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Main question:  
How to capture the nature of a bifurcation with persistent homology?

parameterized vector field on a 2-sphere

combinatorial model of the continuous vector field 

Conley-Morse persistence barcode

Why might this be of interest to the AATRN community? 

Dynamical constraints naturally give rise to a persistence module over 
a poset of a specific structure, enabling its interval decomposition.



Bounding the interleaving distance on concrete categories
using a loss function

Astrid A. Olave H.* & Elizabeth Munch

A generalized persistence module is a functor F ∶ P → C from any poset P to any category C.

Take F ,G ∶ P → C. A Tε-assignment of F and G is a
collection of morphisms (ϕ,ψ),

ϕp ∶ F(p) → GTε(p) ψp ∶ G(p) → FTε(p)

Consider the following diagrams

F(p) F(q)

G(Tεp) G(Tεq)

F[p≤q]

ϕp

ϕq

G[ ≤ ]

F(Tεp) G(Tεq)

G(p) G(q)

F[ ≤ ]

ψp

G[ ≤ ]

ψq

F(p) F(TεTεp)

G(Tεp)

F[p≤TεTεp]

ϕp ψTεp

F(Tεp)

G(p) G(TεTεp)

ϕTεpψp

G[p≤TεTεp]

We define a loss function L(ϕ,ψ)
that quantifies how far all diagrams
are from being commutative.

(AO, Munch, E. 2025+)

Take ε > 0 and choose a (ϕ,ψ)
a Tε- assignment of F and G, if
dI(F ,G) is their interleaving dis-
tance then

dI(F ,G) ≤ ε + L(ϕ,ψ)

Question: Can we use this framework to bound the interleaving distance between
multiparameter persistence modules in polynomial time ?

|



HYPERBLOCK BARCODES: A ROBUST 
HOMOLOGICAL FEATURE FOR HYPERGRAPHS
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Schauder Bases for Multiparameter
Persistence

Zachariah Ross
Advisor: Peter Bubenik

University of Florida: Department of Mathematics

Multiparameter Persistence Diagrams in a Polyhedral Pair

Persistence Module M : Rd! vect

0 0 0 0

0 F F 0

0 F F 0

0 0 0 0

a

b

Example: Rectangle Module 〈a, b〉
Signed Barcodes

Theorem (Botnan, Opperman, & Oudot):

For finitely presented M : Rd ! vect,
there exists a unique minimal set of rectan-

gles decomposing RKI , with multiplicities

matching Möbius inversion of RKI(M)

I = {rectangles 〈a, b〉 | a < b ∈ Rd}

RKI(M) : I ! Z+

I 7! Rank(lim
 

M |I ! lim
!

M |I)

Möbius Inversion of RKI(M)

a

b

(a1, a2...ad, b1...bd) ∈ R2d
≤

R2d
≤ = {(a, b) | ai ≤ bi ∀i}

Modulo ∆d of rectangles for which ∃i s.t. ai = bi

Encode rectangles in R2d

Banach or Hilbert space

Example: Sequence in `1: [0.17, 0.04, 0.0, 0.01, 0.0, ...]

Vectorization ???
Motivation: Statistics,

Machine Learning,

Functional Analysis

Our Method

Properties:

• stable • doesn’t loose information • adaptive to different experiments

Setup:

(I) Signed Barcodes encoded in a polyhedral pair (X, A)

Example: Polyhedral pair (R2
≤, ∆) and (R2n

≤ , ∆n)
(II) Nested sequence of triangulations of (X, A)
(III) A set of p.l. functionals on (X, A) determined by the nested triangulation

Piece-wise Linear Functionals

Choose Triangulation of

X to “fit” training data,

and iteratively refine

Define P.L. func-

tionals by vertices

of each refinement

Schauder Basis of Compactly Supported, Lipschitz Functionals

(IV) Def: For V a topological vector space; B = {ei}∞
i=0 ⊂ V is a Schauder Basis of

V if ∀v ∈ V , there exists unique (ai)∞
i=0 such that

∞∑
i=0

aiei = v

Theorem (R): For a polyhedral pair (X, A) (I), and nested triangulation, T = {T p}∞
p=0 (II),

the corresponding sequence of p.l. functionals B = {Ki}∞
i=0 (III) form a Schauder Basis

(IV) of compactly supported Lipschitz functionals on (X, A).

Vectorization

Extending work by Perea, Munch, and Khasawneh, we consider the following.

(V) Def: For a Schauder basis B = {Ki}∞
i=0 of compactly supported Lipschitz func-

tionals, the induced map takes signed barcodes encoded in (X, A) to a sequence of

real numbers by evaluating the barcode by each functional of B.

α 7! (Ki(α))i

Theorem (R): Given Polyhedral pair (X, A) (I) and a nested triangulation T (II), let B
be the induced Schauder Basis of p.l. functionals (IV). Then the induced mapping

(V) is linear, injective, and Lipschitz with respect to the 1-Wasserstein distance on

signed barcodes.
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Chemical Problem

Topology of Molecular Braids
Riya Dogra (joint work with Dr. Senja Barthel)
r.dogra@vu.nl

• Self-interweaving of n-molecules
• Infinite periodic structures
• Chain components start and end in 

the same position
• Strands are rigidly identical
• Mutually entangled, high symmetry

• n-stranded geometric braids
• Finite braids considered upto 

conjugation
• Periodic unit is pure
• Minimal crossing number,  n(n-1)
• Braid closures should be non-split

Mathematical Solution



Towards an Optimal Bound for the
Interleaving Distance on Mapper Graphs
Erin Wolf Chambers1, Ishika Ghosh2, Elizabeth Munch2, Sarah Percival3, Bei Wang4

1University of Notre Dame, 2Michigan State University, 3University of New Mexico, 4University of Utah

Pre-print:



Estimating Persistent Homology of Rn-Valued Functions

Setting: X compact metric space, f : X → Rn (both unknown).

Input: f |P for some finite sample P ⊆ X with known pairwise distances.

Goal: estimate the persistent homology of f from P and f |P .
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H∗(F) : Rn → Vec, where F : Rn → Top is a sublevel filtration of f .

Using Function-Geometric Multifiltrations

Construct a new persistence module M from P and f |P .

Approximate H∗(F) using M

Ethan André, Jingyi Li, David Loiseaux, and Steve Oudot

construction of M , theoretical guarantees,
robustness to noise in the input, algorithm to
compute M , statistical properties, experiments...

⇒



Morse Theory for Chromatic Delaunay Triangulations
A. N., Thomas Chaplin, Adam Brown, and Maria-Jose Jimenez

Setup: X ⊂ Rd and labelling µ : X → {0, . . . , s}.

Spatial relations in data ≈ maps between filtrations ≈ induced maps on
persistent homology.

▶ Čech and Vietoris–Rips filtrations have
too many simplices.

▶ Alpha filtration not functorial with
respect to inclusion of points.

Chromatic Alpha Filtrations Stable, efficient
in low dimensions, and recover the “right”
barcode.
Our contributions:

▶ Filtration radius of family of related
filtrations is discrete Morse.

▶ Underlying simplicial complex with Čech
filtration values: same simple homotopy
type and barcodes.

▶ Justification for using Rips filtration
values.

Sebastiano Cultrera di Montesano et al. (2025). “Chromatic Alpha Complexes”. In: Foundations of Data Science. doi:
10.3934/fods.2025003

1/1

https://doi.org/10.3934/fods.2025003


#9 

Potts model random-cluster model~~ topology ~~

Generalized cluster algorithms for Potts lattice gauge theory
Paul Duncan, Anthony E. Pizzimenti, and Ben Schweinhart

We use topology to generalize important physical models and the algorithms that simulate them.

 preprint arxiv:2507.13503  software github.com/apizzimenti/ATEAMS



Multicover Bifilt. Core Bifiltration

. . .



Variability of topological features of resting-state 
fMRI networks and clustering approaches 

with topological data analysis.
Díaz-Patiño J. C.1, Arelio, I.1, Alcauter S.2



Characterizing Human Brain Activity with Mapper
Ethan Rooke1, Dorit Kliemann1, Lisa Byrge2, Dan P. Kennedy3, James Traer1

The University of Iowa1, University of North Florida2, Indiana University3

148 Participants, 50 autistic

Samples every 0.72 seconds

1 hour of short films of various genres

fMRI Data

ParcelTime

Participant

Slicing by Participant

ParcelTime

Participant

Slicing by Time-Parcel

SlicingPipeline
Original Data

UMAP Projection

Width Balanced 
Bins

Sliced Data

Single Linkage 
Clustering

Graph

M
apper

VisCent

VisPeri

SomM
otA

SomM
otB

DorsAttnA

DorsAttnB

SalVentAttnA

SalVentAttnB

LimbicB

LimbicA

ContA
ContB

ContC
DefaultA

DefaultB

DefaultC

TempPar

Networks group together, 
replicating classical findings

Global relationships 
between networks which 
are not well described in 
neuroscience literature
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Spectral Stability of Persistent Laplacians

Unify setting for Laplacians
using operator theory

· · · Ck+1 Ck Ck−1 · · ·
dk+1 dk

(dk+1)
∗ (dk)

∗

∆k := dk+1(dk+1)
∗︸ ︷︷ ︸

∆+,k

+(dk)
∗dk︸ ︷︷ ︸

∆−,k

Transfer notion of persistent Laplacians to this setting

Extend and discuss existing stability results

idea: small changes of chain complex should lead to small
changes of spectrum

Arne Wolf, work with J. Fan, D. Ruiz, A. Monod



Lightning Talk

A persistence module is a functor f : {0, 1, . . . ,m} → R−Mod

This consists of a sequence {fi}i of R-modules with “structure maps”
{f (i ≤ j) : fi → fj}i ,j
An interval decomposition of f is a choice of bases βi ⊆ fi such that
f (i ≤ j) maps βi \ ker(f (i ≤ j)) injectively into βj
Interval decompositions always exist when considering field
coefficients
Persistence modules arise naturally from PH

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km

Hk(K0) → Hk(K1) → Hk(K2) → · · · → Hk(Km)
interval decompositions provide information for persistence diagrams

Theorem (L., Henselman-Petrusek)

Let f be a persistence module that is pointwise free and finitely-generated
over a PID. Then f splits into a direct sum of interval modules if and only
if the cokernel of every structure map f (i ≤ j) is free.

Jerry Luo (UChicago) IMSI Lightning Talk 19 August 2025 1 / 1



Six-packs of persistence diagrams for chromatic point sets

i* i*
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•••

•••

•••

•••

Ondřej Draganov



16: Topological Data Analysis distinguishes gut microbiome profiles 
of Parkinson’s disease mouse models
Eva Lymberopoulos



TDA for NLP- 1

A.U. 08/19/25

Unveiling Topological Structures from Language: 
A Comprehensive Survey of TDA Applications in NLP 

• Theoretical Approaches

– TDA techniques that probe text or speech 
to reveal or confirm linguistic phenomena

• Non-theoretical Approaches 

– TDA techniques that improve or explain 
model performance

Theoretical 

Approaches

Non-theoretical 

Approaches

Theoretical 

approaches can 
inform/improve 
non-theoretical 

approaches

DISTRIBUTION STATEMENT A. Approved for public release. Distribut ion is unlimited. This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any 
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7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Adaku Uchendu, joint work with Thai Le



Ondřej Draganov, Sophie Rosenmeier, Nicolò Zava

Gromov-
Hausdorff 
distance

STABILITY

Metric spaces with colours, labels, features
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Metric spaces

Datasets and shapes

relativekernel cokernel

imagedomain codomainSix-pack

C-constrained 
Gromov-

Hausdorff 
distance

Gromov-Hausdorff distance to compare chromatic metric spaces

Topological and metric invariants

poster 
n. 18

STABILITY



Knot Data Analysis Using Goeritz Invariants

1

1.Point Cloud Data

➢ Point cloud: a set of many discrete points 
distributed in space

➢ Examples: Atomic arrangements, CT images, 
Protein structure data

➢ Studies: Topological data analysis (TDA) has been 
used to extract geometric features from point 
cloud data

We propose a point cloud data analysis method using the Goeritz invariant, one of the 
invariants in knot theory.”

Tatsuya Matsuba
Institute of Science Tokyo, School of Engineering, Doctoral Course

3.Result of Experiment

➢ The proposed KDA method can 
distinguish between two types of 
synthetic point clouds that cannot be 
distinguished by conventional TDA

2.Goeritz Invariant

➢ We propose a method to extract knot information 
from simplicial complexes constructed by 
expanding point cloud data through filtration. 

➢ The Goeritz invariant, which we apply to knot data 
analysis, is a topological invariant computed based 
on the crossings of knots.
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