepted in week t,

Yit =

Zit∑
j=1

Aj
it ∼ Poisson(λiuit)

X j
it = 1 iff patient j dies within one year of transplant,

X j
it ∼ Bernoulli(ci ) for all j = 1, . . . ,Zit

Compute observed + expected deaths for window w :

Ow =
∑
i ,t

Yit∑
j=1

X j
it and Ew =

∑
i ,t

eiYit

Can easily compute mean and variance of Ow and Ew
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Our Model

Flagging criteria: A program is flagged in window w if

1. Absolute: Ow ⩽ Ew + 3,

2. Relative: Ow ⩽ 1.5Ew , and

3. p-value: p-value ⩽ 0.05

To limit risk of getting flagged, use chance constraints

P[min{Ow − 1.5Ew ,Ow − Ew − 3, p-value− 0.05} ⩽ 0 ] ⩾ 1− αw ,

where αw is a pre-defined risk tolerance
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Our Model

LHS of chance constraints famously hard to compute

Assume that Ow and Ew are normally distributed; valid for large transplant

programs (e.g. Houston Methodist Hospital)

Then, each constraint3 is normally distributed with parameters (µℓ
w , σ

ℓ
w ),

ℓ = 1, 2, 3

Conservative approximation to chance constraint given by

min
ℓ=1,2,3

{
µℓ
w + φwσ

ℓ
w

}
⩽ 0

where φw = Φ−1(1− αw ), Φ = CDF of standard normal distribution
3after linearizing the p-value constraint
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Our Model

To summarize,

• Model is solved once each week

• Decision variables: binary zj and continuous uit

• Objective function: total transplant volume

• Constraints: chance constraints (and others)

Main Inputs:

1. Data for patients under consideration

2. Patient class data for future patients

3. Data for the five “active” windows

(Mean/variance of expected/observed deaths)

4. Risk tolerances for every window
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Our Model

max
∑
j

zj +
∑
i ,t

λiuit E[#transplants]

s. t. min
ℓ=1,2,3

{
µℓ
w + φwσ

ℓ
w

}
⩽ 0 ∀ w Chance constraints

µℓ
w = (aℓw )

T (u, z) Mean (linear)

(σℓ
w )

2 = (bℓw )
T (u, z) Variance (linear)

Lw ≤
∑

zj +
∑

λiuit ≤ Uw ∀ w Operational constraints

uit ∈ [0, 1] ∀ (i , t) Future patients

zj ∈ {0, 1} ∀ j Current patients

Hard to solve!
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Structural Properties and Analysis



Empirical Steady-State Behavior

Numerical solution exhibits

steady-state behavior that

captures long-term strategy –

conveys program’s inherent risk

of getting flagged, ignores

transient effects
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Steady-State Behavior

Can we characterize the steady-state?

Easier to analyze a single-window model

Justified because. . .

Theorem

For sufficiently long horizons T , the optimal solution converges to that given

by solving a single-window model (under mild assumptions)

Proof: Compute upper and lower bounds on multi-window objective, show they

converge to each other (squeeze theorem)
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Single-Window Model

max λTu

s. t. min
ℓ=1,2,3

{
aTℓ u + φ

√
bTℓ u

}
⩽ 0

uit ∈ [0, 1] ∀ (i , t)

(Msw )

Can ignore t dependence, because . . .

Proposition

(Msw ) has a stationary optimal solution (i.e., uit1 = uit2 ∀ t1, t2)

Proof: Analysis of characteristic functions of Ow and Ew
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Single-Window Model

(Msw ) is a reverse convex program, with the following special structure

Theorem (Hillestad and Jacobsen–1980)

Consider the problem

max{cT x | Ax ⩽ b, g(x) ⩽ 0} (P)

for some continuous, strictly concave function g . If (P) has an optimal

solution, then it has an optimal solution that lies on an edge of the polyhedron

{Ax ⩽ b}
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Single-Window Model

max λTu

s. t. min
ℓ=1,2,3

{
aTℓ u + φ

√
bTℓ u

}
⩽ 0 strictly concave if φ > 0 (i.e., α < 1/2)

ui ∈ [0, 1] ∀ i . unit cube (polytope)

By Hillestad and Jacobsen: there exists an optimal solution on the edge of the

unit cube

Upshot: At optimality, at most one ui is fractional. (All other ui ∈ {0, 1})
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Keeping Programs Open

Could it be optimal for a program to stop transplants?

Consider a large program (transplant volume ≥ 30)

For large programs, we can ignore the E + 3 and p-value constraints (Dickinson,

2006)

Convexify the non-convex constraint aTu + φ
√
bTu ⩽ 0
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Keeping Programs Open

Theorem

Let H− = {i | ci < 1.5ei}. Then u∗ ≡ 0 is optimal for the convex relaxation iff

∑
i∈H−

λi
(ci − 1.5ei )

2

(ci − 1.5ei )2 + ci (1− ci )
<

φ2

1302

Proof: KKT conditions

How to interpret this condition?
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Keeping Programs Open

Program closes if
∑
i∈H−

λi

1 + ν2i
<

φ2

1302

νi = Coeff. of variation of Xi − 1.5ei ; H− = {i | ci < 1.5ei}

Want the LHS to be as large as possible, that is...

|H−| large ⇒ Many classes with ci < 1.5ei ,

λi large ⇒ Many patients of type i ∈ H−,

νi small ⇒ ci close to 0 or 1, certainty about outcomes
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Numerical Experiments and Insights



Creating Patient Classes

Patient classes created from n = 469 patients added to the waitlist

at Houston Methodist hospital (HMH) between Jan 2014 and Dec 2018

Generated 22 patient

classes.

Final results are robust to

clustering method
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Response Prior to Flagging

If a program is currently in a favorable position

how many more patients can receive transplant?

Initial positions from HMH data for 2016
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Unfair Penalization of Medium-Sized Programs

How does a program’s response depend on incoming patient volume?

Consider a program, with fixed risk tolerance (3%)

Vary the patient arrival rate, keeping patient ‘mix’ the same

Medium-sized programs accept fewer patients than larger programs
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Response After Flagging

The previous result has further implications

Common hypothesis: if a program is flagged, its transplant volume declines as

patients choose to seek care at better programs4

Then, flagged programs get hit twice:

• Patient volume declines due to patient choice, and

• Program forced to accept patients at lower rate to limit flagging risk

The second effect has not been studied before

4See, e.g., Howard and Kaplan, Do report cards influence hospital choice? The case of kidney

transplantation. Inquiry (2006) 43:150–159
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What if the Program Meets Expectations?

What if a program exactly meets regulatory expectation? Can they transplant

100% of their patients? No

All programs satisfy ci = ei for

all patient classes i

As risk tolerance α decreases,

the fraction of patients

accepted at optimality drops

below 100%
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Key Insights

• CMS and OPTN regualtions do create incentives for programs to reject

patients

• This incentive does not disappear even with adequate risk adjustment

• Medium-sized programs may be unfairly penalized under these regulations
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Conclusion

• Developed first optimization model from a transplant program’s perspective

• Presented first rigorous analysis of misaligned incentives under CMS/OPTN

regulation

• Demonstrated previously unobserved problems with outcome-based

regulation
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Thank you!

Characterizing rational transplant program response to outcome-based regulation

(D. Mildebrath, T. Lee, S. Sinha, A.J. Schaefer, A.O. Gaber) To appear in Operations

Research.
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CMS and OPTN Criteria: Frequentist vs. Bayesian

CMS used three (frequentist) criteria

Program flagged if all three hold

1. Actionability: O/E > 1.5 (or, later, 1.85)

2. Importance: O − E > 3

3. Significance: One-side p-value < 0.05



CMS and OPTN Criteria: Frequentist vs. Bayesian

OPTN uses Bayesian criteria (beginning in 2014)

Put a Gamma(2, 2) prior on hazard ratio HR.

Assume O ∼ Poisson(HR× E ).

Then posterior for HR is a Gamma distribution

with mean (O + 2)/(E + 2) and variance (O + 2)/(E + 2)2.

Program flagged if either

P[HR > 1.2] ≥ 75% OR P[HR > 2.5] ≥ 10%

Parameters 1.2, 2.5, etc. chosen via simulation



Convexification of Reverse Convex Program

Recall constraint

min
ℓ=1,2,3

{
aTℓ u + φ

√
bTℓ u

}
⩽ 0

Can ignore two of the constraints (E + 3 and p-value) for large programs

In the non-convex constraint, replace each ui with u2i .

That is, replace

aTu + φ
√
bTu ⩽ 0 with aTu + φ

√
uTBu ⩽ 0,

where B = diag(b). New constraint is convex if φ > 0.

This gives a convex relaxation.



Convexification of Reverse Convex Program

Rewrite the convex constraint

aTu + φ
√
uTBu ⩽ 0 as aTu + φ∥B1/2u∥2 ⩽ 0.

Possible because B = diag(b), each bi = 130λi [(ci − 1.5ei )
2 + ci (1− ci )] > 0.

Therefore, we have a convex (second-order conic programming) relaxation for

large programs:

max λTu

s. t. aTu + φ∥B1/2u∥2 ⩽ 0

ui ∈ [0, 1] ∀ i
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