# Braiding Vineyards

#### Erin Chambers





IST Austria

Chris Fillmore Elizabeth Stephenson Mathys Wintracken





INRIA

Mohuchon Better understand the complexity of Vineyards in IDA Monodromy: effect where loops in base space don't lift to loops a covering space Consider space X,  $\widetilde{\gamma}(t)$ —— 100p & covering X, and a lift IF 8(0) + 8(2m) then & exhibits monodromy.

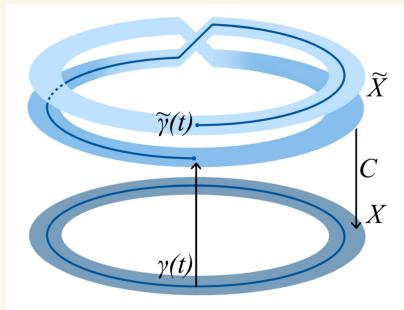
Quantifying monodromy

We say 8 has monodromy of

order k if k repet tions of the

covering loop returns to the starting

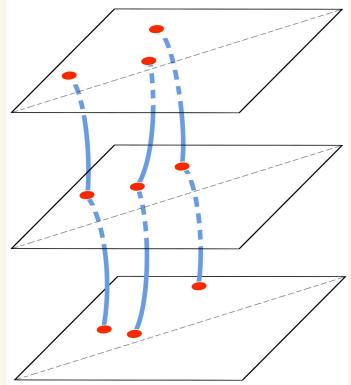
point, + k is minimal such value!



Here: K=2

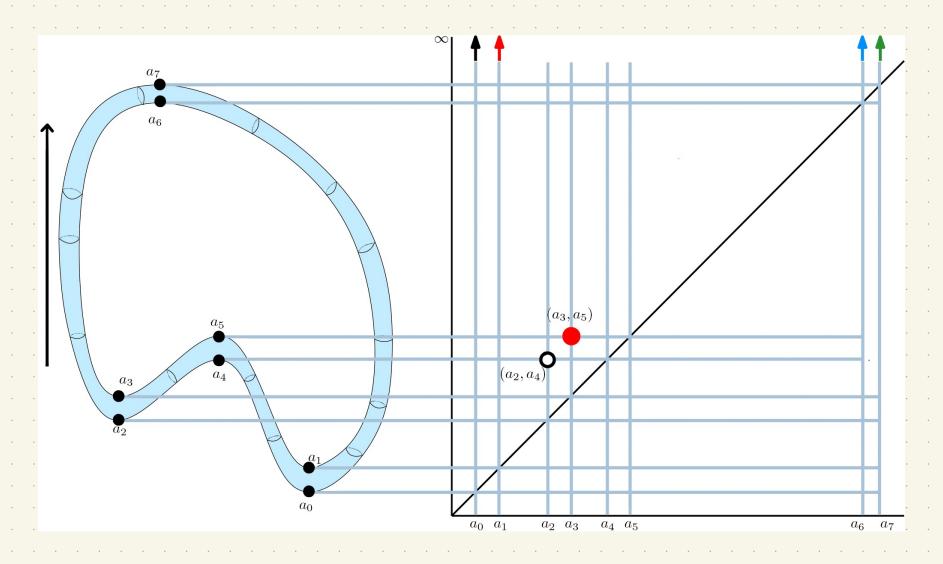
Vineyards persistence is stable We know Cohen-Steiner et al This weens if we take a one parameter family of filter functions, "nearby" functions will have "nearby" diagrams. So, can match diggrems Cria bottlenede or interleaving or whetever) and trace points as to changes:

vines & viney ands



Some necessary assumptions Genericity & uneyards: For simplicity, I'll assume no points on our diagrams have multiplicity > 1, and no vives touch the diagonal. (First is true generically given mild assumptions) · This suffices for our Construction · Not hard to remove the diagonal assumption. For multiplicity > 1, possible but more complex...

Extended porsistence Since we're trying to "braid" vines, we don't want points at Ex:



Solution In addition to standard sublevel set persistence, we'll also do relative superlevel sets. nomology of Cohen-Steiner et a 2008 (oridary or extended) · ordinary

Radial Distance function

Let d(0,X): M > R be the distance from any X E TRd to M C TRd

Called radial distance for Fix a loop 8: [0,20] -> TZ Set X= X(t) for t E[0,217] GEmily of filtrations d(°, 8lt))m Closed Vineyard map Dgm(d(0,x)m).  $CV_M: S' \rightarrow S' \times Dgm$ the (t, Dam (d(o, Nt)) m))

| In this example, the vines induce a map from Dgm (d(o, 8(0))m) to itself by permutes the points!  Vineyard:  Dgm <sub>0</sub> (d(·, \gamma(t))_M) | Monodromy<br>adapted from Arya | et al 2024                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|
| Ly permutes the points!  Vineyord:                                                                                                                | In this example, the vines     |                                                    |
|                                                                                                                                                   | L) permutes the points!        | $\mathcal{M}$                                      |
|                                                                                                                                                   | Viveyord                       | $\mathrm{Dgm}_0(d(\cdot,\gamma(t))_{\mathcal{M}})$ |

Here, we have monodromy of order 3.

Previous Work · Monodromy was first studied by Cerri et al 2013, in the context of molt parameter persistence L) first example in TDA that we're aware of · Also by Scaramuccia & Montain 2025 o Arya et al 2024 show monodromy in Ho Br shapes in IR2 for directional transforms where Attration is Dased on height functions, of prove star-shaped objects have no monodromy in 1122

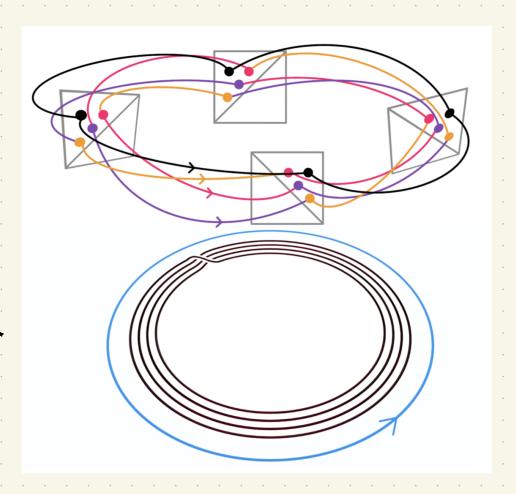
Arya et al 2024 Can we demonstrate monodromy in higher dimensions! Which objects have it, a how much? Theorem C., Fill more, Stephenson, Wintreeden Monodromy of any order K can be created in the l-vineyard of the radial transform of a manifold M embedded in Ret

### Our Idea

We know the radial vineyard can reflects
parks of the topology of input space M.

If M were a Draid, with period 2114, we could get order k monodromy.

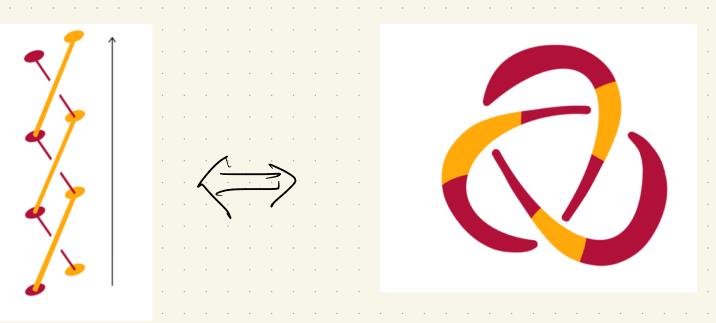
Braids have previously connected to monodromy.
Cohon + Social 1997,
Cogollado - Agustrn 2011
Salter 2023, Salter 2024



Braids A braid on m strands is the equivalence class of the disjoint union of m intervals B: I -D2xI, monotonically innecsing wrt I, such that end points are a permutation of start points, under ambient braid 150 topy. Composins brands; Br 

Braids & Knots If we identify endpoints of a braid & map canonically to torus in TR3, we get a closed braid. Theorem Alexander 1923

Every knot or link is equivalent to a closed braid.

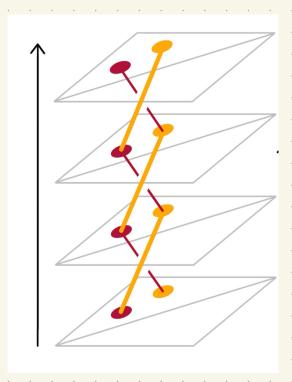


## Question: can vineyards "breid"?

Theorem C.-Fillmore-Stephenson-Wintrecken

Gwen any braid B, there exists a manifold MCTZd 4 a closed curve & CTRd Such that identifying the ends of the vineyard of d(, X(t))m will yield a braid B' which is Equivalent to B after removing Spurious components.

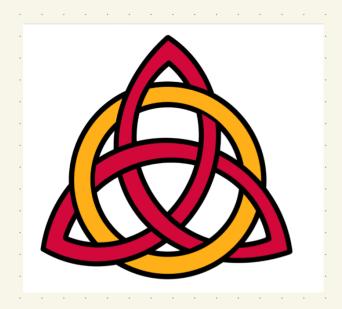




Construction
Note that both M and 8 must be carefully constructed to work together!

Overview!

Start with a closed broad BCR2, with k components and strands.



[Note: Not showing the broad here, but k=2 and S=3]
We'll convert this to a manifold in  $\mathbb{R}^3$ 

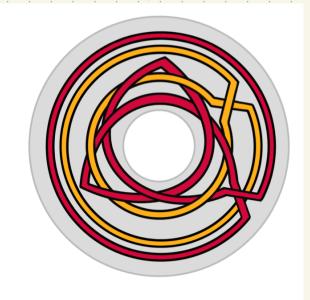
(1) Redrow in a small neighborhood of an annulus, where strands follow

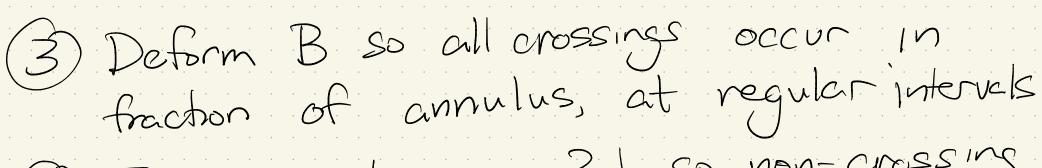
fixed radii

2) Then, introduce an extra 'twist" per component, 4 wrap loop around outside of annulus

=) adds O(sk) crossings and gives n=S+K Strands total

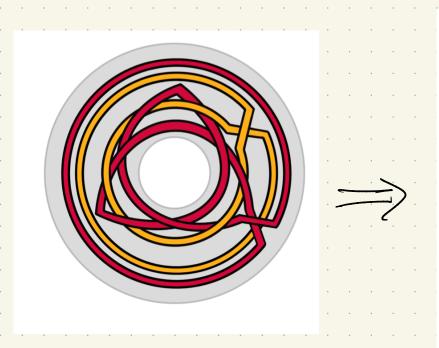


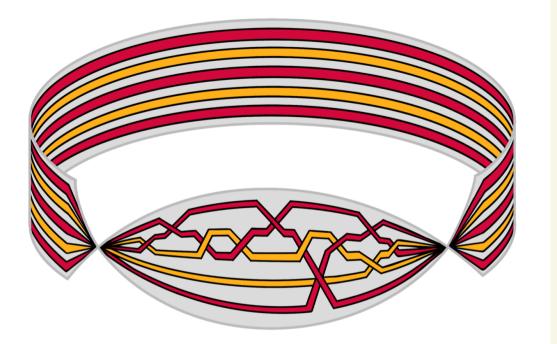




4) Twist annulus in 3d, so non-crossings?
Part is orthogonal. (Note: no new crossings!

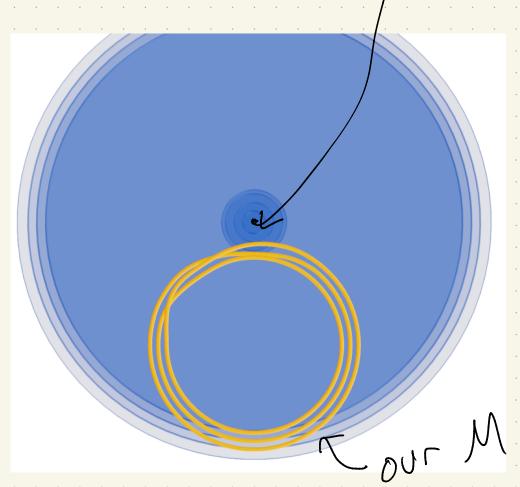
(3) Set observation loop to follow annulus at fixed distance a near "center"





What is vineyard like? Several technical lemmas relying on Morse theory & angles show that births in Ho all occur before dooths: point on 8

This means we can use embedding to control uneyard



Why the extra strands?

Elder rule in persistence

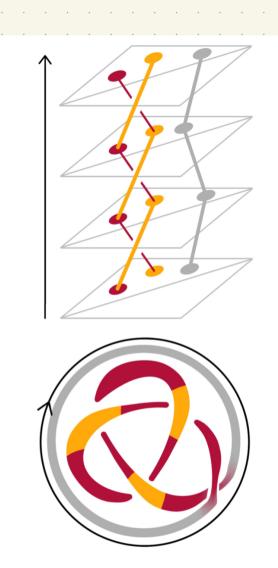
Thist birth & last

death are paired.

We added an outer stand

to account for this.

Result: For each component, will be an unlinked strand, which will be an extra circle in uneyard.

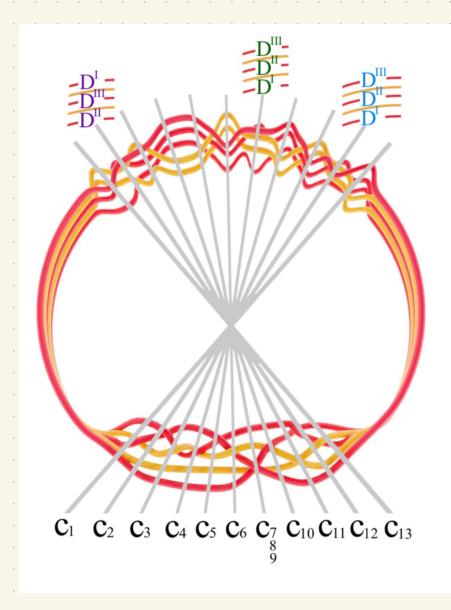


Parameterizme the vineyard Our Vines have annular coordinates: O, har P  $(\theta, \underbrace{R-b}^{j}, D\underbrace{D^{j'}-2R})$ Away from crossings, vines have distinct P so h doesn't matter. To get correct over/under crossings in viveyard, we need to play with the geometry of our embedding a bit ...

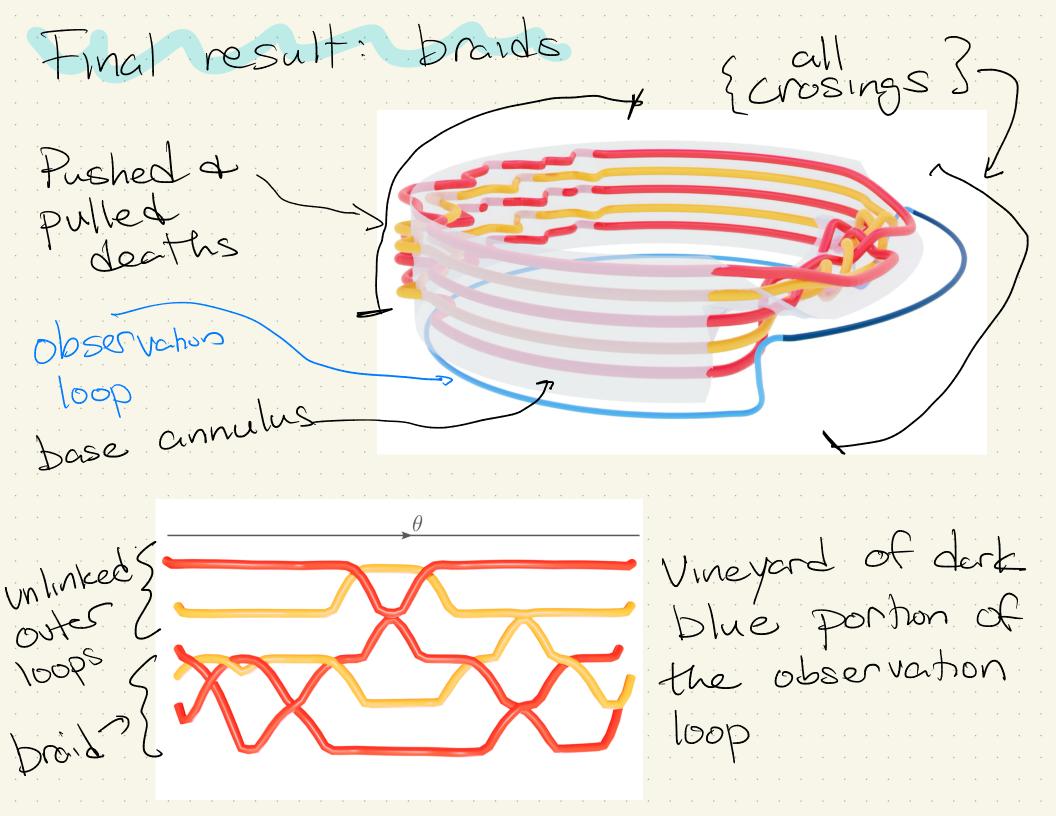
## Pushing of Pulling

Our construction ensured that crossings are evenly spaced, of all deaths occur at opposite points.

Therefore, we perturb deaths to make some uneyard has correct crossings.



(Note: hiding some intense calculations here.)



Extending to lipersistence in TRd To have this cakerlation work for higher dinensions, take (P+1)-dinensional X-offset of braid BXO in R3 DTRC-1 < TRd. Soven this wanifold construction (a same base loop), vines in our l-vineyard will be a-close to the O-vineyard.

Some takeaways e Vineyards can be messy. Lyin parhants comparing them is at least as hard as knot recognition o The reduct persistent transform may be more promising and richer to study than the more standard directional transform - See Onus et al 2024 · Similarly, using extended persistent nonology allows for interesting insights into the vineyards. Turner et al 2022

Future work · The radial transform has interesting connections to more traditional transforms L) medial axis Edelsbruner, Stephenson & Thoresen 25/ a symmetry sets Brucea Giblin · Do knots appear in the radial toursform of real data? · Can we apply knot/link invariants to vine yards? La or (perhaps too optimistic) can we apply statistical techniques on vineyards to braids?