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Proposition 2. For the true gene tree G; of four leaves with topology ab|cd (irrespective of the
species tree topology), let l,, 1y, ., | ; denote the terminal branch lengths, and [, denote the internal

branch length in substitution units, then
E[w,-(ablcd)|G,-] — ye~@Uatlptlctla) (1- e_'Bl") = E[wi(aclbd)|Gi] (S21)

for somea >0, >0, andy > O.

Zhang et al., Science 387, 946 (2025) 28 February 2025



Il. Linear Tests for Mixtures
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Evolutionary Process

@ States evolve in space [¢] = {1,...,¢}
@ Governed by reversible rate matrix @ with stationary distribution 7
(i.e., 7T,'Q,:,' = 7TJ'Q_,',')
o For topology T; and branch lengths t: distribution P ()
$2 7 - 33

For topology T3 with internal nodes r1, r» and branch lengths
(to, t1, t2, t3, ta):

Pr,(t)(w,x,y,2) = Z 7TU(thO)UV(‘E‘Qtl)UW(thz)UX(eQm)vy(eQm)vz
u,vel]

where (w, x, y, z) are observed states at leaves (si, s2, s3,54) and (u, v) are
unobserved states at the internal nodes (r1, r2).



Definition: Single-Tree Mixture Distribution

A single-tree mixture distribution on a topology T is a probability
distribution p7 on [£]* that is a convex combination of distributions

generated on T with different branch lengths:

N
pr =Y aPr(t)
k=1

where:
@ ¢, > 0 and Zf(vzl ck = 1 (convex combination)

o Each tj is a vector of positive branch lengths




Definition [Stefankovic-Vigoda'07]

A linear test for distinguishing topology T3 from T, is a real-valued
function H : [{]* — R such that:

E
E

ury [
H

pr, L

> 0 for any mixture 7, on topology T3
< 0 for any mixture p7, on topology T>

Hyperdimensional

Oranges
(Kim'00)




Consider the group R = {e,‘) (13)(24),(14)(23)}. For any

gER wehave TE =T, fori=1,7,3.

I

If a linear test H for distinguishing topology T3 from T exists, then an
R-invariantilinear test for T3 vs T, also exists.

€., H(’«“’;";jﬂv) - Hb‘*}‘“’@v}j)

S1

$4




For JC69, it is shown in [Stefankovic-Vigoda’'07] that:

@ There is a unique R-invariant linear test (up to scaling) for
distinguishing T3 from T> that is also invariant under any
permutation of the states

© That test is a linear invariant [Lake'87]: E, . [H] =0
@ It coincides with the CASTER weights

@ For the more general TN93 model, linear (topology) invariants were
derived in [Casanellas-Homs-Torres'24]

For K3P, it is shown in [Stefankovic-Vigoda'07] that:

@ There are no such tests (see also [Sturmfels-Sullivant'05])




l1l. A Mathewmatical Framework



Definition [R.'25]

A linear score for distinguishing topology T3 from T, and T7 is a
real-valued function H : [{]* — R such that: for any mixtures u1,, 17,
ut;, on T1, To, T3 respectively

E“T?,[H] > ENTz [H]7 ENT3 [H] > ENTI [H]
Furthermore, we require

IE‘:“,UT3[H] > O’ EMTz [H] < 07 EMTl [H] < 0.




Consider the group

(34), (12)(34), (13)(24), (14)(23), (1324), (1423)}.

For any g € K, we have T{ = T3. Does not hold for T, and Ti: e.g.,
(12) swaps T and T;.

Proposition [R."25]

If a linear score H for distinguishing topology T3 from T and T; exists,
then a K-invariant linear score also exists.

S1

$4



m-Weighted Inner Product

Let m be the stationary distribution of the reversible rate matrix Q. For
functions f, g : [(] = R, define the weighted inner product:

/
(f,8)r =Y mif(i)g(i)
=1

Because @ is self-adjoint in the m-weighted inner product, there exists an
orthonormal eigenbasis {1, ..., ©s} with:

o Qﬁpa — >\a90a and <903790b>7r = 0ab
@ \1 = 0 with ¢1(i) =1 for all i € [¢] (constant function)

A related inner product was used in [Casanellas-Homs-Torres'24].



o Identify four-variable functions h : [¢]* — R with vector space
U =R @RY g R @ R =~ RI*
@ Simple tensors
ARhORBATf: (w,x,y,2) = fi(w)h(x)R(y)fa(2)
@ A basis of U

{02 ® b Rl ® 4 : (a, b, c,d) € []*}

that is orthonormal under the inner product

(h, k) g1+ = Z TwTxTyTz h(w,x,y,z) k(w,x, y, z)
w,x,y,z€[{]



@ K-invariant subspace
UR={HecU|g-H=Hforall g € K}

where g H(al7 d2, d3, a4) — H(g ° (ala d2, d3, 34)) and
g - (a1, a2, 33,a1) = (ag-1(1), 3g-1(2)> 3g-1(3)> 3g—1(4))

o K-orbit associated to (a, b, ¢, d) € [¢]*

O={g-(ab,c,d):geK}



Theorem [R.’25]: Basis for K-Invariant Four-Variable Functions

For each K-orbit O on [{]*, define the orbit function

Vo = Z Pa X Pp X P X Pg.
(a,b,c,d)€O

The collection of orbit functions
F={Vp:0Oisa K-orbit on {1,...,£}*}

forms an orthogonal basis for the K-invariant subspace UX with respect to
the inner product (-, ) 4.

y




Ll (W)|U] = e, (U) (evolution from r; to s1)
Blop(X)|U] = e2pp(U) (evolution from 1 to sp)
Lo (Y)|V] = eBp (V) (evolution from ry to s3)
B[pg(W)| V] = e pq(V) (evolution from rp to s4)

t[goag W op(X)pc( Y‘Yﬂpd(z)]
3 $4
— E[E[ V\/)gob(X)QDz(Y)SOd U, V]]

= E[E[pa( Sl p(X)WTE[0c(Y)| VIE[pa (W) V]]
M&T’lﬁ(}\/ e)\at1+)\bt2+)\c13 q AT S%b)(U) . (SOCSOd)(V)]
property = et ATt (), €Ly m

where fj; 1= go%j pointwise BPONUS: S3

Only depends
on the orbit



Rate Matrix and Eigenbasis for Binary Model
For ¢/ = 2 with state space {1, 2}

o- (7 %)
Al =p@ =1 1) =\ a2 = - /2
M=0, =

1
1—Y )\2——1




Theorem: Impossibility Result for GTR on £/ = 2 States

For any GTR model on ¢ = 2 states, there exists no linear score.

Expectation must be zero on a mixture of stars trees for any choice of
pendant branch lengths. Constrains all coefficients in the basis expansion
to be zero. )

This result also follows from [Matsen-Mossel-Steel'08] and, in the special
case where 7 is uniform, from [Stefankovic-Vigoda'07] and
[Matsen-Steel’07] via non-identifiability arguments.



Two Independent Binary Sites: Construction

Setup: Each taxon has two independent binary sites (effectively 4 states)

A=(1,1), B=(1,2), C=(21), D=(22)

Rate matrix: sum of Kronecker products (reversible w.r.t. 7&2):

— 27T o T 0
QD =Qhb+hb® Q= o —(m 4 ) 0 "2
T 0 —(7T1 -+ 7T2) T

0 T1 T — 271

Eigenfunctions: Tensor products of single-site eigenfunctions:

Pa=p1@p1 Pp=p1R®¢p2 Pc=2R@¢p1 Pp=p2Q P2

Aa=0 Ng = —1 Ne = —1 Np = —2




Theorem: Linear Score for Two-Site Binary GTR Model [R.'25]

Let Oy be the K-orbit of (B, B, C, C) and O, be the K-orbit of
(B, C, B, C). Define H=Wp, — Wp,. Then for £ > 0

Er,[H] = 2¢~ Zim1ti(1 — e~200) > 0
Er,[(14) - H] = e Zim1ti(e™20 — 1) < 0
Er,[(24) - H] = e Z-1ti(e=20 — 1) < 0.

A linear score exists for the two-site binary GTR model. l

The special case 7 uniform was first studied in the Ph.D. thesis of former
UW-Madison student Shugi Yu. |




IV, Generalizations



Notation: at ty = 0, the factor (f.p, €% f4), becomes
(Pa®by Pcpd)n = (1, PaPbPcPd)r =: K{{a,b,c,d}}

Assumptions:
@ (A): A1 =0>X=-1>---> ) (i.e., eigenvalues of Q are
distinct)
o (®): Kyijkm # 0 for any multiset of four non-trivial (i.e., # 1)
indices that are not all identical

Theorem: Impossibility Result [R.'25]

For any (single-site) GTR model on ¢ > 2 states, if (A) and (®) hold, then
there exists no linear score.




Assumptions:

o (®): Kyijk,m = (L, pivjokpn= # 0 for any multiset of four
non-trivial (i.e., # 1) indices that are not all identical

Not necessary

Possible for (®) to fail, yet no linear score exists (e.g., K3P [R.'25]).

Theorem: Disjoint Support Trick [R.'25]

For any (single-site) GTR model on ¢ > 2 states where (®) fails because
two eigenfunctions ¢,, ¢ have disjoint support, there exists a linear score.

y

Let O be K-orbit of (a, a, b, b) and H = V. Positive on T3, 0 on T, T1
(so linear invariant; e.g., TN93 case [Casanellas-Homs-Torres'24]).




Assumptions:

@ (A): M1 =0>X=-1>---> )\ (i.e., eigenvalues of Q are
distinct)

Theorem: Distinct Eigenvalues Trick [R.'25]

For any (single-site) GTR model on ¢ > 2 states where (A) fails, there
exists a linear score.

Assume \; = Ap. Let O; be the K-orbit of (a, a, b, b) and O, be the
K-orbit of (a, b, a, b). Define H=Wp, — 3V0,.




Two-site setting
o States: (a, b) € [¢]? numbered lexicographically
o Rate matrix: QP =Q®h+h® Q

@ Eigenfunctions: 908)13) = , ® pp with eigenvalue )\g)b) = Az + Ap

n
lalalalo ala alala
AAaAnaAAanAN
I | ]

Theorem: The Power of Pairs of Sites [R."25]

For any two-site GTR model on / > 2 states, there exists a linear score.

For any a # b,

@ _ _ NG
Aap) = A T A= Ab+ Ao = A
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