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Multiple Sequence Alignment (MSA): 
a scientific grand challenge1

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
…
Sn = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
  …
Sn = TCACGACCGACA

Novel techniques needed for scalability and accuracy
        NP-hard problems and large datasets
          Current methods do not provide good accuracy
          Few methods can analyze even moderately large datasets 
 
Many important applications besides phylogenetic estimation 

1 Frontiers in Massive Data Analysis, National Academies Press, 2013



What are MSAs used for?

• Inferring evolutionary histories
• Predicting biomolecular (RNA, protein) structure
• Genome annotation and assembly
• And others



Phylogenomic pipeline

• Select taxon set and markers

• Gather and screen sequence data, possibly identify orthologs

• Compute multiple sequence alignments for each locus, and construct gene 
trees

• Compute species tree or network:

– Combine the estimated gene trees, OR

– Estimate a tree from a concatenation of the multiple sequence 
alignments 

• Get statistical support on each branch (e.g., bootstrapping)

• Estimate dates on the nodes of the phylogeny

• Use species tree with branch support and dates to understand biology
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…ACGGTGCAGTTACCA…

MutationDeletion

…ACCAGTCACCA…

Indels (insertions and deletions)

Homology: two letters (nucleotides or amino-acids) that are 
related by descent from a common ancestor



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

The true pairwise alignment 
– Reflects historical substitution, insertion, and deletion 

events 
– Letters (nucleotides or amino acids) in the same column 

are supposed to be homologs

…ACGGTGCAGTTACCA…

SubstitutionDeletion

…ACCAGTCACCTA…

Insertion



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

…-C----CAGT------…

The true multiple alignment 
– Reflects historical substitution, insertion, and deletion 

events
– Defined using transitive closure of pairwise alignments 

defined on the edges of the true tree 

…ACGGTGCAGTTACCA…

SubstitutionDeletion

…ACCAGTCACCTA…

Insertion

CCAGT
Then two 
deletions 
(one at front, 
long one at end) 



Pairwise alignment

• Global alignment: finding the lowest-cost edit 
transformation, solved using Needleman-Wunsch 
(dynamic programming)

• Polynomial time!
• Allows for variations in cost function and similarity 

scores, still polynomial time



Multiple Sequence Alignment

• Optimization problems extend pairwise alignment
– Minimizing sum-of-pairs costs
– Minimizing tree length
– Likelihood-based approaches (e.g., Bayesian estimation) 

• Optimization problems are NP-hard 
• Bayesian estimation is even less scalable



Standard approaches?  

• Standard methods use a variety of techniques, 
such as extending pairwise alignments with:
– Star alignment
– Progressive alignment
– Ensemble methods, including “Consistency”  
– Supervised learning



Progressive alignment

Figure 2.9 from Huson et al. (2010)



Simulation Studies

S1 S2

S3S4

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA

Compare

True tree and 
alignment

S1 S4

S3S2

Estimated tree and 
alignment

Unaligned 
Sequences



MSA+Tree estimation
Alignment methods
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• Probalign
• MAFFT
• Muscle
• Di-align
• T-Coffee 
• Prank (PNAS 2005, Science 2008)
• Opal (ISMB and Bioinf. 2007)
• FSA (PLoS Comp. Bio. 2009)
• Infernal (Bioinf. 2009)
• Etc.

Phylogeny methods
• Bayesian MCMC 
• Maximum parsimony 
• Maximum likelihood 
• Neighbor joining
• FastME
• UPGMA
• Quartet puzzling
• Etc.

RAxML: heuristic for large-scale ML optimization



1000-taxon models, ordered by difficulty (Liu et al., 2009)



1kp: Thousand Transcriptome Project

 Plant Tree of Life based on transcriptomes of ~1200 species
 More than 13,000 gene families (most not single copy)
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Challenge: 
 Alignment of datasets with > 100,000 sequences 
 with many very short sequences

Plus many many other people…



What makes for an “easy” MSA?

• MSA is easy when the input is a small set of 
very similar sequences
– All nearly the same length
– Very few substitutions
– Very few “indels”

• But large datasets are difficult, even when 
they are otherwise relatively “easy”



Large-scale MSA 

Challenges
• High evolutionary rates
• Sequence length heterogeneity (e.g., fragments)
• Very long sequences



This talk
• Part 1: Divide-and-conquer: boosting MSA methods to large 

datasets
– SATé, PASTA, MAGUS, and Recursive MAGUS

• Part 2: Adding sequences into alignments using Ensembles 
of profile HMMs
– UPP, WITCH, and EMMA

• Part 3: Statistical alignment (e.g., BAli-Phy)
– do we need to converge?
– can divide-and-conquer improve scalability?

• Part 4: Discussion



Part I: Divide-and-Conquer



Divide-and-conquer

• Divide-and-conquer “meta-methods” for large 
numbers of sequences and high evolutionary 
rates:  
– SATé, PASTA, and MAGUS



Re-aligning on a tree
A

B D

C

Merge 
sub-alignments

Estimate ML 
tree on merged 

alignment

Decompose 
dataset

A B

C D

Align subsets

A B

C D

ABCD



SATé, PASTA, and MAGUS Algorithms

Estimate ML tree on new 
alignment

Tree

Obtain initial alignment and 
estimated ML tree

Use tree to compute 
new alignment

Alignment

Repeat until termination condition, and

return the alignment/tree pair with the best ML score



1000-taxon models, ordered by difficulty (Liu et al., 2009)





Improvement over time

• SATé-1 (Science 2009): up to about 8,000
• SATé-2 (Syst Biol 2012): up to 50,000
• PASTA (J Comp Biol 2014): up to 1,000,000
• MAGUS (Bioinformatics 2021): more accurate 

than PASTA (and one iteration suffices) – up to 
1,000,000 

Each method improved on the previous with 
respect to MSA and Tree accuracy, speed, and 
scalability to large datasets



SATé-II vs PASTA vs MAGUS

• Decomposition: the same technique (delete 
centroid edges)

• Subset alignments: the same (all computed 
MAFFT-linsi alignments)

• Merging: 
– SATé-II uses a guide tree to merge the subset 

alignments up the tree
– PASTA aligns all “adjacent pairs” of alignments, and 

then finishes with transitivity
– MAGUS aligns all subset alignments *at once* (using a 

complex pipeline involving Markov Clustering)



Bioinformatics, Volume 37, Issue 12, June 2021, Pages 1666–1672, https://doi.org/10.1093/bioinformatics/btaa992

The content of this slide may be subject to copyright: please see the slide notes for details.

The Graph Clustering Merger (GCM) in MAGUS.

https://doi.org/10.1093/bioinformatics/btaa992


Department of Computer Science GRAINGER ENGINEERING

MAGUS
MAGUS: More Accurate Alignments than PASTA



GRAINGER ENGINEERING

Recursive MAGUS

MAGUS: excellent on protein benchmarks too



Summary for Divide-and-Conquer

• Can be used with any base MSA method (we 
showed results with MAFFT-lins)

• Iteration can help
• Merging alignments “all at once” promising; 

related to John Kececioglu’s “Maximum 
Weight Trace” problem



Part 2: Adding Sequences into MSA 

• Input: MSA on set S of sequences, and additional 
sequences S’

• Output: Extension of MSA to include S’

Application:
• Growing large alignment as new sequences are 

found
• MSA on datasets with sequence length 

heterogeneity
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1KP dataset: more than 
100,000 p450 amino-acid
sequences, many fragmentary

All standard multiple
sequence alignment
methods we tested 
performed poorly on
datasets with fragments.



Solution: Two-phase approach
• Phase 1: Select a collection of “full-length” sequences, and 

compute a “backbone” alignment on them.
• Phase 2: Add the remaining sequences into the backbone 

alignment.

Note: Each stage matters!
• Depends on which sequences are in the backbone, and how 

the backbone alignment is computed (but can use expensive 
methods)

• Depends on how the remaining sequences are added to the 
backbone (can use “local alignment” techniques)



UPP
UPP = “Ultra-large multiple sequence alignment using 
Phylogeny-aware Profiles”

Nguyen, Mirarab, and Warnow. Genome Biology, 2015

Purpose: highly accurate large-scale multiple sequence 
alignments, even in the presence of fragmentary sequences.

    

Uses an ensemble of HMMs 



UPP (Nguyen et al. 2015)

The Ensemble of Hidden Markov Models is a “model” for the backbone alignment.
The HMMs are built on subset alignments, may not be clades in the backbone tree.



RNASim Million Sequences: alignment error 

Notes: 
• We show alignment error 

using average of SP-FN and 
SP-FP. 

• UPP variants have better 
alignment scores than 
PASTA. 

• No other methods tested 
could complete on these data

• PASTA under-aligns: its 
alignment is 43 times wider 
than true alignment (~900 Gb 
of disk space).  UPP 
alignments were closer in 
length to true alignment (0.93 
to 1.38 wider).



Performance on fragmentary datasets of the 1000M2 model condition

UPP vs. PASTA: impact of fragmentation

Under high rates of evolution,
PASTA is badly impacted
by fragmentary sequences (the 
same is true for other methods).

Under low rates of evolution,
PASTA can still be highly accurate
(data not shown).

UPP continues to have good
accuracy even on datasets
with many fragments under
all rates of evolution.



Other two-phase methods
These methods start the same as UPP (extract backbone alignment, build ensemble of 
HMMs on backbone), but then do things differently to add the query sequences to the 
backbone

• WITCH (Chengze Shen et al, J. Comp Biol 2022.) and WITCH-ng (Baqiao Liu and T. 
Warnow, Bioinformatics Advances 2022.): weights the HMMs, computes extended 
alignment for each HMM, merges the extended alignments using “consensus 
alignment” technique

• HMMerge (Minhyuk Park and T. Warnow, Bioinformatics Advances.): weights the 
HMMs, combines them into a new Hidden Markov Model (not profile HMM), and uses 
that new HMM to add query sequences

• EMMA (Shen et al., Algorithms for Molecular Biology 2023): Adds sequences into 
backbone alignment using MAFFT-linsi-add within a divide-and-conquer framework

All are more accurate than UPP 



Comparison of EMMA-add, WITCH-ng-add, and MAFFT-linsi-add:
The benefit of not using HMMs to align query sequences

SPFN of different methods (fraction of missing true pairwise homologies)

Dataset: 1000M1 with a high rate of evolution;  all sequences are full-length
Backbone: 250 randomly selected sequences from full set.



Part III: Statistical Alignment

• The previous methods computed alignments 
using a variety of techniques

• Statistical alignment estimate an alignment with 
respect to a statistical model of sequence 
evolution that directly addresses insertions and 
deletions (indels)

• Bali-Phy (Redelings and Suchard) is a Bayesian 
method that co-estimates the alignment and the 
tree, and is the leading such method. However, it 
is very computationally intensive.



But: BAli-Phy is limited to smalldatasets

From www.bali-phy.org/README.html, 5.2.1. Too many taxa?

“BAli-Phy is quite CPU intensive, and so we recommend  
using 50 or fewer taxa in order to limit the time  required 
to accumulate enough MCMC samples.  (Despite this 
recommendation, data sets with more  than 100 taxa 
have occasionally been known to converge.) We 
recommend initially pruning as many  taxa as possible 
from your data set, then adding some  back if the MCMC 
is not too slow.”

http://www.bali-phy.org/README.html


BAli-Phy

• Uses MCMC to sample MSAs and trees from the 
posterior 

• Recommendation is to run Bali-Phy until it seems 
to have converged

• This can require months on moderate-sized 
datasets, infeasible for use on datasets with 
hundreds of sequences

• Question: Can we use it within divide-and-
conquer (e.g., PASTA) or two-phase methods 
(e.g., UPP)?



Objective: Scale BALi-Phy to large datasets 
by (a) using BAli-Phy as the base method 
within PASTA or (b) using PASTA(BAli-Phy) as 
the backbone within UPP.



PASTA-default vs PASTA(BAli-Phy): 
subset size 100



UPP-default vs UPP using PASTA(BAli-Phy) 
for the backbone MSA



Observations

• Using BAli-Phy within PASTA (and 
subsequently within UPP) improves scalability.



BAli-Phy co-estimates the MSA and tree.  Suppose we estimate 
the tree and then apply BAli-Phy on this fixed tree.  
1. What is the impact on alignment accuracy of using an 

estimated guide tree when using BAli-Phy? 
2. What happens if we do not require that Bali-Phy converges?



BP+EGT is best!

BP: Bali-Phy
BP+EGT: Bali-Phy with an estimated guide tree

MAFFT:  MAFFT-lins-i (best way of running MAFFT)



BP+EGT is best!

PRANK+EGT: PRANK with an 
estimated guide tree



CONVERGENCE?

• All analyses were far from converging, according 
to ESS values, even when given 500 hours!
– The ESS values remained low even for the 500-hour 

analyses, for both the RNASim1 and 1000M1 (high 
rate of evolution) datasets, and were only acceptable 
on the 1000M3 dataset (low rate of evolution). 

– The ESS values for these 4-hour BAli-Phy analyses 
were very low, clearly indicating that BAli-Phy is far 
from converging.



Comments

• Bali-Phy is computationally intensive (especially if 
you want to get it to converge), but these “tricks” 
may make it feasible:
– On moderate-sized datasets, 

• Compute and then use an estimated guide tree
• Don’t worry too much about convergence

– On very large datasets (1000+ sequences)
• Use within a divide-and-conquer method (e.g., PASTA, MAGUS) 

so that it is only run on smallish datasets
• Use only for backbone within a two-phase method (e.g., UPP 

or WITCH)



Summary

• MSA is challenging, but algorithmic 
techniques can improve accuracy and 
scalability:
– Dataset size can be addressed using good divide-

and-conquer approaches.
– Heterogeneity in sequence length can be 

addressed using “local alignment” approaches, 
such as profile HMMs, with ensembles of profile 
HMMs providing improved accuracy.



Algorithmic challenges

• How can we assess alignment uncertainty and 
use it in downstream analyses?  

• Can we use a set of MSAs to advantage, instead 
of a single MSA? For example, can we develop 
effective and efficient “ensemble” methods?

• What are the best ways to merge disjoint 
alignments?

• How can we efficiently perform statistical 
alignment?



Some Recommendations
• For datasets with at most 1000 sequences and low sequence 

length heterogeneity:
– MAFFT (especially –l-insi or –g-insi)
– Promals, Contralign, and other methods for proteins
– BAli-Phy (statistical alignment)
– T-Coffee (combines different MSA methods)

• Large number of sequences:
– w/o sequence length heterogeneity: MAGUS, TWILIGHT, FAMSA, 

and others (e.g., Clustal-Omega)
– with sequence length heterogeneity:

• UPP, WITCH (-ng), EMMA (recent improvement of UPP)
• For genome-scale datasets: different and harder problem



Summary

• Multiple sequence alignment (MSA) has large 
downstream consequences in bioinformatics 
analyses.

• MSA is far from solved – esp. (but not only) on 
large datasets with high rates of evolution, 
sequence length heterogeneity, and streaming 
data.

• New techniques show promise 
• Not discussed: multiple whole genome 

alignment, MSA with rearrangements 
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