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Tree reconstruction

Statistical inference
e Data: (V;),
o Model: (Y;)"_, follow a distribution P+ where §* € © C RY
o Estimation method: approximate 6*

Tree reconstruction
e Data: sequences
@ Model: a substitution model along a true tree T

@ Reconstruction method: Maximum likelihood, Bayesian, ...

However, T ¢ R, and the tree topology is a discrete object
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Applying statistical theory is not straightforward

Standard statistical theory: éMLE — 0*
@ Model identification
@ Parameter space © is compact
@ The log likelihood function ¢(6 | Y) is continuous in € for almost all ¥
o Efsupy |68 | ¥)[] < o0

“Several workers . .. concerned that the discrete, unordered nature of a tree
topology variable prevents it from being the sort of parameter required ...”

(Rogers, 2001)

Lam Si Tung Ho Dalhousie Tree reconstruction from statistical perspectives



Continuous tree space (Billera-Holmes-Vogtmann)
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@ Branch score distance

@ Geodesic distance
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Continuous tree space (Billera-Holmes-Vogtmann)
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Sufficient condition for consistency

@ Model identification
» well-studied

@ Parameter space 7 x © is compact

» bounded model parameters
» bounded branch lengths
» external branch lengths are bounded away from 0

@ The log likelihood function ¢(T,# | Y) is continuous in T, §
» often true

® E [supy, [((T,0]Y)|] < oo
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Jukes-Cantor model
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@ Model identification
@ Parameter space 7 x © is compact
@ The log likelihood function ¢(T, # | Y) is continuous in T, ¢

PY|T)= Z H Plv=ylu=xt= ey,

(xyy) (uv)€E
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Jukes-Cantor model

PRV brgew dodew dodew dodew
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E [suppg [€(T,0 | Y)|] < oo

@ Bound P(Y | T) away from 0 by setting all internal nodes to A
@ Probability of transition A — A is at least 1 /4
@ Done since all external edges are bounded away from 0

PY|T)= Z H Pyv=ylu=x1t= ey,

( ¥) (wv)eE
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Frequency model

@ Rooted trees
@ Observe the frequency of alleles
@ Y; | T ~g N(x1,XT) (Brownian motion model)

{

MLE is a consistent tree reconstruction method

@ Use the continuous representation of tree space
@ Verify the conditions of Wald (1949) in the form given by Redner (1981)
(RoyChoudhurya et al., 2015)
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Sufficient condition for consistency

Frequency model:
@ Model identification

@ Parameter space 7 x © is compact
» Without loss of generality, set k = 0.

@ The log likelihood function ¢(T,# | Y) is continuous in T, #

(T | Y) —fZYTE ly, — log]Eqp\
i=1
@ E [supyy [((T,0]Y)|] < oo

» upper bound ¥/ %',
> external edges are bounded away from 0 implies X1 > ¢l for some ¢ > 0
» YISD'Y < LYTY and E(YTY)) = S
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Beyond Consistency

@ Principal component analysis
@ Hamiltonian Monte Carlo

@ Regularized Estimation Methods
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Principal component analysis

Wikipedia, CC BY 4.0

Lam Si Tung Ho Dalhousie Tree reconstruction from statistical perspectives



Principal component analysis

e Given trees {7;}!_,, construct a central point T:
n
To = argmin Y d(x, T;)?
; 2 T

@ For a geodesic line L through Ty, find the projection:

Ti(L) = argmind(T, T;)*
TeL

@ Find the line Ly that optimizes an objective function:

n
Lopt = arg max Z d(Ty, Tl.(L))2
g
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Hamiltonian Monte Carlo (HMC)

HMC

RWMH

Hamiltonian’s equations

dy OH dp;  OH

dt — op; dt  Ox;
where H(x,p) = U(x) + K(p), with U(x) = —logf(x) and K (p) = ||p||3/2
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Hamiltonian Monte Carlo for sampling trees
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(Dinh et al., 2017)
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Regularized Estimation Method

0 =argmax £(0|Y) —AR(0) =argmin— £(0|Y) +XR(6)
—~— 9cO —— N~
log likelihood penalty

0cO
log likelihood penalty

o Ridge regression (L2 regularization)
d

R(0) = [0 = 6oll3 =) (6 — 60)°

i=1

@ Lasso (L1 regularization)

d
R(6) = (6]l =) _ 6]
i=1
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Ridge estimator for tree reconstruction

R 1
r]I‘ridge = argimin _%E(T | Y) + A [dgeodesic(Ta TO)]Z
TeT

o insufficient signal in the gene sequences

@ introduce extra information (Ty)

Convergence rate (Jukes-Cantor)

desi ridge k
dgeo esic ge = )\k\/_ +
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Yeast gene-tree reconstruction (YKL120W)

- . 1 C
Tridge = arginin _7£(T ’ Y) + [dgeodesic(Ta TO)]Z

TeT k W
@ Ty: concatenated gene tree
e C=0,0.25,0.5,0.75,1,1.25,1.5
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Yeast gene-tree reconstruction (YKL120W)
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Nonbifurcating tree
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Tree topology is known

Lasso

A A A A . 1
(tay Iy, ey 1g, 1) = arg min —%E(ta, tpyteytayt) + Ne(tg +tp + 1.+ 15+ 1)

Adaptive Lasso

o 1 1
(Tay Iy, Te, 1g, 1) = argmln_%E(taatbvtmfdat)"’_nk >
a

tp te tq t
to bt
b ¢ d

(Zhang et al., 2021)
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Tree topology is unknown

Embedding
T — Z eT,sCs
sES
Adaptive Lasso
o Step 1: MLE

T = arg max 4(T)
TeT

where ¢ (T) is the log likelihood function
o Step 2: regularization

~ 1 eT,s
TaL = arg min —%Ek(T) + Mk (Z eg’ )

TeT seES 'ﬁ',s

Consistency
(] eTAL,S —>p €T s
o If ey« = 0, then €, 5= 0 with high probability
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Sketch of Proof

Lemmas

@ Convergence rate of MLE

. 1/8
a(t, T < (log")
vk

o Lojasiewicz inequality
¢(T) — ¢(T*) > c7d(T, T*)5, VT eT

o Concentration inequality

log k

, YT eT
K S

LD - o) <

where ¢(T) = E[¢;(T)]

Lam Si Tung Ho Dalhousie Tree reconstruction from statistical perspectives



Sketch of Proof

Define
€T s

Y

el
s€S T,s

M(T) =

c7d(TaL, T*)? < ¢(T*) — ¢(TaL)

logk 1 1, -

< — 0 (T*) — =4, (T

<c N —l—kfk( ) kfk( AL)
logk 1

= ~0(T*) — \eM(T*
c\/]; —|—k£k( ) — \eM(T*)

1 A - .
— %Ek(TAL) + )\kM(TAL) + )\kM(T*) — /\kM(T)AL

Lam Si Tung Ho Dalhousie Tree reconstruction from statistical perspectives



Sketch of Proof

@ Assume that eT« ; = 0 and e, 5> 0 for some s

o T'is the same as Tar, excepteq =0

e 1
Ak jﬁm %5 (Tar) — *Ek(TI) < ord(TaL, T') = CTCT L5
T,s
On the other hand,

) 1/8
es. <d(T,T%) < (sz];")

)

Contradiction!
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Summary

@ Continuous tree space is helpful if you want to study tree reconstruction
from a statistical viewpoint

@ Consistency of MLE

@ Regularized estimation methods can be good alternatives for MLE
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Future directions

@ Stein’s Paradox
o “Large p, small n"

@ Space of phylogenetic networks

Contact: Lam.Ho@dal.ca
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