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Errors classification
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Irreducible, random, Type A Reducible, systematic, Type B
» Random measurement » Incomplete theory or
error inadequate model
» Thermal fluctuations » Bias in numerical
» Stochastic algorithms algorithms

» Round-off errors



UuQ

Donald Ramsfield, then secretary of defense:

“Reports that say that something hasn't happened are always
Interesting to me, because as we know, there are known knowns;
there are things we know we know. We also know there are known
unknowns; that is to say we know there are some things we do not
know. But there are also unknown unknowns—the ones we don't
know we don't know. And if one looks throughout the history of our
country and other free countries, it is the latter category that tends to
be the difficult ones.”




Simple example: pendulum as a clock

Huygens: ~1650: T?~1, First pendulum clock (~100° amplitude)
~ 60 sec per day

Hooke, Newton: ~1700: Small amplitude: T = 2n\/§

Uncertanties: Model: Epistemic; Length measurement: aleatoric; g: constant, poorly
defined/measured: epistemic

~10 sec per day

Graham: 1721: Correction for thermal expansion: makes uncertainty in length epistemic!
Bernoulli: 1741: Correction to the model: T = Zn\/g (1 + 1—169§+..)

Buoyancy force, advancement in the escapement mechanism, drag effect, local gravity etc...:
~1 sec per year; Most precise clocks till quartz
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Metrology: the values of fundamental constants

S| system steadily redefines fundamental units so that their
measurements can be more accurate and independent of artefacts:

— Second: Fraction of a day -> Fractions of the year -> frequency associated with the Cs!33
atomic transitions

— Meter: Fraction of the Earth circumference -> Artifacts -> Using unit of time and the
speed of light: Makes speed of light precise.

— Kilogram: Mass of 1 litre of water -> Artefacts -> Using time and length and fixing Plank’s
constant.



Multiscale simulations in materials science

» 15 orders of magnitude in time and 10 orders of magnitude in length between
atomic and macroscopic scales: More that 2 models are common.

» Propagation of errors is very important.



Typical example

calculations potential dynamics continuum

model

» One can stop at any point

» Multiscale can be concurrent, i.e. atomic level simulations are performed on the
fly when needed, or sequential.

» Large number of community codes these days make these simulation very
common
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Kirklin et al, npj Computational Materials
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https://www.nature.com/npjcompumats
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UQ & GP in Nudge Elastic Band with DFT

Energy
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Reaction coordinate

https://www.scm.com/doc/AMS/Tasks/NEB.html
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Classical potentials

> Definitely inadequate model

> Parameters are not unique: ~30 parametrization for UO, in
the literature!
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Sample potential
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Conclusions

> Broad UQ for atomistic simulations making significant
progress.

> DFT theory is well validated and verified, but may be more
can be done for UQ

> UQin classic interatomic potentials are still not fully
understood.

> NN potentials are currently in between potentials of old and
DFT.
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