

Inferring Mixtures of Trees via Multi-Site Weights The Power of Pairs

Sébastien Roch Department of Mathematics University of Wisconsin-Madison

I. Background

Homo sapiens	A	A	G	C	Т	T	C	A	С	C	G	G	С	G	С	A	G	Т	С	A	Т	Т	С	Т	С	A	Т	A	A	т	С	G	С	C	
Pan	A	Α	G	C	Т	T	C	Α	C	C	G	G	C	G	С	Α	Α	Т	Т	Α	T	С	С	T	C	A	Т	Α	Α	Т	С	G	C	C	
Gorilla	A	Α	G	C	Т	T	C	A	С	C	G	G	С	С	С	A	G	Т	Т	G	Т	Т	С	Т	Т	A	Т	A	Α	т	Т	G	С	C	
Pongo	A	Α	G	C	Т	T	C	Α	С	C	G	G	С	G	С	Α	Α	С	C	Α	С	С	С	Т	C	A	Т	G	Α	Т	Т	G	C	C	T T C A C C G G C G C A G T C A T T C T C A T A A T T C T C A T A A T
Hylobates	A	Α	G	C	Т	T	ī	A	С	Α	G	G	Т	G	С	Α	Α	С	С	G	T	С	С	Т	С	A	Т	A	A	т	С	C	С	C	T T C A C C G G C G C A G T T G T T C T T A T A A T T T C A C C G G C G C A A C C A C C C T C A T G A T
Macaca fuscata	A	Α	G	С	Т	T	T	Т	C	С	G	G	С	G	С	A	Α	С	С	Α	Т	С	С	Т	Т	A	Т	G	A	т	С	G	С	TET	T T T A C A G G T G C A A C C G T C C T C A T A A T T T T T C C G G C G C A A C C A T C C T T A T G A T
M. mulatta	A	Α	G	C	Т	T	T	T	C	Т	G	G	С	G	С	A	Α	С	С	Α	Т	С	С	Т	С	A	Т	G	Α	т	Т	C	С		T T T T C T G G C G C A A C C A T C C T C A T G A T T T C T C C G G C G C A A C C A C C C T T A T A A T
M. fascicularis	A	A	G	C	Т	T	C	T	C	C	G	G	С	G	С	A	A	С	С	Α	С	С	С	Т	Т	A	Т	A	A	т	С	G	С		T T C T C C G G T G C A A C T A T C C T T A T A G T T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T A A T C C T A A T C C T A A T A A T C C T A A T A A T C C T A A T C C T A A T C C T A A T C C T A A T A A T C C T A A T C C T A A T C C T A A T C C T A A T C C T A A T A A T C C T C C T A A T C C T C C T A A T C C T C C T A A T C C T C C T A A T C C T C C T C C T A A T C C C T C C C T C
M. sylvanus	Α	Α	G	C	Т	T	C	T	C	C	G	G	T	G	С	Α	Α	C	Т	Α	T	С	С	Т	т	Α	т	Α	G	т	Т	G	C	C	T T C A T T G G A G C C A C C A C T C T T A T A A T
Saimiri sciureus	A	A	G	C	Т	T	C	A	С	C	G	G	C	C	C	A	Α	Т	G	Α	T	С	С	Т	A	A	Т	A	A	Т	С	G	С	Т	
Tarsius syrichta	A	Α	G	T	Т	T	C	A	Т	Т	G	G	Α	C	С	С	Α	С	С	Α	С	Т	С	Т	Т	A	Т	A	Α	т	Т	G	С	C	
Lemur catta	A	Α	G	C	Т	T	C	A	T	A	G	G	Α	G	С	Α	Α	C	C	Α	T	Т	С	Т	A	Α	Т	A	Α	Т	C	G	C	A	

RESEARCH ARTICLE

PHYLOGENETICS

CASTER: Direct species tree inference from whole-genome alignments

Chao Zhang^{1,2,3}, Rasmus Nielsen^{1,3}, Siavash Mirarab⁴*

a	A	G	U	A	A	H	A	
b	A	G	U	۲	U	Т	U	E
С	C	A	Т	A	G	T	C	Sum
d	С	T	С	Т	Т	Т	Т	
	+1	- 1/2	0	0	0	0	0	+ 1/2
	0	0	0	+1	0	0	0	+1
a d c	0	0	0	0	0	0	$-\frac{1}{2}$	- 1 2

a	RN	RN	YN	YN	NR	NR	NY	NY	RN	YN	NN	NN
b	YN	YN	RN	RN	NY	NY	NR	NR	YN	RN	NN	NN
С	NR	NY	NR	NY	RN	YN	RN	YN	NN	NN	RN	YN
d	NY	NR	NY	NR	YN	RN	YN	RN	NN	NN	YN	RN
W				+	1					-4π	$_{R}\pi_{Y}$	

		1																																T		٦																					
Homo sapiens	A A	0	Т	т	c .	A (0	C	G	С	G	c /	A G	Т	С	Α	Т	Т	С	Т	С	A	T /	A A	T	С	G	С	С	A	A	G	Т	d	C	A	С	G	G	C	5 0	A	G	Т	С	A	T T	C	T	С	A	Т	A A	Т	С	G	C
Pan	AA	. (т	Т	c ,	A (0	C	G	С	G	c /	A A	Т	Т	Α	Т	С	С	т	С	A	T /	A A	T	С	C	С	C	Α	Α	GC	т	ы	C	A .	С	G	G	C	3 0	Α	Α	Т	Т	A	T	C	T	С	Α	Т	A A	Т	С	G	C
Gorilla	AA	. 0	Т	Т	С	A C	0	C	G	С	С	c /	A G	Т	Т	G	Т	Т	С	Т	т	A	T ,	A. A	T	T	G	С	C	A	A	G C	Т	П	C A	Α.	C	G	G	C	5 0	A	G	Т	Т	c .	T I	C	T	Т	Α	т,	A A	Т	Т	G	C
Pongo	AA	(т	T	c .	A (0	G	G	С	G	c /	A A	С	C	Α	С	С	С	Т	С	A	T	G A	T	T	G	С	C	Α	Α	G C	Т	П	C	A.	С	G	G	C	3 0	Α	Α	С	С	A	0	: C	T	С	Α	T	G A	Т	Т	G	C
Hylobates	AA	. (т	Т	T	A C		C	G	Т	G	c /	A A	С	С	G	T	С	С	Т	С	A	T /	A A	T	C	C	С	C	A	Α	GC	Т	ы	T	Α.	Α	G	G	T	3 0	Α	Α	С	С	G.	T	. c	T	С	Α	T	A A	Т	С	C	C
Macaca fuscata	AA	. 0	Т	Т	Т	T	0	G	G	С	G	c /	A A	С	С	Α	Т	С	С	Т	Т	A	Т	G A	T	C	G	С	Т	A	Α	G C	Т	П	T I		С	G	G	C	5 0	A	Α	С	С	A	T	: c	T	Т	A	Т	G A	Т	С	G	C 1
M. mulatta	AA	(т	Т	Т	T		C	G	С	G	c /	A A	С	С	A	Т	С	С	т	С	A	T	G A	T	T	C	С	т	Α	Α	GC	т	7	T I	Т	Т	C	G	C	3 0	Α	Α	С	С	A	T	: C	T	С	Α	Т	G A	Т	Т	C	C 1
M. fascicularis	AA	(Т	т	С	T		C	G	С	G	c /	A A	С	С	A	С	С	С	т	т	A	T ,	A A	T	C	G	С	C	A	Α	G C	Т	ы	C	г	С	G	G	C	5 0	Α	Α	С	С	A	0	: c	T	Т	Α	т,	A A	Т	С	G	C
M. sylvanus	AA	(т	T	C	T	0	G	G	T	G	c /	A A	С	Т	Α	T	С	С	т	т	A	T /	A C	1	T	G	С	C	Α	Α	G C	Т		C	Т	С	G	G	T	G	Α	Α	С	Т	A	T	C	T	т	Α	т,	A C	Т	Т	G	C
Saimiri sciureus	AA	(т	Т	c	A (0	C	G	С	С	c /	A A	Т	G	Α	Т	С	С	т	A	A	Т	A A	T	С	G	С	т	A	Α	G C	Т	ы	C	A.	С	G	G	C	5 0	Α	Α	Т	G	A	T	: c	T	A	Α	т,	A A	Т	С	G	C 1
Tarsius syrichta	AA	5 7	Т	Т	c .	A	T T	G	G	Α	G	C	CA	С	С	Α	С	Т	С	Т	Т	A	T /	A A	T	T	G	С	C	Α	Α	G T	Т	F	C	A	Т	G	G ,	A (C	C	Α	С	С	A		C	T	Т	Α	T .	A A	Т	Т	G	C
Lemur catta	AA	. (Т	Т	C	A '	T A	C	G	A	G	c /	A A	С	C	A	T	Т	С	Т	A	A	T	A A	T	C	C	С	Α	A	Α	GC	Т	П	C	Α .	Α	G	G	A C	5 0	A	Α	С	C	A	7 1	C	T	A	Α	T	A A	Т	C	G	C A

Proposition 2. For the true gene tree G_i of four leaves with topology ab|cd (irrespective of the species tree topology), let l_a , l_b , l_c , l_d denote the terminal branch lengths, and l_x denote the internal branch length in substitution units, then

$$\mathbb{E}\left[w_i(ab|cd)\big|\mathbf{G}_i\right] - \gamma e^{-\alpha(l_a + l_b + l_c + l_d)} \left(1 - e^{-\beta l_x}\right) = \mathbb{E}\left[w_i(ac|bd)\big|\mathbf{G}_i\right]$$
(S21)

for some $\alpha > 0$, $\beta > 0$, and $\gamma > 0$.

II. Linear Tests for Mixtures

rocess

Evolutionary Process

- States evolve in space $[\ell] = \{1, \dots, \ell\}$
- Governed by reversible rate matrix Q with stationary distribution π (i.e., $\pi_i Q_{ij} = \pi_j Q_{ji}$)
- For topology T_i and branch lengths \vec{t} : distribution $P_{T_i}(\vec{t})$

For topology T_3 with internal nodes r_1 , r_2 and branch lengths $(t_0, t_1, t_2, t_3, t_4)$:

$$P_{T_3}(\vec{t})(w,x,y,z) = \sum_{u,v \in [\ell]} \pi_u(e^{Qt_0})_{uv}(e^{Qt_1})_{uw}(e^{Qt_2})_{ux}(e^{Qt_3})_{vy}(e^{Qt_4})_{vz}$$

where (w, x, y, z) are observed states at leaves (s_1, s_2, s_3, s_4) and (u, v) are unobserved states at the internal nodes (r_1, r_2) .

Definition: Single-Tree Mixture Distribution

A **single-tree mixture distribution** on a topology T is a probability distribution μ_T on $[\ell]^4$ that is a convex combination of distributions generated on T with different branch lengths:

$$\mu_T = \sum_{k=1}^N c_k P_T(\vec{t}_k)$$

where:

- $c_k > 0$ and $\sum_{k=1}^{N} c_k = 1$ (convex combination)
- Each \vec{t}_k is a vector of positive branch lengths

Definition [Stefankovic-Vigoda'07]

A **linear test** for distinguishing topology T_3 from T_2 is a real-valued function $H: [\ell]^4 \to \mathbb{R}$ such that:

 $\mathbb{E}_{\mu_{T_3}}[H] > 0$ for any mixture μ_{T_3} on topology T_3

 $\mathbb{E}_{\mu_{T_2}}[H] < 0$ for any mixture μ_{T_2} on topology T_2

Hyperdimensional Oranges (Kim'00)

Consider the group $R = \{e, (12)(34), (13)(24), (14)(23)\}$. For any $g \in R$, we have $T_i^g = T_i$ for i = 1, 2, 3.

Proposition [Stefankovic-Vigoda'07]

If a linear test H for distinguishing topology T_3 from T_2 exists, then an R-invariant linear test for T_3 vs T_2 also exists.

$$e.g., H(\omega, x, y, z) = H(x, \omega, z, y)$$
 I_1
 S_2
 S_3
 S_3
 S_3
 S_3
 S_4
 S_3
 S_3
 S_3
 S_4
 S_3
 S_3
 S_4
 S_3
 S_4
 S_3
 S_4
 S_4
 S_5
 S_5
 S_4
 S_5
 S_5

For JC69, it is shown in [Stefankovic-Vigoda'07] that:

- There is a unique R-invariant linear test (up to scaling) for distinguishing T_3 from T_2 that is also invariant under any permutation of the states
- That test is a linear invariant [Lake'87]: $\mathbb{E}_{\mu_{\mathcal{T}_1}}[H] \equiv 0$
- It coincides with the CASTER weights
- For the more general TN93 model, linear (topology) invariants were derived in [Casanellas-Homs-Torres'24]

For K3P, it is shown in [Stefankovic-Vigoda'07] that:

There are no such tests (see also [Sturmfels-Sullivant'05])

III. A Mathematical Framework

Definition [R.'25]

A **linear score** for distinguishing topology T_3 from T_2 and T_1 is a real-valued function $H: [\ell]^4 \to \mathbb{R}$ such that: for any mixtures μ_{T_1} , μ_{T_2} , μ_{T_3} on T_1 , T_2 , T_3 respectively

$$\mathbb{E}_{\mu_{\mathcal{T}_3}}[H] > \mathbb{E}_{\mu_{\mathcal{T}_2}}[H], \qquad \mathbb{E}_{\mu_{\mathcal{T}_3}}[H] > \mathbb{E}_{\mu_{\mathcal{T}_1}}[H].$$

Furthermore, we require

$$\mathbb{E}_{\mu_{T_3}}[H] \geq 0, \quad \mathbb{E}_{\mu_{T_2}}[H] \leq 0, \quad \mathbb{E}_{\mu_{T_1}}[H] \leq 0.$$

Consider the group

$$K = \{e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)\}.$$

For any $g \in K$, we have $T_3^g = T_3$. Does not hold for T_2 and T_1 : e.g., (12) swaps T_2 and T_1 .

Proposition [R.'25]

If a linear score H for distinguishing topology T_3 from T_2 and T_1 exists, then a K-invariant linear score also exists.

π -Weighted Inner Product

Let π be the stationary distribution of the reversible rate matrix Q. For functions $f, g : [\ell] \to \mathbb{R}$, define the weighted inner product:

$$\langle f,g\rangle_{\pi}:=\sum_{i=1}^{\ell}\pi_if(i)g(i)$$

Because Q is self-adjoint in the π -weighted inner product, there exists an orthonormal eigenbasis $\{\varphi_1, \ldots, \varphi_\ell\}$ with:

- $Q\varphi_a = \lambda_a \varphi_a$ and $\langle \varphi_a, \varphi_b \rangle_\pi = \delta_{ab}$
- $\lambda_1 = 0$ with $\varphi_1(i) = 1$ for all $i \in [\ell]$ (constant function)

A related inner product was used in [Casanellas-Homs-Torres'24].

• Identify four-variable functions $h: [\ell]^4 o \mathbb{R}$ with vector space

$$U := \mathbb{R}^{[\ell]} \otimes \mathbb{R}^{[\ell]} \otimes \mathbb{R}^{[\ell]} \otimes \mathbb{R}^{[\ell]} \otimes \mathbb{R}^{[\ell]} \cong \mathbb{R}^{[\ell]^4}$$

Simple tensors

$$f_1 \otimes f_2 \otimes f_3 \otimes f_4 : (w,x,y,z) \mapsto f_1(w)f_2(x)f_3(y)f_4(z)$$

• A basis of *U*

eigenfunction of Q
$$\{\varphi_a \otimes \varphi_b \otimes \varphi_c \otimes \varphi_d : (a, b, c, d) \in [\ell]^4\}$$

that is orthonormal under the inner product

$$\langle h, k \rangle_{\pi^{\otimes 4}} = \sum_{w, x, y, z \in [\ell]} \pi_w \pi_x \pi_y \pi_z h(w, x, y, z) k(w, x, y, z)$$

K-invariant subspace

$$U^K = \{ H \in U \mid g \cdot H = H \text{ for all } g \in K \}$$

where
$$g \cdot H(a_1, a_2, a_3, a_4) = H(g \cdot (a_1, a_2, a_3, a_4))$$
 and $g \cdot (a_1, a_2, a_3, a_4) = (a_{g^{-1}(1)}, a_{g^{-1}(2)}, a_{g^{-1}(3)}, a_{g^{-1}(4)})$

e.g., for
$$g = (12)(34)$$
, $g.H(w,x,y,z) = H(x,w,z,y)$

• K-orbit associated to $(a, b, c, d) \in [\ell]^4$

$$\mathcal{O} = \{g \cdot (a, b, c, d) : g \in K\}$$

e.g., K-orbit of (a,a,b,c) is $\{(a,a,b,c), (a,a,c,b), (b,c,a,a), (c,b,a,a)\}$

Theorem [R.'25]: Basis for K-Invariant Four-Variable Functions

For each K-orbit \mathcal{O} on $[\ell]^4$, define the *orbit function*

$$\Psi_{\mathcal{O}} := \sum_{(a,b,c,d)\in\mathcal{O}} \varphi_a \otimes \varphi_b \otimes \varphi_c \otimes \varphi_d.$$

The collection of orbit functions

$$\mathcal{F} = \{\Psi_{\mathcal{O}} : \mathcal{O} \text{ is a } K\text{-orbit on } \{1, \dots, \ell\}^4\}$$

forms an orthogonal basis for the K-invariant subspace U^K with respect to the inner product $\langle \cdot, \cdot \rangle_{\pi^{\otimes 4}}$.

$$\mathbb{E}[\varphi_{a}(W)|U] = e^{\lambda_{a}t_{1}}\varphi_{a}(U) \qquad \text{(evolution from } r_{1} \text{ to } s_{1})$$

$$\mathbb{E}[\varphi_{b}(X)|U] = e^{\lambda_{b}t_{2}}\varphi_{b}(U) \qquad \text{(evolution from } r_{1} \text{ to } s_{2})$$

$$\mathbb{E}[\varphi_{c}(Y)|V] = e^{\lambda_{c}t_{3}}\varphi_{c}(V) \qquad \text{(evolution from } r_{2} \text{ to } s_{3})$$

$$\mathbb{E}[\varphi_{d}(W)|V] = e^{\lambda_{d}t_{4}}\varphi_{d}(V) \qquad \text{(evolution from } r_{2} \text{ to } s_{4})$$

$$\mathbb{E}[\varphi_{a}(W)\varphi_{b}(X)\varphi_{c}(Y)\varphi_{d}(Z)]$$

$$= \mathbb{E}[\mathbb{E}[\varphi_{a}(W)\varphi_{b}(X)\varphi_{c}(Y)\varphi_{d}(Z)|U,V]]$$

$$= \mathbb{E}[\mathbb{E}[\varphi_{a}(W)|U]\mathbb{E}[\varphi_{b}(X)|U]\mathbb{E}[\varphi_{c}(Y)|V]\mathbb{E}[\varphi_{d}(W)|V]]$$

$$= e^{\lambda_{a}t_{1} + \lambda_{b}t_{2} + \lambda_{c}t_{3} + \lambda_{d}t_{4}}\langle f_{ab}, e^{\lambda_{b}t_{c}} f_{cd} \rangle_{\pi}$$

$$\text{where } f_{ij} := \varphi_{i}^{3}\varphi_{j} \text{ pointwise}$$

$$\begin{array}{c} \text{BONUS:} \\ \text{Only depends} \end{array}$$

on the orbit

Rate Matrix and Eigenbasis for Binary Model

For $\ell = 2$ with state space $\{1, 2\}$:

$$Q = \begin{pmatrix} -\pi_2 & \pi_2 \\ \pi_1 & -\pi_1 \end{pmatrix}$$

$$\varphi_1(1) = \varphi_1(2) = 1 \qquad \varphi_2(1) = \sqrt{\frac{\pi_2}{\pi_1}}, \ \varphi_2(2) = -\sqrt{\frac{\pi_1}{\pi_2}}$$

$$\lambda_1 = 0, \quad \lambda_2 = -1$$

Theorem: Impossibility Result for GTR on $\ell=2$ States

For any GTR model on $\ell=2$ states, there exists no linear score.

Proof idea

Expectation must be zero on a mixture of stars trees for any choice of pendant branch lengths. Constrains all coefficients in the basis expansion to be zero.

This result also follows from [Matsen-Mossel-Steel'08] and, in the special case where π is uniform, from [Stefankovic-Vigoda'07] and [Matsen-Steel'07] via non-identifiability arguments.

Two Independent Binary Sites: Construction

Setup: Each taxon has two independent binary sites (effectively 4 states)

$$A \equiv (1,1), \quad B \equiv (1,2), \quad C \equiv (2,1), \quad D \equiv (2,2)$$

Rate matrix: sum of Kronecker products (reversible w.r.t. $\pi^{\otimes 2}$):

$$Q^{(2)} = Q \otimes I_2 + I_2 \otimes Q = egin{pmatrix} -2\pi_2 & \pi_2 & \pi_2 & 0 \ \pi_1 & -(\pi_1 + \pi_2) & 0 & \pi_2 \ \pi_1 & 0 & -(\pi_1 + \pi_2) & \pi_2 \ 0 & \pi_1 & \pi_1 & -2\pi_1 \end{pmatrix}$$

Eigenfunctions: Tensor products of single-site eigenfunctions:

$$\Phi_A = \varphi_1 \otimes \varphi_1$$
 $\Phi_B = \varphi_1 \otimes \varphi_2$ $\Phi_C = \varphi_2 \otimes \varphi_1$ $\Phi_D = \varphi_2 \otimes \varphi_2$ $\Lambda_A = 0$ $\Lambda_B = -1$ $\Lambda_C = -1$ $\Lambda_D = -2$

Theorem: Linear Score for Two-Site Binary GTR Model [R.'25]

Let \mathcal{O}_1 be the K-orbit of (B, B, C, C) and \mathcal{O}_2 be the K-orbit of (B, C, B, C). Define $H = \Psi_{\mathcal{O}_1} - \frac{1}{2}\Psi_{\mathcal{O}_2}$. Then for $\vec{t} > 0$

$$\mathbb{E}_{T_3}[H] = 2e^{-\sum_{i=1}^4 t_i} (1 - e^{-2t_0}) > 0$$

$$\mathbb{E}_{T_3}[(14) \cdot H] = e^{-\sum_{i=1}^4 t_i} (e^{-2t_0} - 1) < 0$$

$$\mathbb{E}_{T_3}[(24) \cdot H] = e^{-\sum_{i=1}^4 t_i} (e^{-2t_0} - 1) < 0.$$

Conclusion

A linear score exists for the two-site binary GTR model.

The special case π uniform was first studied in the Ph.D. thesis of former UW-Madison student Shuqi Yu.

IV. Generalizations

Notation: at $t_0=0$, the factor $\langle f_{ab}, e^{Qt_0} f_{cd} \rangle_{\pi}$ becomes $\langle \varphi_a \varphi_b, \varphi_c \varphi_d \rangle_{\pi} = \langle 1, \varphi_a \varphi_b \varphi_c \varphi_d \rangle_{\pi} =: K_{\{\{a,b,c,d\}\}\}}$

Assumptions:

- (Λ): $\lambda_1=0>\lambda_2=-1>\cdots>\lambda_\ell$ (i.e., eigenvalues of Q are distinct)
- (Φ): $K_{\{\{i,j,k,l\}\}} \neq 0$ for any multiset of four non-trivial (i.e., $\neq 1$) indices that are not all identical

Theorem: Impossibility Result [R.'25]

For any (single-site) GTR model on $\ell \geq 2$ states, if (Λ) and (Φ) hold, then there exists no linear score.

Assumptions:

• (Φ): $K_{\{\{i,j,k,l\}\}} = \langle 1, \varphi_i \varphi_j \varphi_k \varphi_l \rangle_{\pi} \neq 0$ for any multiset of four non-trivial (i.e., $\neq 1$) indices that are not all identical

Not necessary

Possible for (Φ) to fail, yet no linear score exists (e.g., K3P [R.'25]).

Theorem: Disjoint Support Trick [R.'25]

For any (single-site) GTR model on $\ell \geq 2$ states where (Φ) fails because two eigenfunctions φ_a, φ_b have disjoint support, there exists a linear score.

Proof idea

Let \mathcal{O} be K-orbit of (a, a, b, b) and $H = \Psi_{\mathcal{O}}$. Positive on T_3 , 0 on T_2 , T_1 (so linear invariant; e.g., TN93 case [Casanellas-Homs-Torres'24]).

Assumptions:

• (Λ): $\lambda_1=0>\lambda_2=-1>\cdots>\lambda_\ell$ (i.e., eigenvalues of Q are distinct)

Theorem: Distinct Eigenvalues Trick [R.'25]

For any (single-site) GTR model on $\ell \geq 2$ states where (Λ) fails, there exists a linear score.

Proof idea

Assume $\lambda_a = \lambda_b$. Let \mathcal{O}_1 be the K-orbit of (a, a, b, b) and \mathcal{O}_2 be the K-orbit of (a, b, a, b). Define $H = \Psi_{\mathcal{O}_1} - \frac{1}{2}\Psi_{\mathcal{O}_2}$.

Two-site setting

- States: $(a, b) \in [\ell]^2$ numbered lexicographically
- Rate matrix: $Q^{(2)} = Q \otimes I_2 + I_2 \otimes Q$
- Eigenfunctions: $\varphi_{(a,b)}^{(2)} = \varphi_a \otimes \varphi_b$ with eigenvalue $\lambda_{(a,b)}^{(2)} = \lambda_a + \lambda_b$

Theorem: The Power of Pairs of Sites [R.'25]

For any two-site GTR model on $\ell \geq 2$ states, there exists a linear score.

Proof idea

For any $a \neq b$,

$$\lambda_{(a,b)}^{(2)} = \lambda_a + \lambda_b = \lambda_b + \lambda_a = \lambda_{(b,a)}^{(2)}$$

Thank you for your attention

Work supported by:

