Identifying features of phylogenetic networks from various data types

IMSI workshop - Aug 11-14, 2025

Cécile Ané

- phylogenetic networks
- known non-identifiable features
- known identifiable features

review & joint work with

Hector Baños , John Rhodes, Elizabeth Allman, Jingcheng Xu

phylogenetic networks

and admixture graphs

examples

Fig. 4a in <u>Salem et al (2025, Nature)</u> using ancient human DNA, from f_4 statistics: site patterns across 4 taxa

Fig. 3 in <u>Lagou et al. 2024</u> on slipper orchids, from 913 gene trees, quartets

data types:

- quartet concordance factors:
 % genes with ab|cd, ac|bd and ad|bc, for all subsets a,b,c,d
- average genetic distances, log-det distances
- f_4 statistics: linear combinations of $f_2 \simeq$ distances
- frequencies of full gene trees, or full site patterns models:
- coalescent: common or independent inheritance at hybrids
- without the coalescent: gene trees displayed in the network

the network coalescent model

edge lengths in coalescent units: # generations / Ne

hybrid edges: inheritance probability γ

species network, or admixture graph

gene tree that can occur

(C,D) sister in some genes: from gene flow or the coalescent

the network coalescent model

model parental ancestry of lineages at a hybrid node

- independent inheritance: independent parents
- common inheritance: identical parents

Fogg, Allman & Ané <u>2023</u> PhyloCoalSimulations

multiple lineages at the hybrid node: their parents could be correlated, e.g. due to selection

with the coalescent

Solís-Lemus & Ané 2016
Baños 2019
Allman, Baños & Rhodes 2022: logdet
Allman, Baños, Mitchell & Rhodes
2023
Allman, Baños, Garrote-Lopez & Rhodes 2024
Rhodes, Baños, Xu & Ané 2025
Allman, Ané, Baños & Rhodes 2025
Holtgrefe et al. 2025
without the coalescent

(less gene tree variation)

Gross et al. <u>2021</u> Xu & Ané <u>2023</u> Englander, Frohn et al. <u>2025</u>

known non-identifiable features

from most data types under most models (allowing for rate variation)

the root position is *not* identifiable

infer the **semidirected** network:

no root

hybrid edges: directed

tree edges: not directed

small blobs are not quite identifiable

- blob: not disconnected by removing an edge, maximal
- m-blob: m attachment nodes disconnects network into m blocks of taxa

2-blobs are not identifiable

- average distances
- quartet CFs (but perhaps from *quintet* CFs, Cummings et al.)

3-blobs are not identifiable

- average distances
- quartet CFs if 2 blocks have only 1 taxon

The **hybrid position** is not identifiable

- in a 3-cycle
- in a 4-cycle: distances, quartet CFs if 4 blocks of 1 taxon

known identifiable features

from most data types

the reduced tree-of-blobs is identifiable

- shrink each blob
- suppress degree-2 nodes

level-1 networks are (mostly) identifiable

the circular order is identifiable

in **outer-labeled planar** networks

+ extra conditions depending on data & model

outer-labeled planar blobs

planar: no crossing edges

outer-labeled: taxa (or taxon blocks) on the outside

In an outer-labeled planar blob, the **circular order** of taxa is **well defined**.

different planar embedding must have a,b,c,d in the same order along the outer face

For a binary outer-labeled planar blob, the **full** circular order is **identifiable** from the order on **4-taxon subsets**.

```
4-taxon information:
(abcd)
(hbcd)
(acdh)
(abdh)
bc — ah: (bcah) and (bcha)
```

For binary outer-labeled planar networks, the **tree of blobs** and each blob **circular order** is identifiable.

from many data types:

- quartet concordance factors
- average distances
- logDet distances (assuming ultrametric networks)

For binary outer-labeled planar networks, the **tree of blobs** and each blob **circular order** is identifiable.

and under various models:

- displayed-tree model (no coalescent)
- coalescent model with common inheritance
- coalescent model, independent inheritance if no anomaly

anomaly example

anomalous CFs if %ca|bd=%cb|ad>%ab|cd anomalous distances if D(c,a)+D(b,d)=D(c,b)+D(a,d) < D(a,b)+D(c,d)

but...

not distinguishable, from distances or quartet CFs

model with or without the coalescent

galled tree-child networks

are **identifiable**, if they have **large cycles** from, e.g., quartet concordance factors

.

tree-child: each node has at least one tree child

galled: each hybrid in only 1 cycle

1. Assume: we can identify the tree of blobs

.

2. to identify each blob: sample one taxon from each block

network assumption: the bloblet is \mathfrak{C}_k , k = 4 or 5

- galled, tree-child, and
- for every taxon x of hybrid origin, the subnetwork on the skeleton taxa $Y \cup \{x\}$ has an m-cycle with $m \ge k$.

general data/model assumptions

- 1. the **tree of blobs** is identifiable
- 2. for level-1 blobs on 4 taxa, the circular order is identifiable
- for networks that reduce to a level-1 blob on 4 taxa, the length of internal tree edgs are identifiable
- 4. for networks on 3 taxa, we can identify whether the internal blob is **trivial or not**.

prove 2-4 on small networks, then

1-3: \mathfrak{C}_5 blobs are identifiable 1-4: \mathfrak{C}_4 blobs are identifiable

general data/model assumptions

- 1. the **tree of blobs** is identifiable
- 2. for level-1 blobs on 4 taxa, the circular order is identifiable
- for networks that reduce to a level-1 blob on 4 taxa, the length of internal tree edgs are identifiable
- 4. for networks on 3 taxa, we can identify whether the internal blob is **trivial or not**.

prove 2-4 on small networks, then

1-3: \mathfrak{C}_5 blobs are identifiable 1-4: \mathfrak{C}_4 blobs are identifiable

- contify taxa Y not below a hybrid
- 😀 skeleton subtree on Y
- \bigcirc for x of hybrid origin: level-1 subnetwork on $Y \cup \{x\}$
 - circular order → topology
 - relative edge lengths along skeleton → combine

• \mathfrak{C}_4 blobs: identifiable from quartet CFs, 2 samples/taxon, coalescent model

• C₅ blobs: identifiable from quartet CFs, ≥ 1 sample/taxon; or average distances; coalescent or displayed tree model

full network example

 \mathfrak{C}_5 blobs: identifiable from only 1 sample/taxon

3-cycle: its presence can be identified

but...

 $\mathsf{non}\text{-}\mathfrak{C}_5$ networks could be $\mathsf{non}\text{-}\mathsf{distinguishable}$

level-2 networks

need extra constraints

level-2, tree-child, without 3-cycles

are identifiable: Englander et al. <u>2025</u> from frequencies of full site patterns, no coalescent

level-2, galled & outer-labeled planar

their 'canonical' form is identifiable: Holtgrefe et al. <u>2025</u> from data & models that identify displayed quartets e.g. quartet CFs under the coalescent

a canonical graph:

- has no 2-blob, no 3-blob, no 3-cycle
- 4-blobs are undirected cycles, 5-blobs are cycles
- is identified by the splits of its displayed trees

lots of open questions!

- to go beyond level-2+ or (tree-child & galled)
- for more models & data types

joint work with **Hector Baños**, **John Rhodes**, **Elizabeth Allman**, **Jingcheng Xu**

circular order: Rhodes et al. 2025 galled tree-child: Allman et al. 2025

thanks to the National Science Foundation and to the Wisconsin Alumni Research Foundation

Speaker notes