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Basic definitions of UQ

Verification
𝑦𝑦𝑗𝑗 𝑦𝑦𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

Validation
𝑦𝑦𝑗𝑗 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒

Uncertainty 
Quantification: Δ𝑦𝑦𝑗𝑗

MODEL
Internal 

parameters {𝛼𝛼}
Inputs, 𝑥𝑥𝑒𝑒 Outputs, 𝑦𝑦𝑗𝑗

Error propagation: 
𝛥𝛥𝑥𝑥𝑒𝑒  → 𝛥𝛥𝑦𝑦𝑗𝑗

Sensitivity 
analysis

Model 
calibration



Errors classification

Uncertainty

Aleatoric 
Irreducible, random, Type A 

Epistemic
Reducible, systematic, Type B

 Random measurement 
error

 Thermal fluctuations
 Stochastic algorithms 

 Incomplete theory or 
inadequate model

 Bias in numerical 
algorithms

 Round-off errors



UQ

Donald Ramsfield, then secretary of defense: 
“Reports that say that something hasn't happened are always 
interesting to me, because as we know, there are known knowns; 
there are things we know we know. We also know there are known 
unknowns; that is to say we know there are some things we do not 
know. But there are also unknown unknowns—the ones we don't 
know we don't know. And if one looks throughout the history of our 
country and other free countries, it is the latter category that tends to 
be the difficult ones.” 



Simple example: pendulum as a clock
Huygens: ~1650: 𝑻𝑻𝟐𝟐~𝒍𝒍, First pendulum clock (~100o amplitude)

~ 60 sec per day

Hooke, Newton: ~1700: Small amplitude: 𝑻𝑻 = 𝟐𝟐𝟐𝟐 𝒍𝒍
𝒈𝒈

Uncertanties: Model: Epistemic; Length measurement: aleatoric; g: constant, poorly 
defined/measured: epistemic

~10 sec per day 
Graham: 1721: Correction for thermal expansion: makes uncertainty in length epistemic!

Bernoulli: 1741: Correction to the model: 𝑇𝑇 = 2𝜋𝜋 𝑙𝑙
𝑔𝑔

1 + 1
16
𝜃𝜃02+. .

Buoyancy force, advancement in the escapement mechanism, drag effect, local gravity etc…: 
~1 sec per year; Most precise clocks till quartz



Modern analysis

Nelson RA, Olsson MG. 1986. The pendulum: rich physics from a simple system. Am. J. Phys. 54:112–21



Metrology: the values of fundamental constants

> SI system steadily redefines fundamental units so that their 
measurements can be more accurate and independent of artefacts:

– Second: Fraction of a day -> Fractions of the year -> frequency associated with the Cs133 
atomic transitions

– Meter: Fraction of the Earth circumference -> Artifacts -> Using unit of time and the 
speed of light: Makes speed of light precise.

– Kilogram: Mass of 1 litre of water -> Artefacts -> Using time and length and fixing Plank’s 
constant. 



Multiscale simulations in materials science

MODEL 1
Internal 

parameters {𝛼𝛼}
Inputs, 𝑥𝑥𝑒𝑒 Outputs, 𝑦𝑦𝑗𝑗

MODEL 2
Internal 

parameters {𝛼𝛼}
Outputs, 𝑦𝑦𝑗𝑗

 15 orders of magnitude in time and 10 orders of magnitude in length between 
atomic and macroscopic scales: More that 2 models are common.

 Propagation of errors is very important.



Typical example

Ab initio 
calculations

Database
Classical 
potential

Parameters

 One can stop at any point
 Multiscale can be concurrent, i.e. atomic level simulations are performed on the 

fly when needed, or sequential.
 Large number of community codes these days make these simulation very 

common

Molecular 
dynamics

Output Phase-
field, or 

continuum 
model

Result

Neural Networks



DFT verification

K. Lejaeghere et al., Science 351, aad3000 (2016). 

 How correctly do we solve the 
equations?

 There are multiple 
implementations, one can 
compare

 Popular modern implementations 
differ from each-other less than 
experimental uncertainties

  



DFT validation: just how good is it?

Kirklin et al, npj Computational Materials 1, 15010 (2015)

 Comparison of DFT with experiment over large dataset

 1670 compounds evaluated

 All reference states are evaluated and “adjusted”

 Cohesive energy MAE: 0.081 eV/A

https://www.nature.com/npjcompumats


UQ in Density Functional Theory
 UQ of the Generalized Gradient Approximation to the Density functional theory.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑅𝑅𝑒𝑒 → 𝑣𝑣(𝑟𝑟) → 𝐸𝐸[𝑃𝑃𝑒𝑒 ,∇𝑃𝑃𝑒𝑒]
 Experimental observables: Δ𝐸𝐸,𝑅𝑅@ min𝐸𝐸
 ∇𝑃𝑃𝑒𝑒 enters as a function 𝐹𝐹𝑒𝑒 = 𝐹𝐹𝑒𝑒 𝜃𝜃𝑒𝑒 , 𝐴𝐴 = 1. . 3
  

𝐷𝐷𝐹𝐹𝑇𝑇

Mortensen et al, PRL 95, 216401 (2005)

 𝜃𝜃𝑒𝑒  are sampled from:
𝜌𝜌~exp(−𝐶𝐶(𝜃𝜃𝑒𝑒)/𝑇𝑇)

𝐶𝐶 𝜃𝜃 = ∑ 𝑂𝑂𝑘𝑘𝑜𝑜𝑜𝑜 − 𝑂𝑂𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐 2

Minimize 𝐶𝐶(𝜃𝜃), and set 𝑇𝑇 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑘𝑘.
  



Ensemble UQ in Density Functional Theory
> UQ of the Generalized Gradient Approximation to the Density functional theory.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃 𝑅𝑅𝑒𝑒 → 𝑣𝑣(𝑟𝑟) → 𝐸𝐸[𝑃𝑃𝑒𝑒 ,∇𝑃𝑃𝑒𝑒]𝐷𝐷𝐹𝐹𝑇𝑇

Mortensen et al, PRL 95, 216401 (2005)



UQ & GP in Nudge Elastic Band with DFT

https://www.scm.com/doc/AMS/Tasks/NEB.html



UQ & GP in Nudge Elastic Band with DFT

Torres et al, PRL, 122 156001 (2019)

 Fit GP model by using DFT 
on first iterations.

 Use GP model to estimate 
uncertainty at each image

 Move the images, do DFT 
at the most uncertain 
image

 Refit the model and 
continue

 Order of magnitude 
reduction in compute



Classical potentials 

> Definitely inadequate model
> Parameters are not unique: ~30 parametrization for UO2 in 

the literature!

Ab initio 
calculations

Database
Classical 
potential

Parameters
Molecular 
dynamics

Results



Thermal conductivity as unfitted property 

Chernatynskiy et al, J Mater Sci (2012) 47:7693–7702

Large variations in almost any unfitted property: use with care! 



Parameters from distributions: MEAM potentials

Frederiksen et al, PRL 93, 165501 (2004)

 Parameters are sampled from:
𝜌𝜌~exp(−𝐶𝐶(𝜃𝜃𝑒𝑒)/𝑇𝑇)

𝐶𝐶 𝜃𝜃 = ∑ 𝑂𝑂𝑘𝑘𝑜𝑜𝑜𝑜 − 𝑂𝑂𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐 2

Minimize 𝐶𝐶(𝜃𝜃), and set 𝑇𝑇0 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑘𝑘.
  



Pareto-optimization for potentials

Ragasa et al 2019 Modelling Simul. Mater. Sci. Eng. 27 074007

Sample potential 
space 

Identify approximate 
Pareto front

Preferentially sample 
near Pareto front

Generate sample of 
Pareto-optimal 

potentials
𝐹𝐹 = ΔA 2 + Δ𝐵𝐵 2 : No (arbitrary) weights!



Probability distribution evolution
 Uninformed prior 

develops preference for a 
specific value due to 
improved approximations 
to the Pareto front.

  



Pareto-optimal sample

Ragasa et al 2019 Modelling Simul. Mater. Sci. Eng. 27 074007



Crystal structure prediction

> We are interested in complex 
chalcogenide compounds for energy 
applications.

> Use traditional symmetry enabled 
dimensionality reduction

> Use rigid-block to reduce the 
dimensionality

Na6Ge2Se6

Qi Zhang et al 2025 J. Phys.: Condens. Matter 37 095901



Overview of the method

Qi Zhang et al 2025 J. Phys.: Condens. Matter 37 095901



Neural-Network Potentials (CHGNET) as an energy 
estimator

Good performance from CHGNET potential, possibility for fine-tuning 



Energies of the predicted structures

Qi Zhang et al 2025 J. Phys.: Condens. Matter 37 095901



Conclusions

> Broad UQ for atomistic simulations making significant 
progress.

> DFT theory is well validated and verified, but may be more 
can be done for UQ

>  UQ in classic interatomic potentials are still not fully 
understood.

> NN potentials are currently in between potentials of old and 
DFT.
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