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Phylogenomics
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Phylogeny + genomics = genome-scale phylogeny estimation



Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus, and construct gene trees

Compute species tree or network:
 Combine the estimated gene trees, OR

* Estimate a tree from a concatenation of the multiple sequence alignments
Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology




Large datasets are difficult

* Two dimensions:
* Number of loci
* Number of species (or individuals)

* Missing data
* Heterogeneity

* Many analytical pipelines involve Maximum likelihood
and Bayesian estimation



Erich Jarvis, MTP Gilbert, Guojie Zhang, Siavash Mirarab, Tandy Warnow,
HHMI Copenhagen BGI Texas Texas and UIUC

* Approx. 50 species, whole genomes

* 14,000 loci

* Multi-national team (100+ investigators)

8 papers published in special issue of Science 2014

Major challenges:

* Multi-copy genes omitted

* Massive gene tree heterogeneity consistent with ILS
* Concatenation analysis took 250 CPU years




What | hope to convince you of:

* “Disjoint tree mergers” (DTMs) are generic methods, that can be used
with any phylogeny estimation method (for any kind of data), and
enable scalability to large datasets.

* The Guide Tree Merger (GTM) is the current leading DTM technique,
based on empirical performance.

* GTM improves maximum likelihood gene tree estimation and also species
tree estimation.

 However, GTM does NOT allow blending, and so should be able to be
improved.



This talk

* Part |: Divide-and-conquer methods and Disjoint Tree Mergers

 Part II: Application to species tree estimation (e.g., ASTRAL and
concatenation)

* Part Ill: Application to large-scale maximum likelihood tree estimation
* Part IV: Discussion



Part [l: Disjoint Tree Mergers



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
D accurate method
ecompose on subsets, and
Sp?Cl?S Se_t !n’Fo treat as absolute

pairwise disjoint constraints

Full subsets.
species
set

Build a tree on each
subset
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Auxiiiary

Info
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matrix)

Compute tree on entire set of species
using “Disjoint Tree Merger” method

Erin Molloy,
Introduced this
approach



DTMs Merge Subset Trees
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Notes:

e Subset trees are requirements (constraint trees)
 Blending is permitted!

Bioinformatics, Volume 35, Issue 14, July 2019, Pages i417-i426, https://doi.org/10.1093/bioinformatics/btz344 O x EORD

The content of this slide may be subject to copyright: please see the slide notes for details. UNIVERSITY PRESS



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
D accurate method
ecompose on subsets, and
Sp?Cl?S Se_t !n’Fo treat as absolute

pairwise disjoint constraints

Full subsets.
species
set

Build a tree on each
subset

A A
AAAAA

Auxiiiary

Info
(e.g., distance

matrix)

Compute tree on entire set of species
using “Disjoint Tree Merger” method

Erin Molloy,
Introduced this
approach



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
accurate method

DeCO_mPOSG. on subsets, and Erin Molloy,
Species Se.t |.n’Fo treat as absolute Introduced this
pairwise disjoint constraints approach
Full subsets.
SheCies NJMerge
<ot * Uses distance
matrix for

auxiliary info.

Build a tree on each| Computes

Subset constraint trees
aaxiiiary A A on subsets
In_fo * Builds tree using
(e'gr'r’mgtlfit;nce A A A agglomerative
A A technique from
‘ NJ, as long as
constraint trees
not violated

Compute tree on entire set of species

using “Disjoint Tree Merger” method * Statistically

consistent




Disjoint Tree Mergers (DTMs)

* NJMerge (Molloy and Warnow, Alg Mol Biol 2019)

* TreeMerge (Molloy and Warnow, Bioinf 2019)

* Constrained-INC (Zhang, Rao, and Warnow, Alg Mol Biol 2019)

* Guide Tree Merger (Smirnov and Warnow, BMC Genomics 2020)



Guide Tree Merger

* Input:
* set T of trees T, on leafset S, (disjoint sets)
* “guide tree” T on union of S,

* Output: Tree T* that induces each T, and minimizes the bipartition
distanceto T

e NP-hard

* If we constrain T* to be formed by adding edges between the trees T.
(i.e., no blending allowed), then solvable in polynomial time.

* Smirnov and Warnow, BMC Genomics 2020



Statistically consistent pipelines are easy to design!

Full

species
set

Auxiiiary

Info
(e.g., distance

matrix)

Decompose
species set into
pairwise disjoint
subsets.

Note: use most
accurate method
on subsets, and
treat as absolute
constraints

Build a tree on each
subset

AAAAA

A‘A

Compute tree on entire set of species
using “Disjoint Tree Merger” method

Statistically
consistent pipelines
are easy with any of
the four DTMs,
provided:

e Statistically
consistent
auxiliary
information

e Statistically
consistent
subtree
calculation




Part II: DTMSs and Species Tree Estimation



Species Tree Estimation

Corbisieanm

From the Tree of the Life Website,
University of Arizona



Gene tree discordance
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Multiple causes for discord,

including

* Incomplete Lineage Sorting
(ILS),

* Gene Duplication and Loss
(GDL), and

* Horizontal Gene Transfer (HGT)



Gene tree discordance

Multiple causes for discord,

including

* Incomplete Lineage Sorting
(ILS),

* Gene Duplication and Loss
(GDL), and

* Horizontal Gene Transfer (HGT)

Gorilla Human Chimp Orang. Gorilla Chimp Human Orang.



Gene trees inside the species tree (Coalescent Process)

Deep coalescence =
INCOMPLETE

LINEAGE

SORTING (ILS):

gene tree can be different
from the species tree

Past

Present

Courtesy James Degnan

Gorilla and Orangutan are not siblings in the species tree,
but they are in the gene tree.




MSC+GTR Hierarchical Model

Species tree

1. Gene trees evolve
within the species

Gorilla Human  Chimp Orangutan

_ p Y ~ tree (under the
Gene evolution model i i
- 5 i < Multi-Species
Gene tree Gene tree Gene tree Gene tree Coa Iesce nt mode')

A A /Q /<\ 2. Sequences evolve
Chimp Human Orang. Orang, Chimp Orang. Orang.

Gorilla Gorilla Humari Chimp Human Gorilla Chimp Human d own t h e g ene
| | I

Sequence evolution model trees (under GTR
v St b ospmean | model)

ACTGCACACCG CTGAGCATCG 1 AGCAGCATCGTG CAGGCACGCACGAA
ACTGC-CCCCG CTGAGC-TCG AGCAGC-TCGTG AGC-CACGC-CATA
AATGC-CCCCG ATGAGC-TC—- AGCAGC-TC-TG ATGGCACGC-C-TA

—CTGCACACGG CTGA-CAC-G C-TA-CACGGTG AGCTAC-CACGGAT



's method M statistically consistent under
model G?

Question answered by
mathematical proof

Error
in species tree

inferred by
method M

Amount of data
generated under model G and
then given to method M as input



Traditional approach: concatenation

Orangutan Chimpanzee

: supermatrix

: gene 1 i gene 2 : . gene 1000 : __[uayieelcil ,_)

ACTGCACACCGCTGAGCATCG CAGAGCACGCACGAR inference

ACTGC-CCCCGCTGAGC-TCG AGCA-CACGC-CATA

AATGC~-CCCCGATGAGC-TC- " " * " ATGAGCACGC-C-TA

-CTGCACACGGCTGA-CAC-G AGC-TAC-CACGGAT Gorilla Human
 Statistically inconsistent and can even o

r

be positively misleading (proved for A

unpartitioned maximum likelihood)
[Roch and Steel, Theo. Pop. Gen., 2014]

* Mixed accuracy in simulations —

[Kubatko and Degnan, Systematic Biology, 2007]

[Mirarab, et al., Systematic Biology, 2014] Data
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Main Approaches for Species Tree Estimation

gene 1 gene2 ... gene k

Species

— e.g., RAXML
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DTMs for Species Tree Estimation

Note: use most
accurate method
DeCQmPOSG_ on subsets, and Erin Molloy,
species set into treat as absolute Introduced this
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‘ DTM method.

Compute tree on entire set of species
using “Disjoint Tree Merger” method



DTMs for Species Tree Estimation are Consistent

Note: use most
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DTMs for Species Tree Estimation are Consistent

Note: use most

Decompose
species set into
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Full
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treat as absolute

Vladimir
Smirnov
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Theorem: Pipelines
based on NJst/ASTRID
for auxiliary info
(guide tree), subtree
calculation using
summary methods,
and then Guide Tree
Merger (GTM) are
statistically consistent.

Compute tree on entire set of species
using “Disjoint Tree Merger” method




GTM pipelines for Species Tree Estimation

* ASTRAL, NJst, and ASTRID are statistically consistent
* Concatenation using maximum likelihood (CA-ML) is not consistent

* GTM Pipelines we studied:
* Guide tree is NJst or ASTRID
* Subtrees computed using ASTRAL or CA-ML
 Combined using GTM

* We evaluate accuracy and runtime under conditions with varying ILS
levels



RF Error

. Table 3 Comparison of average runtime (seconds) of
GT I\/I +AST RA I_ . GTM+ASTRAL vs ASTRAL for high ILS conditions with
introns on 1000 species. The value for n is the number of
replicates being compared (i.e., where ASTRAL trees are

fa Ste r a n d m O re available). Pre-GTM covers computing gene trees using FastTree,
the NJst starting tree, and ASTRAL subset trees; the gap
h between “total” and “ASTRAL" for the right hand column
a CC u rate t a n AST RA I_ reflects the time to compute gene trees using FastTree, which is
3.9 seconds per gene. Results for the 1000-gene ASTRAL trees
are taken from the NJMerge study [2].

GTM+ASTRAL ASTRAL

High ILS-Intron Accuracy 10 Genes (n=18)
mmm NJST-ASTRAL-GTM -Pre-GTM 97.4 n.a.
06 = graliicy -ASTRAL n.a. 8,617.0
- NJST -GTM 0.4 n.a.
0.5 -Total 97.8 8,656.0

25 Genes (n=20)
0.4 -Pre-GTM 174.7 n.a.
-ASTRAL n.a. 5,441.4
03 -GTM 0.4 n.a.
-Total 175.1 5,5639.4

0.2 1000 Genes (n=16)

-Pre-GTM 7,948.9 n.a.
Q.3 -ASTRAL n.a. 149,145.9
-GTM 0.4 n.a.
0.0° -Total 7,949.3 153,045.9

10 Genes (n=1g, 25 Genes (n

=20)



GTM pipelines for CA-ML

* CA-ML: Concatenation using maximum likelihood
* Not guaranteed statistically consistent
e Can be highly accurate

* GTM Pipelines:
* Guide tree is FastTree
e Subtrees computed using CA-ML (using RAXML)
 Combined using GTM

* We evaluate accuracy and runtime under conditions with varying ILS
levels



High ILS-Exon Accuracy

0.6 - B FastTree-RAXML-GTM
mmm  NJST-RAXML-GTM
I FastTree
0.5 - B RAXML
0.4 -
S
i
w 0.3
or
0.2 -
0.1-
0.0-

Fig. 9 Experiment 3: Comparison of FastTree-RAXML-GTM and NJst-RAXML-GTM to RAXML and FastTree on 1000-species datasets with high ILS exons.
The value for n is the number of replicates on which RAXML completed; missing replicates indicate RAxML exceeding runtime limits on 10 and 25
genes (the 1000-gene RAXML trees are taken from [3]). FastTree was not used for 1000 genes. Error bars show standard error of the replicate average




Table 6 Average runtime (seconds) of FastTree-RAXML-GTM

(GTM(RAXML)) and RAXML on 1000-species exon datasets

GTM(RAXML) RAXML
Low ILS 10 Genes (n=19)
-FastTree 2796 n.a.
-RAXML subtrees 8313 na.
-GTM 04 na.
-Total 1,111.3 /,313.7
Low ILS 25 Genes (n=10)
-FastTree 686.3 n.a.
-RAXML subtrees 1,4606 na.
-GIM 04 na.
-Total 21473 10,5394
High ILS 10 Genes (n=12)
-FastTree 2837 na.
-RAXML subtrees 637.5 n.a.
-GIM 04 na.
-Total 9216 10,1356
High ILS 25 Genes (n=20)
-FastTree 7315 na.
-RAXML subtrees 1363.1 na.
-GIM 04 n.a.
-Total 2,095 n.a.

The value for n is the number of replicates being compared, i.e., where a RAXML tree

is available

GTM pipelines improve
running time for CA-ML

(Could make large-scale
CA-ML feasible)



Part IlIl: DTMs and Maximum Likelihood Tree Estimation



DNA Sequence Evolution (Idealized)

AAGACTT -3 mil yrs|

-2 mil yrs

AAGGCCT TGGACTT

-1 mil yrs

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA  TAGACTT  AGCACAA AGCGCTT today



Markov Models of Sequence Evolution

The different sites are assumed to evolve i.i.d. down the model tree, so it suffices to
model a single site

Jukes-Cantor, 1969 (simplest DNA site evolution model):
* The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

 The model tree T is binary and has substitution probabilities p(e) on each edge e,
with O<p(e)<3/4

* If a site (position) changes on an edge, it changes with equal probability to each of
the remaining states

* The evolutionary process is Markovian.

More complex models (e.g., Generalized Time Reversible) are also considered, often
with little change to the theory.



Maximum likelihood tree estimation

* Input: multiple sequence alignment and “model” (e.g., GTR,
Jukes-Cantor)

e Output: Model tree (rooted binary tree with numeric
parameters) that maximizes the probability of producing the
alignment



Maximum likelihood tree estimation

* Theory:
e Statistically consistent under standard models

* Excellent sample complexity (Roch & Sly, Prob. Theory and
Related Fields, 2017): phase transition (logarithmic then
polynomial)

* NP-hard



Maximum Likelihood Software (heuristics)

* RAXML-ng (probably the best?)
* |Q-TREE2 (possibly competitive with RAXML-ng)
 FastTree 2 (extremely fast, not as accurate)

* And others, but none competitive with RAXML-ng



GTM for Maximum Likelihood Tree Estimation

Note: use most
5 accurate method
ecompose on subsets, and
species set into treat as absolute

pairwise disjoint constraints

Full subsets.
species
set
RAXML
/ !
Build a tree on each | |Q-TREE,
subset etc

Auxiiiary

Info
(e.g., distance

A A
AAAAA

matrix)

Compute tree on entire set of species . Guide Tree Merger

using “Disjoint Tree Merger” method
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* On RNASIim50K:

* |QTree failed

 RAXML had nearly 100% error

* GTM most accurate




What about biological data?

* We used the same technique but evaluated maximum likelihood scores on
a MAGUS+EMMA alignment of the Recombinase dataset (~70,000 protein
i%%laences) from Kelly Williams, restricting the alignment to approximately

sites.

e Revised GTM pipeline: construct FastTree tree on full-length sequences,
and add remaining sequences in usin phylo%enetic placement method
BSCAIVIPP(EPA-ng?(tutoriaI on Thursday by Eleanor Wedell)

* We let RAXML run with different starting trees: its default approach, using
FastTree as a starting tree, and using our GTM tree as a starting tree.

* We compared these RAXML runs (different starting trees) to each other,
using LG+Gamma(4) for the model.

* Unpublished analyses performed by Minhyuk Park.




ML score
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ML score

—9580000
——&— RAXxML (FastTree start) ]
—o— RAXML (No start tree) On this datasetr

—9582000 - —8— RAXML (GTM start) * Default RAXML worst

* FastTree is a better
starting tree

—~9584000 - ,
e GTM is much better

—-9586000 - Large datasets need
long running times and
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—~9588000 -
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Summary

* “Disjoint tree mergers” (DTMs) are generic methods, that can be used
with any phylogeny estimation method (for any kind of data).

* DTMs can be used in statistically consistent pipelines

 DTMs also provide empirical advantages:
 DTMs enable scalability to large datasets.

« DTMs improve gene tree and species tree estimation accuracy (based on
simulation)

* GTM is the current leading DTM technique, based on empirical
performance. However, because it does NOT allow blending, it is
unlikely GTM is the best that can be done.



Open problems

* Open problems:
* Develop a better DTM approach that allows blending.

* Understand sample complexity
* Impact of how division into subsets is done
* Impact of subtree estimation method (e.g., maximum likelihood)
* For GTM, evaluate impact of guide tree

* Understand why GTM+ASTRAL is more accurate than ASTRAL
* Examine use with Bayesian methods

* Not discussed here (and still needs work):
* Phylogenetic networks
* Genome rearrangement phylogeny
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