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Tree reconstruction

Statistical inference

Data: (Yi)
n
i=1

Model: (Yi)
n
i=1 follow a distribution Pθ∗ where θ∗ ∈ Θ ⊂ Rd

Estimation method: approximate θ∗

Tree reconstruction

Data: sequences

Model: a substitution model along a true tree T
Reconstruction method: Maximum likelihood, Bayesian, . . .

However, T /∈ Rd, and the tree topology is a discrete object
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Applying statistical theory is not straightforward

Standard statistical theory: θ̂MLE → θ∗

Model identification

Parameter space Θ is compact

The log likelihood function `(θ | Y) is continuous in θ for almost all Y

E [supθ |`(θ | Y)|] <∞

“Several workers . . . concerned that the discrete, unordered nature of a tree
topology variable prevents it from being the sort of parameter required . . . ”

(Rogers, 2001)
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Continuous tree space (Billera-Holmes-Vogtmann)

Embedding

T ↪→
∑
s∈S

esζs

S: set of all tree splits

es: edge length

ζs: basis vector

Distance:

Branch score distance

Geodesic distance
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Continuous tree space (Billera-Holmes-Vogtmann)
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Sufficient condition for consistency

Model identification
I well-studied

Parameter space T ×Θ is compact
I bounded model parameters
I bounded branch lengths
I external branch lengths are bounded away from 0

The log likelihood function `(T, θ | Y) is continuous in T, θ
I often true

E
[
supT,θ |`(T, θ | Y)|

]
<∞
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Jukes-Cantor model

Model identification

Parameter space T ×Θ is compact

The log likelihood function `(T, θ | Y) is continuous in T, θ

P(Y | T) =
1
4

∑
(x,y)

∏
(u,v)∈E

P[v = y | u = x, t = e(u,v)]
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Jukes-Cantor model

E
[
supT,θ |`(T, θ | Y)|

]
<∞

Bound P(Y | T) away from 0 by setting all internal nodes to A
Probability of transition A→ A is at least 1/4
Done since all external edges are bounded away from 0

P(Y | T) =
1
4

∑
(x,y)

∏
(u,v)∈E

P[v = y | u = x, t = e(u,v)]

Lam Si Tung Ho Dalhousie Tree reconstruction from statistical perspectives



Frequency model

Rooted trees
Observe the frequency of alleles
Yi | T ∼iid N (κ1,ΣT) (Brownian motion model)

MLE is a consistent tree reconstruction method

Use the continuous representation of tree space
Verify the conditions of Wald (1949) in the form given by Redner (1981)

(RoyChoudhurya et al., 2015)
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Sufficient condition for consistency

Frequency model:

Model identification
Parameter space T ×Θ is compact

I Without loss of generality, set κ = 0.

The log likelihood function `(T, θ | Y) is continuous in T, θ

`(T | Y) = −1
2

n∑
i=1

YT
i Σ−1

T Yi −
n
2

log |ΣT|

E
[
supT,θ |`(T, θ | Y)|

]
<∞

I upper bound YT
i Σ−1

T Yi
I external edges are bounded away from 0 implies ΣT ≥ cI for some c > 0
I YT

i Σ−1
T Yi ≤ 1

c YT
i Yi and E(YT

i Yi) = ΣT∗
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Beyond Consistency

Principal component analysis

Hamiltonian Monte Carlo

Regularized Estimation Methods
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Principal component analysis

Wikipedia, CC BY 4.0
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Principal component analysis

Given trees {Ti}n
i=1, construct a central point T0:

T0 = arg min
T

n∑
i=1

d(x,Ti)
2

For a geodesic line L through T0, find the projection:

T(L)
i = arg min

T∈L
d(T,Ti)

2

Find the line Lopt that optimizes an objective function:

Lopt = arg max
L

n∑
i=1

d(T0,T
(L)
i )2

(Nye, 2011)
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Hamiltonian Monte Carlo (HMC)

Hamiltonian’s equations

dxi

dt
=
∂H
∂pi

,
dpi

dt
= −∂H

∂xi
,

where H(x, p) = U(x) + K(p), with U(x) = − log f (x) and K(p) = ‖p‖2
2/2
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Hamiltonian Monte Carlo for sampling trees

(Dinh et al., 2017)
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Regularized Estimation Method

θ̂ = arg max
θ∈Θ

`(θ | Y)︸ ︷︷ ︸
log likelihood

−λ R(θ)︸︷︷︸
penalty

= arg min
θ∈Θ

− `(θ | Y)︸ ︷︷ ︸
log likelihood

+λ R(θ)︸︷︷︸
penalty

Ridge regression (L2 regularization)

R(θ) = ‖θ − θ0‖2
2 =

d∑
i=1

(θi − θ0)2

Lasso (L1 regularization)

R(θ) = ‖θ‖1 =
d∑

i=1

|θi|
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Ridge estimator for tree reconstruction

T̂ridge = arg min
T∈T

−1
k
`(T | Y) + λk[dgeodesic(T,T0)]2

insufficient signal in the gene sequences

introduce extra information (T0)

Convergence rate (Jukes-Cantor)

dgeodesic(T̂ridge,T∗) = O
(

log k
λk
√

k
+ λk

)1/2
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Yeast gene-tree reconstruction (YKL120W)

T̂ridge = arg min
T∈T

−1
k
`(T | Y) +

C
k1/4 [dgeodesic(T,T0)]2

T0: concatenated gene tree
C = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5
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Yeast gene-tree reconstruction (YKL120W)
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Nonbifurcating tree
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Tree topology is known

Lasso

(̂ta, t̂b, t̂c, t̂d, t̂) = arg min−1
k
`(ta, tb, tc, td, t) + λk(ta + tb + tc + td + t)

Adaptive Lasso

(̃ta, t̃b, t̃c, t̃d, t̃) = arg min−1
k
`(ta, tb, tc, td, t)+ηk

(
ta
t̂γa

+
tb
t̂γb

+
tc
t̂γc

+
td
t̂γd

+
t
t̂γ

)
(Zhang et al., 2021)
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Tree topology is unknown

Embedding
T ↪→

∑
s∈S

eT,sζs

Adaptive Lasso
Step 1: MLE

T̂ = arg max
T∈T

`k(T)

where `k(T) is the log likelihood function
Step 2: regularization

T̂AL = arg min
T∈T

−1
k
`k(T) + λk

(∑
s∈S

eT,s
eγ
T̂,s

)
Consistency

eT̂AL,s
→p eT∗,s

If eT∗,s = 0, then eT̂AL,s
= 0 with high probability
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Sketch of Proof

Lemmas

Convergence rate of MLE

d(T̂,T∗) ≤
(

log k√
k

)1/β

Lojasiewicz inequality

φ(T)− φ(T∗) ≥ cT d(T,T∗)β2 , ∀T ∈ T

Concentration inequality∣∣∣∣1k `k(T)− φ(T)

∣∣∣∣ ≤ c
log k√

k
, ∀T ∈ T

where φ(T) = E[`1(T)]
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Sketch of Proof

Define
M(T) =

∑
s∈S

eT,s
eγ
T̂,s

cT d(T̂AL,T∗)β ≤ φ(T∗)− φ(T̂AL)

≤ c
log k√

k
+

1
k
`k(T∗)−

1
k
`k(T̂AL)

= c
log k√

k
+

1
k
`k(T∗)− λkM(T∗)

− 1
k
`k(T̂AL) + λkM(T̂AL) + λkM(T∗)− λkM(T̂)AL

≤ c
log k√

k
+ λkM(T∗)→ 0
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Sketch of Proof

Assume that eT∗,s = 0 and eT̂AL,s
> 0 for some s

T′ is the same as T̂AL, except eT̂AL,s
= 0

λk
eT̂AL,s

eT̂,s
≤ 1

k
`k(T̂AL)− 1

k
`k(T′) ≤ cT d(T̂AL,T′) = cT eT̂AL,s

On the other hand,

eT̂,s ≤ d(T̂,T∗) ≤
(

log k√
k

)1/β

Contradiction!
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Summary

Continuous tree space is helpful if you want to study tree reconstruction
from a statistical viewpoint

Consistency of MLE

Regularized estimation methods can be good alternatives for MLE
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Future directions

Stein’s Paradox

“Large p, small n"

Space of phylogenetic networks

Contact: Lam.Ho@dal.ca
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