

JOURNAL ARTICLE

Evaluating Statistical Multiple Sequence Alignment in Comparison to Other Alignment Methods on Protein Data Sets 8

Michael Nute, Ehsan Saleh, Tandy Warnow ₩

Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396–411, https://doi.org/10.1093/sysbio/syy068

Published: 17 October 2018 Article history ▼

Compared BAli-Phy to other MSA methods on both 1192 protein biological benchmarks and 120 simulated datasets

Bali-Phy was run for 32 independent runs, each for 48 hours, to enable it to converge

All datasets at most 27 sequences

BAli-Phy is best on small simulated protein datasets!

BAli-Phy is best!

BAli-Phy not so great on on 1192 small biological protein datasets

T-Coffee and PROMALS are best!

BAli-Phy good for Modeler score, but not so good for SP-Score (e.g., MAFFT better)

Taxonomic assignment and mapping of ancient environmental DNA at scale

Very short reads Many mismatches

Whole tree of life Whole genomes

We want mapping

– not just taxonomic assignment –

to estimate damage

Pre-select reference shards via k-mers, then map reads to selected shards

Problems with established approaches

Storing the k-mer values:

- → Too much to keep all occurring k-mers
- → Subset the kmers (e.g., minimizers)
- → Loss of sensitivity

For aDNA, we need to keep more k-mers with shorter k (in the order of the mapping seed length)

Kraken Minimizer Queried k-mer Taxonomy IDs K-mers Minimizer offset array

Ancestral sequence reconstruction beyond the twilight zone?

Seguence

MSEAKF ...

Structure (3Di) AKDVRC...
(30i)

The problem:

going back to amino acid sequence from 3Di sequence

Certain 3Di sequences

Weighting?

Joint probability?

Uncertain AA sequences

- Let T be a tree with branch length on the node set V. Let sequences $S = S_1 \dots S_n$ evolve on T using some CTMC like JC or GTR (note: $S_i \in \{A, C, G, T\}^L$). Let $T_{i,j}$ be distances between S_i and S_j on T.
- Vanila: Find a function $\Phi(s): \{A,C,G,T\}^L \to \mathbb{R}^d$ such that

$$\forall i,j: \lim_{L\to\infty} \ d(\Phi(S_i),\Phi(S_j))\to T_{i,j}$$

for some measure of distance d such as \mathcal{E}_2 . What is the smallest d where this is possible?

- Extended: Instead of \mathbb{R}^d , we can look for embedding in another geometric space.