The good, the bad and the ugly of deep learning in phylogenetics

Claudia Solís-Lemus, PhD

University of Wisconsin-Madison Wisconsin Institute for Discovery Department of Plant Pathology

August 11, 2025

Classical Machine Learning

Soundscapes of rainforest

Emergence of antibiotic-resistance

Prediction of potato yield/disease

Yuren Sun

Tatiana Midori Maeda

Soundscapes of rainforest

Ecological Indicators 145 (2022) 109621

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original Articles

Classification of animal sounds in a hyperdiverse rainforest using convolutional neural networks with data augmentation

Yuren Sun^a, Tatiana Midori Maeda^{b,c}, Claudia Solís-Lemus^{d,e}, Daniel Pimentel-Alarcón^{d,f,*}, Zuzana Buřivalová b, c, *

Zuzana

Buřivalová

@z_burivalova

Alarcón

time and frequency ranges

Emergence of antibiotic-resistance

GAAATGTCCTCATGTGGGCAAAAAT GAAATGTCCTCCTGTGGGCAAAAAT GAAATGTCCCCGTGTGGGCAAATAT GAAATGTCCCCGGCTGTGGGCAAATAT O 1 1 O

Zhaoyi Zhang

Songyang Cheng

Zhang et al. BMC Bioinformatics (2022) 23:125 https://doi.org/10.1186/s12859-022-04660-8 **BMC** Bioinformatics

RESEARCH

Open Access

Zhaoyi Zhang^{1†}, Songyang Cheng^{1†} and Claudia Solis-Lemus^{2*}

Xudong Tang

Rosa Aghdam

Prediction of potato yield/disease

Statistics > Machine Learning

[Submitted on 19 Jun 2023 (v1), last revised 17 Feb 2024 (this version, v2)]

Human Limits in Machine Learning: Prediction of Plant Phenotypes Using Soil Microbiome Data

Rosa Aghdam, Xudong Tang, Shan Shan, Richard Lankau, Claudia Solís-Lemus

Rick Lankau

Shan Shan

Machine Learning

Soundscapes of rainforest

Emergence of antibiotic-resistance

Prediction of potato yield/disease

What about Phylogenetics?

Phylogenetics

Deep Residual Neural Networks Resolve Quartet Molecular Phylogenies

Zhengting Zou,^{†,1} Hongjiu Zhang,^{†‡,2} Yuanfang Guan,*^{,2,3} and Jianzhi Zhang*^{,1}

Simulated training data

Table 1. Numbers of correctly inferred quartet trees by residual network predictors and existing methods on test datasets simulated under the training simulation schemes.

Test datasets	# of test trees	DNN1	DNN2	DNN3	NJ	MP	RAxML	PhyML	MrBayes
testing1_mixeda	2000	1881 ^b	1847	1858	1844	1791	1868	1860	1860
testing1_nolba	2000	1925	1920	1936	1910	1924	1912	1896	1906
testing1_lba	2000	1653	1366	1458	1416	1078	1600	1592	1475
testing2_mixeda	2000	1885	1854	1862	1868	1807	1853	1841	1842
testing2_nolba	2000	1943	1936	1945	1951	1933	1926	1917	1920
testing2_lba	2000	1602	1345	1532	1437	1045	1494	1536	1479
testing3_mixeda	2000	1785	1756	1786	1753	1736	1758	1731	1738
testing3_nolba	2000	1899	1913	1899	1904	1904	1890	1867	1879
testing3_lba	2000	1301	1062	1269	1140	867	1190	1230	1162

Phylogenetics

Deep Residual Neural Networks Resolve Quartet Molecular Phylogenies

Zhengting Zou,^{†,1} Hongjiu Zhang,^{†‡,2} Yuanfang Guan,*^{,2,3} and Jianzhi Zhang*^{,1}

There is a hidden catch in this DL implementation

During the training process, the four taxa in each quartet data set were permutated to create 4! = 24 different orders, and each serves as an independent training sample, to ensure that the order of taxa in the data set does not influence the phylogenetic inference. Two thousand trees randomly sampled from a total of 100,000 were used in each training epoch and were fed to the network in batches of 16 trees (each with 24 permutated samples).

- ³ GAAATGTCCTCCTGTGGGCAATAAT
- 4 GAAATGTCCCCGTGTGGGCAAATAT
- ² GAAATGTCCTCATGTGGGCAAAAAT
- 1 GAAATGTCCTTATGTGGGCAAAAAT

Shengwen Yang

Phylogenetics

Leonardo Zepeda-Núñez

Phylogenetics

Novel symmetry-preserving neural network model for phylogenetic inference

Xudong Tang ^{1,2,†}, Leonardo Zepeda-Nuñez^{3,†}, Shengwen Yang ^{1,2}, Zelin Zhao³, Claudia Solís-Lemus (1) ^{1,4,*}

The scores can be written in a more compact fashion by aggregating them into a vector:

$$p([s_{\mathtt{B}}, s_{\mathtt{A}}, s_{\mathtt{C}}, s_{\mathtt{D}}]) = \left[\begin{array}{c} p_I \\ p_{II} \\ p_{III} \end{array} \right] = \left[\begin{array}{c} \Psi(\mathcal{D}_I([s_{\mathtt{A}}, s_{\mathtt{B}}, s_{\mathtt{C}}, s_{\mathtt{D}}])) \\ \Psi(\mathcal{D}_{II}([s_{\mathtt{A}}, s_{\mathtt{B}}, s_{\mathtt{C}}, s_{\mathtt{D}}])) \\ \Psi(\mathcal{D}_{III}([s_{\mathtt{A}}, s_{\mathtt{B}}, s_{\mathtt{C}}, s_{\mathtt{D}}])) \end{array} \right],$$

where the descriptors are given by

$$\left[\begin{array}{c} \mathcal{D}_I \\ \mathcal{D}_{II} \\ \mathcal{D}_{III} \end{array} \right] = \left[\begin{array}{c} \Phi(\phi(s_\mathtt{A}) + \phi(s_\mathtt{B})) + \Phi(\phi(s_\mathtt{C}) + \phi(s_\mathtt{D})) \\ \Phi(\phi(s_\mathtt{A}) + \phi(s_\mathtt{C})) + \Phi(\phi(s_\mathtt{B}) + \phi(s_\mathtt{D})) \\ \Phi(\phi(s_\mathtt{A}) + \phi(s_\mathtt{D})) + \Phi(\phi(s_\mathtt{C}) + \phi(s_\mathtt{B})) \end{array} \right].$$

 $\Phi(\phi(s_{\mathtt{A}}) + \phi(s_{\mathtt{B}}))$ will be invariant if we permute A and B

Shengwen Yang

Xudong Tang

Phylogenetics

Novel symmetry-preserving neural network model for phylogenetic inference

Xudong Tang ^{1,2,†}, Leonardo Zepeda-Nuñez^{3,†}, Shengwen Yang ^{1,2}, Zelin Zhao³, Claudia Solís-Lemus (1) 1,4,*

Núñez

Shengwen Yang

Xudong Tang

Phylogenetics

Novel symmetry-preserving neural network model for phylogenetic inference

Xudong Tang ^{1,2,†}, Leonardo Zepeda-Nuñez^{3,†}, Shengwen Yang ^{1,2}, Zelin Zhao³, Claudia Solís-Lemus ^{1,4,*}

Houston we have a problem...

- **The Good:** The NN shows potential by solving LBA cases, which the standard methods struggle.
- The Bad: Tree topologies are transformed into Euclidean space before feeding into the model, leaving out important information such as the branch length.
- **The Ugly:** The rate of increase for tree space is VERY fast, and the number of labels equals the size of tree space. For 10-taxon trees, the tree space is **2,027,025**. No way we could train a supervised model with 2027025 different labels.

Classification models are a dead end!

Xudong Tang Evolution Seminars Sept 28, 2023 10

Can we have an input-output model?

Generative Model for Phylogenetics

Training samples

Remark 1. Given known topologies of a n-taxon-tree set $\mathbb{T} = \{T_1, T_2, \dots T_m\}$ with n sequence alignments $S_i = \{s_1, s_2, \dots s_n\}$ associated with the n tips of each topology, we want to train the model to learn the distribution of the topologies p(T). With the learned distribution $p_{model}(T)$, we want to sample new topologies $T_k \sim p_{model}(T|S_k)$, where S_k is the known sequence alignments of the n species that goes into the leaf nodes of the new topologies.

Generative Model for Phylogenetics One-shot model

Generative Model for Phylogenetics One-shot model

Generative Model for Phylogenetics One-shot model

Generative Model for Phylogenetics

Xudong Tang

One-shot model

Internal nodes do not have data and thus, there is no learning from neighbors

Erick Matsen

phyloVAE is simultaneously a tree visualization and a probabilistic model for trees

Just learning tree representations, not inferring new trees

Generative Model for Phylogenetics Sequential model

Break down a tree reconstruction problem into a series of decision making problems

Generative Model for Phylogenetics Sequential model

Break down a tree reconstruction problem into a series of decision making problems

Very hard to tune!

Generative Model for Phylogenetics

Xudong Tang

One-shot model

Internal nodes do not have data and thus, there is no learning from neighbors

Sequential model

Tang

Generative Model for Phylogenetics

Upcoming pre-print: Negative results on phylogenetics deep learning

One-shot model

Internal nodes do not have data and thus, there is no learning from neighbors

Sequential model

Generative Model for Phylogenetics

If it's not broken 🤥

Xudong Tang

One-shot model

Internal nodes do not have data and thus, there is no learning from neighbors

Sequential model

Embedding

Embedding

Embedding

Learning meaningful representations of protein sequences

Nicki Skafte Detlefsen, Søren Hauberg & Wouter Boomsma [™]

Nature Communications 13, Article number: 1914 (2022) | Cite this article

Fig. 2: Latent embedding of the protein family of β -lactamase, color-coded by taxonomy at the phyla level.

Embedding

Fig. 2: Latent embedding of the protein family of β -lactamase, color-coded by taxonomy at the phyla level.

Embedding

Ancestral protein sequence reconstruction using a tree-structured Ornstein-Uhlenbeck variational autoencoder

Lys Sanz Moreta, Ola Rønning, Ahmad Salim Al-Sibahi, Jotun Hein, Douglas Theobald, Thomas Hamelryck

Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 13 Feb 2023 ICLR 2022 Poster Readers: Published: 28 Jan 2022, Last Modified: 28 Jan 2022,

Keywords: biological sequences, variational autoencoders, latent representations, ornstein-uhlenbeck process, evolution

Figure 2: Results for the β -lactamase family with 32 leaves. Left: t-SNE projection of the latent representations of the ancestral and leaf nodes. Right: The phylogenetic tree. Both plots are coloured according to clade membership.

Phylogenetically informed latent distribution

Machine Learning for Phylogenetics Embedding

Bruzzone

Evan Gorstein

Lakes Tang

Ancestral reconstruction of sequences

Not phylogenetically

informed latent

distribution

Ancestral reconstruction

Lakes Tang

Evan Gorstein

Hailey Bruzzone

Main advantage: No assumption of site independence Main challenges: Low VAE reconstruction accuracy for experimental validation

Paul Aur Ahlquist Rakoton

Ancestral reconstruction

Lakes Tang

Evan Gorstein

Hailey Bruzzone

Ancestral reconstruction

Lakes Tang

Evan Gorstein

Hailey Bruzzone

Error

Ancestral reconstruction

Embeddings of ancestral sequences for COG28-I150-s1-a0.5, model_layers500_ld2_wd0.01_epoch500_2025-05-21

Arrow starts at estimated embeddings based on Brownian motion model and ends at the embedding of the actual sequence

Lakes Tang

Evan Gorstein

Hailey Bruzzone

Ancestral reconstruction

Embeddings of ancestral sequences for COG28-I150-s1-a0.5, model_layers500_ld2_wd0.01_epoch500_2025-05-21

Arrow starts at estimated embeddings based on Brownian motion model and ends at the embedding of the actual sequence

Lakes Tang

Evan Gorstein

Hailey Bruzzone

Where is the error coming from?
Ancestral embedding estimation or VAE reconstruction?

Ancestral reconstruction

Embeddings of ancestral sequences for COG28-I150-s1-a0.5, model_layers500_ld2_wd0.01_epoch500_2025-05-21

Arrow starts at estimated embeddings based on Brownian motion model and ends at the embedding of the actual sequence

Lakes Tang

Evan Gorstein

Hailey Bruzzone

Where is the error coming from?
Ancestral embedding estimation or VAE reconstruction?

Phylogenomics

Microbiome

Phylogenetic Network Inference

Sungsik (Kevin) Kong
Inference of
level-2 networks

Nathan Kolbow
Network
merging

Zhaoxing (Bella) Wu

Identification of
diamonds

Jiayang Wang
Network-Matrix
bijection

JuliaPhylo

Sungsik (Kevin) Kong

Nathan Kolbow

Josh Justison

Ben Teo

Paul Bastide

https://juliaphylo.github.io/JuliaPhyloWebsite/

