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Our research mission is to develop parallel algorithms, software, and domain-specific 
hardware accelerators that enable faster and cheaper progress in biology and medicine.



Parallel Computing Solutions
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Introduction to Pangenomics
• Pangenomics is an emerging field that 

deals with a collection of genomes from 
a single species

• Helps study how the genomic variation 
leads to:

• Diseases in humans
• Desirable traits in plants and animals
• Resistance in pathogens

• Current pangenomic analysis often limited 
to tens to hundreds of genomes

• How do we scale to millions of 
genomes?

• Focus of this talk
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Humans (Liao et al., Nature 2023)

Cows (Zhou et al., Gen. Res. 2022)

Tomato (Zhou et al., Nature 2022)

E. Coli (Noll et al., Microb Genom 2023)
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47 genomes

898 genomes

838 genomes

307 genomes



Within-species data dominates cross-species 
data by orders of magnitude

Source: Google Gemini Deep Research 7
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First, we need a data representation

• Currently the most popular 
representation is using graph-based 
formats

• Excellent for reducing reference-
bias in read alignment

• But there are limitations:
1. Costly to construct
2. Storage-wise inefficient
3. Lack evolutionary and mutational 

information (Only variation is stored)

8
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PanGraph

PGGB (GFA)

Species No. of 
sequences

Runtime of 
PanGraph

SARS-CoV-2 20,000 18.5 hrs
HIV 20,000 17.4 hrs

Escherichia Coli 1,000 27.6 hrs
Klebsiella 

pneumoniae 1,000 56.2 hrs

Species No. of 
sequences

Runtime of
PGGB

SARS-CoV-2 20,000 16.1 hrs
HIV 20,000 14.5 hrs

Escherichia Coli 1,000 32.1 hrs
Klebsiella 

pneumoniae 1,000 43.5 hrs



First, we need a data representation

• Currently the most popular 
representation is using graph-based 
formats
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Species 
(# of sequences) GFA VG GBZ

SARS-CoV-2
(20,000) 1.1GB 307MB 34MB

Escherichia Coli 
(1,000) 2.4GB 747MB 900MB

Klebsiella pneumoniae 
(1,000) 3.6GB 1.1GB 1.4GB

File Size for various pathogens



First, we need a data representation
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Alternative Pangenomic Representations

• Some formats focus on 
compressing large collections of 
raw genomic sequences

• No variation is stored
• Examples: AGC and Miniphy

• Others focus on representing 
more

• Storage-wise less efficient
• Examples: Phylogeny in PanGraph, 

recombination in tree sequences (tskit)

13

Focus on compression

AGC (Deorowicz et al., Bioinformatics 2023) Miniphy (Brinda et al., Nat. Biotech. 2025)
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Tskit (Kelleher et al., Nat. Genet. 2020)PanGraph (Noll et al., Microb. Genom. 2024)

Focus on compression

Focus on representing more

AGC (Deorowicz et al., Bioinformatics 2023) Miniphy (Brinda et al., Nat. Biotech. 2025)



Pangenome Formats: Landscape of Trade-offs
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Low High
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PanMAN
(Our work)

Representative 
Power

Memory efficiency

PanGraph, tskit, 
GFA, VG, etc.

MiniPhy, 
AGC, etc,



Evolutionary Compression: Key idea

• Store:
1. Inferred phylogeny (e.g., inferred tree 

topology) 
2. Root sequence 
3. Mutations inferred on each branch

• Property: sequence corresponding to 
every tip or internal node of the 
phylogeny can be derived from the root 
sequence and the mutations on its path 
to the root

Turakhia et al., Nature Genetics 2021 16

G3179A, C6982T

C3037T, C14408T, A23403G

T28144C

C8986T

C8782T

A17858G

T26512C

Root sequence

T28144CC8782TG3179A C6982T



UShER Mutation-Annotated Tree (MAT) used 
Evolutionary Compression: Applications
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Limitations of UShER-MAT
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• Reference-based
G3179A, C6982T

C3037T, C14408T, A23403G

T28144C

C8986T

C8782T

A17858G

T26512C

Root sequence

T28144CC8782TG3179A C6982T



Limitations of UShER-MAT
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• Reference-based 

• Only stores substitutions – ignores 
indels

• Indels sometimes comprise lineage-defining 
mutations



Limitations of UShER-MAT
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• Reference-based 

• Only stores substitutions – ignores 
indels

• Indels sometimes comprise lineage-defining 
mutations

• Restricted to a single tree topology – 
cannot represent complex mutations 
(e.g., recombination or horizontal gene 
transfer) violating the vertical mode of 
evolution



Pangenome MANs: Approach

• PanMAN uses ‘evolutionary 
compression’ to represent 
pangenomes

• Both a data structure and file format
• Unifies alignment and phylogeny into 

a more efficient representation

https://github.com/TurakhiaLab/panman 21

Sumit Walia Harsh Motwani

(Under revision in Nature Genetics)

Yu-Hsiang Tseng



PanMAT: Pangenome Mutation-Annotated Tree

• Incorporating insertions and deletions (indels) into a MAT
• MSA defines the coordinate system
• Gaps (resulting from indels) treated as special characters

22

Nucleotide Mutation Table

Node Pos Allele

S1 [0,3,4] [-,G,C]

2 [6,9] [A,-]

S2 [8] [-]Multiple 
Sequence 
Alignment

Phylogenetic 
Tree

PanMAT

Root Sequence

Inference of sequence at 
internal nodes

Fitch / 
PastML /

 etc.



PanMAT: Pangenome Mutation-Annotated Tree

• Incorporating structural changes and rearrangements 
• Identify homologous blocks
• MSA of homologous blocks
• Block mutations are like substitutions to or from gaps
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Block Mutation Table

Node Pos Mutation

1 [3] [DEL]

S1 [0] [DEL]

2 [2] [DEL]

S3 [1, 3] [INV, INS]

Color Coded 
Homologous 

Blocks

Alignment of 
Homologous Blocks

Inference of blocks at internal 
nodes’

(Pseudo-Root)

PanMAT



PanMAN: Pangenome Mutation-Annotated Network

• PanMAN: Generalization of 
PanMAT to represent complex 
mutations

• One or more PanMATs are 
connected with network edges 
(red dotted lines)

• Network edges store breakpoints of 
complex mutations (blue table), i.e., 
Horizontal Gene Transfer (HGT) 
and Recombination 

24

Complex 
Mutations

Block and 
Nucleotide 
Mutations

PanMAN



Representative Power of Pangenome formats
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Inferred MSA, Phylogeny, and mutations all in one format!
PanMAN is not just information-rich but also more compact and scalable



Compression of PanMAN versus Other File 
Formats
• Datasets: 

• 20K SARS-CoV-2
• 1K E. Coli
• 20K HIV
• 400 M. Tuberculosis
• 4K RSV
• 1K Klebs

• Compression ratios:
• 19–680x over GFA
• 6–152x over VG
• 5–42x over GBZ
• 26–614x over PanGraph

27



PanMAN scales well relative to other formats
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PanMAN scales well relative to other formats
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More Compression than BAM, CRAM, AGC, 
Miniphy, GZIP, XZ, etc.

Species
No. of 

sequences FASTA ZIP GZIP XZ SAM BAM CRAM AGC MiniPhy
GFA 

(GZIP)
PanGraph 

(GZIP) VCF (GZIP)
spVCF 
(GZIP) PanMAN

SARS-CoV-2 20,000 581 138 138 2.6 573 169 5.3 57 1.6 305 195 19.2 21.2 2.27
8,112,719 245,780 42125.4 42125.4 892.4 236227.1 62485.3 1224.4 1942.6 N/A N/A N/A N/A N/A 366

HIV 20,000 174 26 26 6.5 181 35 16 35 5.6 61 62 36.7 35.1 12.54
RSV 4,000 58 7.8 7.8 0.34 61 15 5.1 12 0.39 107 9.9 2.1 1.9 0.69

Escherichia Coli 1,000 4785 1434 1434 557 8678 2450 1119 1228.8 649 699 388 234.7 222.9 101.8
Mycobacterium 
Tuberculosis 400 1741 508 508 102 2458 646 154 377 102 166 42 8.9 9.2 5.15

Klebsiella 
pneumoniae 1,000 5427 1638 1638 877 13312 3584 1536 1332 870 1092 676 318.4 310.6 200.8

30

File sizes (in MB)



PanMAN Command-line Utilities

31

1) Raw Sequences 2) MSA 3) Sub-MSA 4) m-WGA (MAF)

10) AA translation
7) Summary 8) Annotate 9) sub-PanMAN

5) GFAs

6) VCFs



PanMAT De Novo Construction Process
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1. 
Raw 

Sequence

2. 
Homologous 

Block 
3.

Whole-Genome 
Alignment

AGAT-
AG-TT
ACATT
-GA-T

TACGG
--CGG
TA-GA
TAC-A

4. 
Phylogenetic 

Tree 

(Pseudo-Root)

5. 
PanMAT

PanGraph PGGB (GFA)

Bottleneck!
Needs acceleration



Acknowledgments
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Accelerating MSAs

34



Current MSA tools struggle with handling tall 
and wide alignment

35

A - G C C G T G

A T G C - G - G

A C G C - G - G

A T G C C A T G

A T G C C G T G

Height

Width
(Smirnov, V., 2021)

627 minutes

16 minutes

Seq. Count

Seq. Length

77 hours



Accelerating MSAs on GPUs

36

Yu-Hsiang Tseng Sumit Walia

https://github.com/TurakhiaLab/TWILIGHT

https://github.com/TurakhiaLab/TWILIGHT


Why GPUs?

Source: The Next Platform
37



Challenges with GPU Acceleration
• Requires high data parallelism 

• same operation on large datasets

• Programmers manage memory (explicit control of 
global, shared, and local memory)

• Global memory capacity is more limited than a CPU
• Global memory has high bandwidth but is latency prone
• Shared and local memories are fast (low latency) but 

have small capacity 

• High communication cost with CPU 

• Algorithms have to be adapted to this cost model
• increase parallelism 
• exploit local/shared memories
• optimize memory access patterns
• minimize data transfers with CPU

38
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Cost/access

16–48 GB
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CPU

CPU Memory

GPU Memory

GPU

PCI bus



TWILIGHT: Tall and WIde ALIGnment at High 
Throughput

41

TWILIGHT 
Default Mode

>seq1
AGCGCTCGGGCTA
>seq2
GGCTCCACGGGCCA
>seq3
CAATCCCGGGCC
.
.

Unaligned Sequences

Guide Tree

>seq1
AGCGCTC----GGGCTA
>seq2
-G-GCTCCACGGGCCAG
>seq3
CA-A-TCC-CGGGCC—
.
.

MSA

Guide Tree 
Inference

Guide Tree 
InferenceTWILIGHT 

Iterative Mode



TWILIGHT Overview
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TWILIGHT

fftns-1

MAFFT
fftns-1

MAGUS
PASTA

Seq. count × Seq. 
Length

Tall AND Wide

Tall OR Wide

Accuracy
HighLow

MAFFT-linsi

MAGUS
PASTA

MAFFT-fftns-1

TWILIGHT

Width

Height

MAFFT-linsi100

1,000

10,000

100,000

1,000,000

1,000 10,000 100,000

MSA Size in 24 hours



TWILIGHT: High-Level Approach

• Progressive alignment is used in 
TWILIGHT to build MSAs

• Use Profiles to represent 
alignments

• Affine-gap penalty with position-
specific gap penalty (Julie D. 
Thompson, 1994)

43

a b c d

a:ACGT
b:AGT   
c:ACT
d:ACTT

1 2

3
a:ACGT
b:A-GT

1
c:ACT-
d:ACTT

2
a:ACGT-
b:A-GT-   
c:AC-T-
d:AC-TT

3
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A C G C T

- C - T T

A C - C -

A C - C T

A C - C T

A 0.8 0 0 0 0

C 0 1.0 0 0.8 0

G 0 0 0.2 0 0

T 0 0 0 0.2 0.8

- 0.2 0 0.8 0 0.2

Alignment Profile
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3
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Affine Gap Penalty



TWILIGHT: High-Level Approach

• Progressive alignment is used in 
TWILIGHT to build MSAs

• Use Profiles to represent 
alignments

• Affine-gap penalty with position-
specific gap penalty (Julie D. 
Thompson, 1994)

45

A C G C T

- C - T T

A C - C -

A C - C T

A C - C T

A 0.8 0 0 0 0

C 0 1.0 0 0.8 0

G 0 0 0.2 0 0

T 0 0 0 0.2 0.8

- 0.2 0 0.8 0 0.2

Alignment Profile

GOP: -50 GOP: -20
Position-specific gap penalty

Needleman-Wunsch algorithm  
Affine Gap Penalty

a b c d

a:ACGT
b:AGT   
c:ACT
d:ACTT

1 2

3
a:ACGT
b:A-GT

1
c:ACT-
d:ACTT

2
a:ACGT-
b:A-GT-   
c:AC-T-
d:AC-TT

3



TWILIGHT: Challenges

1. Prohibitive memory usage for ultralarge MSAs
• Solution: Divide and conquer strategy

2. Traceback memory requirements scale with alignment length
• Solution: TALCO tiling strategy

46

8 million SARS-CoV-28,000,000

30,000 (bases)

Requires 240 GB just to store raw sequences! 
Alignment expansion increases this further (>1TB)

GPU memory: 16-48 GB
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Subalignment

1

2

3

Centroid 
Decomposition
(Liu et al., 2012)

ACGTT
ACGCT

CGTTC
CGT-C

CAGT
CAG-

1 2 3

AC-GTT-
AC-GCT-

Subalignment 1
0010001

Subalignment 2
1010000

1000011
Subalignment 3

-C-GTAC
-C-GT-C

-CAGT--
-CAG---



TWILIGHT: Challenges

1. Prohibitive memory usage for ultralarge MSAs
• Solution: Divide and conquer strategy

2. Traceback memory requirements scale with alignment length
• Solution: TALCO tiling strategy
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Example: X-Drop algorithm
Space Complexity: O(ND)
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Phase 1

Marker

Phase 2

Convergence point

Sumit Walia Cheng Ye Arkid Bera Dhruvi Lodhavia
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Phase 1

Marker

Phase 2

Convergence point



TWILIGHT: GPU Parallelization
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Order Nodes

1 a, b, c, d

2 e, f

3 g

d
c

b
a

Thread 0          Thread 1          Thread 2          Thread 3

Parallelism on GPU

a b c d

e f
g Scheduling



TWILIGHT: Results

1. Handles much larger number of sequences 
(tall alignments) and sequence lengths (wide 
alignments)

2. Offers high speedup and accuracy 
compared to existing tools

3. Only tool to complete an MSA of 8-million 
SARS-CoV-2 genomes

• 28 hours on 2 GPUs using the UShER guide tree
• ion badges (available, evaluated, reproduced)

4. Supports multi-GPU acceleration on NVIDIA 
and AMD GPUs

5. Supports protein alignments

Tseng et al., ISMB 2025 (to appear) | https://github.com/TurakhiaLab/TWILIGHT 52

13 min (2GPUs)

32 min (CPU)



Future Work

• Multiple Whole-Genome Alignment (m-WGA) with TWILIGHT
• Account for non-linear rearrangements (translocations, inversions, 

duplications, large indels, etc.)

53

Block 1 Block 2 Block 3 Block 4 Block 5

Update MSA of existing Blocks
De novo MSA for newly added Blocks



Accelerating Phylogenetics
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Distance-based Phylogenetics

55

Mash/k-mer 
Distance

Jukes–Cantor (JC69)
Tajima–Nei (TN93)

Tamura

UPGMA
Neighbor-Joining (NJ)

Space Complexity: O(N2)
Time Complexity: O(N3)
N=Number of taxa

Makes it difficult to 
scale beyond N ~ 105



DIPPER: Distance-based Phylogenetic Placer
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(Preprint releasing soon!)

Zexing ChenSumit Walia Yu-Hsiang Tseng



DIPPER: Overview

57

O(N) space



DIPPER: Overview
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https://github.com/TurakhiaLab/DIPPER

https://github.com/TurakhiaLab/DIPPER


• GPU-accelerated distance-based 
phylogenetic placement algorithm

• O(N) memory and O(N.log N) runtime

• Accuracy comparable or better 
than conventional Neighbor-Joining

• Faster and more scalable
• 1M sequences analyzed in 2.4 hours; 

10M sequences analyzed in under 7 
hours

• Lower memory requirement

DIPPER: Contributions

59



Future Vision: Alignment-Phylogeny Co-optimization 
Framework Under PanMAN

60

S1 : -CTATGCCG
S2 : TCT---TCG
S3 : TCTAT-CAG

1
2

S1 S2 S3

Output alignment 

and phylogeny

Optimize alignmentOptimize phylogeny
Output optimized 

 PanMAN
1

2

S1 S2 S3

1

2

S1 S3 S2

Input PanMAN Output PanMAN



Summary

• Significant results:
1. Largest SARS-CoV-2 pangenome with ~8M genomes stored in only 

366MB with PanMAN (the most compressible pangenome format with 
increased representative power)

2. Largest MSA of ~8M SARS-CoV-2 genomes analyzed in under 30 
hours using TWILIGHT

3. Distance-based phylogeny of ~10M sequences estimated in under 7 
hours with only 1 GPU using DIPPER

• Coming Soon:
1. Ultralarge pangenome construction and alignment-phylogeny co-

estimation of diverse species under the PanMAN framework

All tools available at: https://github.com/TurakhiaLab 61



Thank you for listening!
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