Outcome-Based Regulation and Adverse Selection in Lung Transplantation

Andrew Schaefer

April 4, 2023

andrew.schaefer@rice.edu

Acknowledgments

David Mildebrath — Amazon

Taewoo Lee, Ph.D. — The University of Pittsburgh

Saumya Sinha, Ph.D. — The University of Minnesota – Twin Cities

Ahmed Gaber, M.D. — Houston Methodist Hospital

Work supported through NSF grants CMMI-1826323, CMMI-1826297 and CMMI-1826144. Additional support provided by the DoD NDSEG Fellowship Program.

Outline

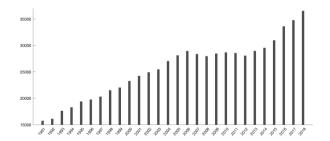
- 1. Government regulation in transplantation
- 2. Optimization model
- 3. Structural properties and analysis
- 4. Numerical experiments

Government Regulation in

Transplantation

Organ Transplantation

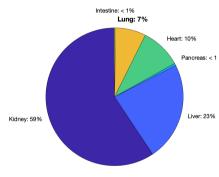
- Organ transplantation is often the only treatment option for several end-stage diseases
- Growing transplant volume over the last few decades



Number of solid-organ transplants in the US, 1991-2018

Lung Transplantation

- Lungs are the fourth-most transplanted organ in the US
- Constituted about 7% of all transplants in 2018
- Sparsely studied in the OR literature
- Afford some modeling advantages (more later)



Six largest single-organ transplants in the US by volume in 2018

Transplant Regulations

Two sets of regulations in the past 20 years (CMS and OPTN)

	CMS	OPTN
In Effect	2007-2019	2000–Present
Criteria	Frequentist	Bayesian (more stringent)
Lose Medicare/Medicaid?	Yes	Yes**

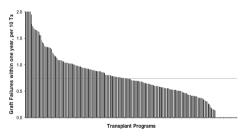
Medicare and Medcaid pay for a majority of transplants at most programs in the United States

Because of the severity of CMS penalties (i.e. potential loss of Medicare/Medicaid reimbursement), these regulations have been more widely studied—we focus on them here

**Possible but less likely

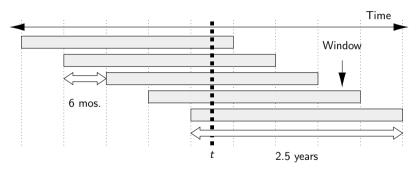
Transplant Regulations

- We describe CMS regulations (OPTN are similar)
- In 2007, Centers for Medicaid & Medicare Services (CMS) noted large variability among outcomes across programs
- Introduced regulations to incentivize better post-transplant outcomes



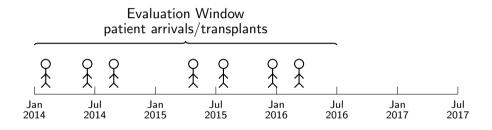
Not all transplant programs are created equal: Graft failure per 10 transplants across different programs (Dickinson *et al.*, 2008)

The CoPs evaluate transplant programs over 2.5-year evaluation windows



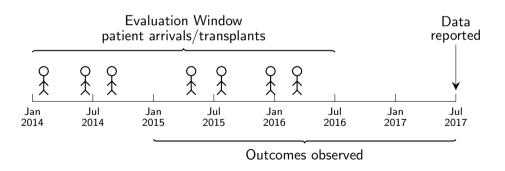
Five windows are 'active' at any time

In a single window, patients arrive and receive transplants

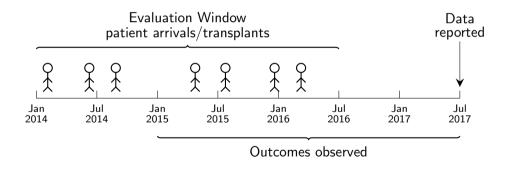


One year later, program reports to CMS

- (i) all recipient-donor data, and
- (ii) O = patient deaths/graft failures within one year of transplant



CMS computes survival function for each recipient; obtains expected number of deaths E

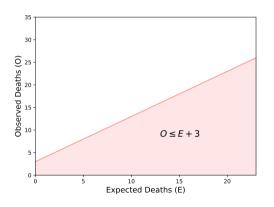


Program is flagged if O is "much larger" than E

Program is flagged if *O* is "much larger" than *E*

In particular, if the following criteria are *violated*:

1.
$$O \le E + 3$$
,



Program is flagged if *O* is "much larger" than *E*

In particular, if the following criteria are *violated*:

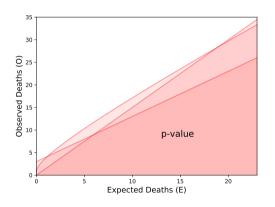
- 1. $0 \le E + 3$,
- 2. $O \leq 1.5E$, and



Program is flagged if *O* is "much larger" than *E*

In particular, if the following criteria are *violated*:

- 1. $0 \le E + 3$,
- 2. $O \leq 1.5E$, and
- 3. p-value \leq threshold

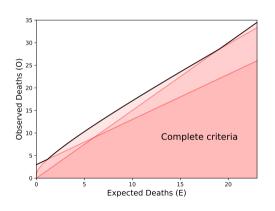


Program is flagged if *O* is "much larger" than *E*

In particular, if the following criteria are *violated*:

- 1. $0 \le E + 3$,
- 2. $O \le 1.5E$, and
- 3. p-value \leq threshold

OPTN uses a slightly different function to compare O/E



Penalties for Flagging

- Penalties associated with flagging can be severe
- Program must establish a remediation plan with CMS
- Negative publicity
- Temporary or permanent shutdown
- Estimated costs can run into tens of millions of dollars (USD)
- OPTN penalization perceived as less severe, but concerns remain ^{1 2}

¹Andreoni, American Journal of Transplantation, 2020, 20(8); 2026-2029

²Schold, Current Opinion in Organ Transplantation, 2020, 25(2); 158-162

Response to the CoPs

- Widespread criticism from the medical community
- Risk-adjustment does not account for pre-transplant outcomes, co-morbidities, other mitigating factors (Weinhandl et al., 2009)
- CoPs unable to identify truly underperforming programs; prevalence of false flagging (Massie and Segev, 2013)
- Programs forced to become risk-averse to both recipients and donors (Jay and Schold, 2017)

Response to the CoPs

HEART FAILURE

Federal Inspectors Cite St. Luke's in Houston for Problems in a Heart Transplant

ProPublica, October 2018

STATNews, August 2016 DON'T MISS

Hospitals are throwing out organs and denying transplants to meet federal standards

By CASEY ROSS @caseymross / AUGUST 11, 2016

Deaths at OHSU heart transplant program spiked before program shut down

The Oregonian, July 2019

Updated Jul 12, 2019; Posted Jul 12, 2019

Response to the CoPs

Empirical evidence suggests that when programs are flagged, their volume decreases

Cause of this decrease is debated

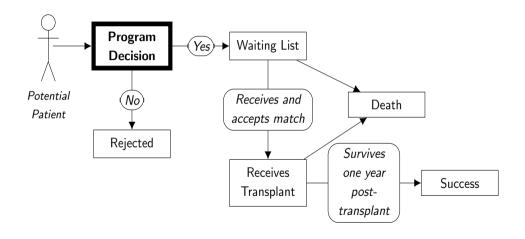
- Programs reject risky patients to reduce chances of future penalization?
- Patients choosing to seek care at better programs?
- Temporary adjustment while programs "re-group"?

Do CMS and OPTN regulations create incentives for programs to reject patients?

Model a program which seeks to:

- 1. Maximize transplant volume
- 2. Control risk of penalization by OPTN/CMS

Where Our Model Fits



OR Literature

National/governmental perspective:

- Zenios et al.(2000)-kidney allocation
- Kong et al.(2010)-allocation region design
- Akan et al.(2012)-liver allocation
- ...

Individual/patient perspective:

- Alagoz et al.(2004, 2007a, 2007b)-liver acceptance
- Sandıkçı et al.(2008, 2013)-patient perspective of waitlist
- ...

Program/medical perspective:

This work (first from a program's perspective)

Clinical Literature

Editorial/opinion articles:

- Abecassis et al.(2009) CoPs threat to innovation
- Schold and Axelrod (2014) Bayesian approach to CoPs
- Hamilton (2013) Impact of CoPs on patients

Simulation/data-driven:

- Massie and Segev (2013) prevalence of false flagging
- Schold et al.(2013) flagging and decline in volume
- Dolgin et al.(2016) removal from liver transplant waitlist

Optimization: This work

Optimization Model

Idea Behind the Model

Each week, a batch of patients arrives

Each patient modeled by two numbers, c and e, where

Program model is a better predictor of patient survival

Assumptions

- 1. [Mild] Program probability 1-c is the true survival probability Programs build higher fidelity prediction models with more robust data than CMS (Chan *et al.*, 2019)
- 2. [Medium] Survival probabilities independent of donor information Most factors associated with lung transplant failure depend on recipient, not donor (Diamond *et al.*, 2013)

Assumptions

- [Medium] Patients receive transplants immediately after acceptance
 Median wait times for lung transplants less than six months approx. 2
 years for kidneys (OPTN database).
 Short wait-time compared to length of evaluation window
- 4. [Mild] Patient arrivals are Poisson Common in the literature (e.g. Zenios (2000) and Shechter et al. (2005)) and is also consistent with Houston Methodist data

Decision variables

Current patients: binary variables z_j for whom to accept from current pool of candidates

Future patients: $u_{it} \in [0,1]$, fraction of type i patients accepted in week t

But what is a "type i" patient?

Classifying future patients

To control flagging risk, need to predict future patients

Define patient classes (indexed by i)

Class i has 3 associated values:

 $1 - c_i$ = Survival probability (program)

 $1 - e_i$ = Survival probability (CMS)

 λ_i = Mean # patients to arrive each week

Note that patients with different physiology could be grouped together because the regulations only care about patient-risk

$$Z_{it} = ext{number of type } i ext{ patients to arrive in week } t, \ Z_{it} \sim ext{Poisson}(\lambda_i)$$

$$\mathcal{A}_{it}^j = 1$$
 iff patient j of type i accepted in week t , $\mathcal{A}_{it}^j \sim \mathsf{Bernoulli}(u_{it})$ for all $j = 1, \dots, Z_{it}$

Decision variable:

 $u_{it} = \text{fraction of type } i \text{ patients accepted in week } t$

 Y_{it} = number of type i patients accepted in week t,

$$Y_{it} = \sum_{j=1}^{Z_{it}} A_{it}^j \sim \mathsf{Poisson}(\lambda_i u_{it})$$

 $X_{it}^j=1$ iff patient j dies within one year of transplant, $X_{it}^j\sim \mathsf{Bernoulli}(c_i)$ for all $j=1,\ldots,Z_{it}$

Compute observed + expected deaths for window w:

$$O_w = \sum_{i,t} \sum_{j=1}^{Y_{it}} X_{it}^j$$
 and $E_w = \sum_{i,t} e_i Y_{it}$

Can easily compute mean and variance of O_w and E_w

Flagging criteria: A program is flagged in window w if

- 1. **Absolute:** $O_w \leqslant E_w + 3$,
- 2. **Relative:** $O_w \leqslant 1.5E_w$, and
- 3. **p-value:** p-value ≤ 0.05

To limit risk of getting flagged, use chance constraints

$$\mathbb{P}[\min\{O_w - 1.5E_w, O_w - E_w - 3, p\text{-value} - 0.05\} \leqslant 0] \geqslant 1 - \alpha_w,$$

where α_w is a pre-defined risk tolerance

LHS of chance constraints famously hard to compute

Assume that O_w and E_w are normally distributed; valid for large transplant programs (e.g. Houston Methodist Hospital)

Then, each constraint 3 is normally distributed with parameters (μ_w^ℓ,σ_w^ℓ), $\ell=1,2,3$

Conservative approximation to chance constraint given by

$$\min_{\ell=1,2,3} \left\{ \mu_{w}^{\ell} + \varphi_{w} \sigma_{w}^{\ell} \right\} \leqslant 0$$

where $\varphi_w = \Phi^{-1}(1 - \alpha_w)$, $\Phi = \text{CDF}$ of standard normal distribution

³after linearizing the *p*-value constraint

To summarize,

- Model is solved once each week
- ullet Decision variables: binary z_j and continuous u_{it}
- Objective function: total transplant volume
- Constraints: chance constraints (and others)

Main Inputs:

- 1. Data for patients under consideration
- 2. Patient class data for future patients
- Data for the five "active" windows (Mean/variance of expected/observed deaths)
- 4. Risk tolerances for every window

Our Model

$$\begin{array}{lll} \max & \sum_{j} z_{j} + \sum_{i,t} \lambda_{i} u_{it} & \mathbb{E}[\# \text{transplants}] \\ \text{s. t.} & \min_{\ell=1,2,3} \left\{ \mu_{w}^{\ell} + \varphi_{w} \sigma_{w}^{\ell} \right\} \leqslant 0 \; \forall \; w & \text{Chance constraints} \\ & \mu_{w}^{\ell} = (a_{w}^{\ell})^{T}(u,\;z) & \text{Mean (linear)} \\ & (\sigma_{w}^{\ell})^{2} = (b_{w}^{\ell})^{T}(u,\;z) & \text{Variance (linear)} \\ & L_{w} \leq \sum z_{j} + \sum_{l} \lambda_{i} u_{it} \leq U_{w} \; \forall \; w & \text{Operational constraints} \\ & u_{it} \in [0,1] \; \forall \; (i,t) & \text{Future patients} \\ & z_{j} \in \{0,1\} \; \forall \; j & \text{Current patients} \end{array}$$

Our Model

$$\max \quad \sum_{j} z_{j} + \sum_{i,t} \lambda_{i} u_{it} \qquad \qquad \mathbb{E}[\# \text{transplants}]$$
s. t.
$$\min_{\ell=1,2,3} \left\{ \mu_{w}^{\ell} + \varphi_{w} \sigma_{w}^{\ell} \right\} \leqslant 0 \ \forall \ w \qquad \text{Chance constraints}$$

$$\mu_{w}^{\ell} = (a_{w}^{\ell})^{T}(u, \ z) \qquad \qquad \text{Mean (linear)}$$

$$(\sigma_{w}^{\ell})^{2} = (b_{w}^{\ell})^{T}(u, \ z) \qquad \qquad \text{Variance (linear)}$$

$$L_{w} \leq \sum_{j} z_{j} + \sum_{j} \lambda_{i} u_{it} \leq U_{w} \ \forall \ w \qquad \text{Operational constraints}$$

$$u_{it} \in [0, 1] \ \forall \ (i, t) \qquad \qquad \text{Future patients}$$

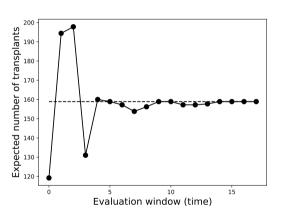
$$z_{j} \in \{0, 1\} \ \forall \ j \qquad \qquad \text{Current patients}$$

Hard to solve!

Structural Properties and Analysis

Empirical Steady-State Behavior

Numerical solution exhibits steady-state behavior that captures long-term strategy – conveys program's inherent risk of getting flagged, ignores transient effects



Steady-State Behavior

Can we characterize the steady-state?

Easier to analyze a single-window model Justified because. . .

Theorem

For sufficiently long horizons T, the optimal solution converges to that given by solving a **single-window** model (under mild assumptions)

Proof: Compute upper and lower bounds on multi-window objective, show they converge to each other (squeeze theorem)

$$\max_{\ell=1,2,3} \lambda^{T} u$$
s.t.
$$\min_{\ell=1,2,3} \left\{ a_{\ell}^{T} u + \varphi \sqrt{b_{\ell}^{T} u} \right\} \leqslant 0 \qquad (M_{sw})$$

$$u_{it} \in [0,1] \ \forall \ (i,t)$$

Can ignore t dependence, because . . .

Proposition

 $(\textit{M}_{\textit{sw}})$ has a stationary optimal solution (i.e., $\textit{u}_{\textit{i}t_1} = \textit{u}_{\textit{i}t_2} \ orall \ t_1, t_2)$

Proof: Analysis of characteristic functions of O_w and E_w

$$\max_{\ell=1,2,3} \lambda^T u$$
s.t.
$$\min_{\ell=1,2,3} \left\{ a_{\ell}^T u + \varphi \sqrt{b_{\ell}^T u} \right\} \leqslant 0 \qquad (M_{sw})$$

$$u_i \in [0,1] \ \forall \ i$$

Can ignore t dependence, because . . .

Proposition

 $(\textit{M}_{\textit{sw}})$ has a stationary optimal solution (i.e., $\textit{u}_{\textit{i}t_1} = \textit{u}_{\textit{i}t_2} \ orall \ t_1, t_2)$

Proof: Analysis of characteristic functions of O_w and E_w

 (M_{sw}) is a **reverse convex program**, with the following special structure

Theorem (Hillestad and Jacobsen-1980)

Consider the problem

$$\max\{c^T x \mid Ax \leqslant b, \ g(x) \leqslant 0\}$$
 (P)

for some continuous, strictly concave function g. If (P) has an optimal solution, then it has an optimal solution that lies on an edge of the polyhedron $\{Ax \leq b\}$

$$\max_{\ell=1,2,3} \lambda^T u$$
s.t.
$$\min_{\ell=1,2,3} \left\{ a_\ell^T u + \varphi \sqrt{b_\ell^T u} \right\} \leqslant 0 \quad \text{strictly concave if } \varphi > 0 \text{ (i.e., } \alpha < 1/2)$$

$$u_i \in [0,1] \ \forall \ i. \qquad \qquad \text{unit cube (polytope)}$$

By Hillestad and Jacobsen: there exists an optimal solution on the edge of the unit cube

Upshot: At optimality, at most one u_i is fractional. (All other $u_i \in \{0, 1\}$)

Keeping Programs Open

Could it be optimal for a program to stop transplants?

Consider a large program (transplant volume \geq 30)

For large programs, we can ignore the $\it E + 3$ and $\it p$ -value constraints (Dickinson, 2006)

Convexify the non-convex constraint $a^T u + \varphi \sqrt{b^T u} \leqslant 0$

Keeping Programs Open

Theorem

Let $\mathcal{H}^- = \{i \mid c_i < 1.5e_i\}$. Then $u^* \equiv 0$ is optimal for the convex relaxation iff

$$\sum_{i \in \mathcal{H}^{-}} \lambda_{i} \frac{(c_{i} - 1.5e_{i})^{2}}{(c_{i} - 1.5e_{i})^{2} + c_{i}(1 - c_{i})} < \frac{\varphi^{2}}{130^{2}}$$

Proof: KKT conditions

How to interpret this condition?

Keeping Programs Open

Program closes if
$$\sum_{i\in\mathcal{H}^-}rac{\lambda_i}{1+
u_i^2}<rac{arphi^2}{130^2}$$

$$u_i = \text{Coeff. of variation of } X_i - 1.5e_i; \quad \mathcal{H}^- = \{i \mid c_i < 1.5e_i\}$$

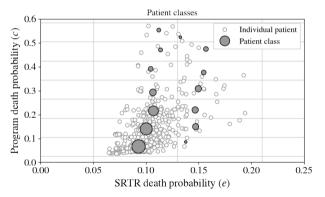
Want the LHS to be as large as possible, that is...

- $|\mathcal{H}^-|$ large \Rightarrow Many classes with $c_i < 1.5e_i$,
 - λ_i large \Rightarrow Many patients of type $i \in \mathcal{H}^-$,
 - ν_i small \Rightarrow c_i close to 0 or 1, certainty about outcomes

Numerical Experiments and Insights

Creating Patient Classes

Patient classes created from n=469 patients added to the waitlist at Houston Methodist hospital (HMH) between Jan 2014 and Dec 2018



Generated 22 patient classes.

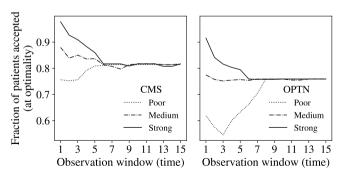
Final results are robust to clustering method

Response Prior to Flagging

If a program is currently in a favorable position how many more patients can receive transplant?

Initial positions from HMH data for 2016

Effect of initial position on convergence



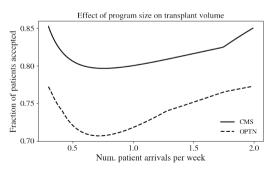
Unfair Penalization of Medium-Sized Programs

How does a program's response depend on incoming patient volume?

Consider a program, with fixed risk tolerance (3%)

Vary the patient arrival rate, keeping patient 'mix' the same

Medium-sized programs accept fewer patients than larger programs



Response After Flagging

The previous result has further implications

Common hypothesis: if a program is flagged, its transplant volume declines as patients choose to seek care at better programs⁴

Then, flagged programs get hit twice:

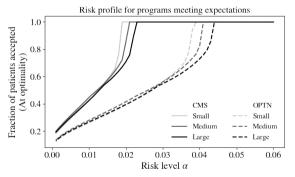
- Patient volume declines due to patient choice, and
- Program forced to accept patients at lower rate to limit flagging risk

The second effect has not been studied before

⁴See, e.g., Howard and Kaplan, *Do report cards influence hospital choice? The case of kidney transplantation.* Inquiry (2006) 43:150–159

What if the Program Meets Expectations?

What if a program exactly meets regulatory expectation? Can they transplant 100% of their patients? No



All programs satisfy $c_i = e_i$ for all patient classes i

As risk tolerance α decreases, the fraction of patients accepted at optimality drops below 100%

Key Insights

- CMS and OPTN regualtions do create incentives for programs to reject patients
- This incentive does not disappear even with adequate risk adjustment
- Medium-sized programs may be unfairly penalized under these regulations

Conclusion

- Developed first optimization model from a transplant program's perspective
- Presented first rigorous analysis of misaligned incentives under CMS/OPTN regulation
- Demonstrated previously unobserved problems with outcome-based regulation

Thank you!

Characterizing rational transplant program response to outcome-based regulation (D. Mildebrath, T. Lee, S. Sinha, A.J. Schaefer, A.O. Gaber) To appear in *Operations Research*.

CMS and OPTN Criteria: Frequentist vs. Bayesian

CMS used three (frequentist) criteria

Program flagged if all three hold

- 1. Actionability: O/E > 1.5 (or, later, 1.85)
- 2. Importance: O E > 3
- 3. **Significance**: One-side p-value < 0.05

CMS and OPTN Criteria: Frequentist vs. Bayesian

OPTN uses Bayesian criteria (beginning in 2014)

Put a Gamma(2,2) prior on hazard ratio HR.

Assume $O \sim \text{Poisson}(HR \times E)$.

Then posterior for HR is a Gamma distribution with mean (O+2)/(E+2) and variance $(O+2)/(E+2)^2$.

Program flagged if either

$$\mathbb{P}[\mathrm{HR} > 1.2] \geq 75\%$$
 OR $\mathbb{P}[\mathrm{HR} > 2.5] \geq 10\%$

Parameters 1.2, 2.5, etc. chosen via simulation

Convexification of Reverse Convex Program

Recall constraint

$$\min_{\ell=1,2,3} \left\{ a_{\ell}^T u + \varphi \sqrt{b_{\ell}^T u} \right\} \leqslant 0$$

Can ignore two of the constraints (E+3 and p-value) for large programs In the non-convex constraint, replace each u_i with u_i^2 . That is, replace

$$a^T u + \varphi \sqrt{b^T u} \leqslant 0$$
 with $a^T u + \varphi \sqrt{u^T B u} \leqslant 0$,

where $B = \operatorname{diag}(b)$. New constraint is convex if $\varphi > 0$. This gives a convex relaxation.

Convexification of Reverse Convex Program

Rewrite the convex constraint

$$a^T u + \varphi \sqrt{u^T B u} \leqslant 0$$
 as $a^T u + \varphi \|B^{1/2} u\|_2 \leqslant 0$.

Possible because B = diag(b), each $b_i = 130\lambda_i[(c_i - 1.5e_i)^2 + c_i(1 - c_i)] > 0$.

Therefore, we have a convex (second-order conic programming) relaxation for large programs:

max
$$\lambda^T u$$

s.t. $a^T u + \varphi \|B^{1/2}u\|_2 \le 0$
 $u_i \in [0, 1] \ \forall \ i$