COn ley- M orse ‘ Main question:

How to capture the nature of a bifurcation with persistent homology?

e
p e rs ' Ste n Ce @ parameterized vector field on a 2-sphere A
t—

b d 0 % t=1 A t=2 4 t=3 t=4 4 t=5H &
Tamal K. Dey, | c 2,
Michat Lipinski, ° ,
Manuel Soriano-Trigueros | .
v //J Ao Ao Ao Ao
i t=0 t=1 t=2 t=3 t=4 t=9>
s
/-~ —— ~ [k,0,0] [k,0,0]
(| (A= (A 1 :
J (s —ama N ;‘ ) t o0 1 t t
l " [0,k,K]

[0,k,0] ¢

[k,0,0] ¢ ¢

‘ [k,o,%] '

Bo2 B B1C Bs B> E Bs [

Conley-Morse persistence barcode

\ |

|
|  Why might this be of interest to the AATRN community? |

|

| Dynamical constraints naturally give rise to a persistence module over |

\ a poset of a specific structure, enabling its interval decomposition. )
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Bounding the interleaving distance on concrete categories r.
using a loss function R

Astrid A. Olave H.* & Elizabeth Munch

A generalized persistence module is a functor F : P — C from any poset P to any category C.

Take F,G: P — C. A Tc-assignment of F and G is a We define a loss function L(¢,)
collection of morphisms (¢,%), that quantifies how far all diagrams

are from being commutative.
Gp: F(p) = GTe(p)  p: G(p) > FT(p) &

Consider the following diagrams

(AO, Munch, E. 2025+)

Fp) D rg) F(7ep) 224 6(Teq)
bq ¥p
@ W Take € > 0 and choose a (¢,v)

C(Tep) gt 6T20)  GP) 5 6(9) a Tz- assignment of F and G, if

POy TR F(Tp) di(F,G) is their interleaving dis-

Wy bTep tance then
k /m / \
G(7Tep) 6(P) —perzr— CUT=Tep) di(F,G) <e+ L(p,7)

Question: Can we use this framework to bound the interleaving distance between
multiparameter persistence modules in polynomial time ?




HYPERBLOCK BARCODES: A ROBUST
HOMOLOGICAL FEATURE FOR HYPERGRAPHS
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Persistence Module M : R? — vect
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Example: Rectangle Module (a, b) Signed Barcodes

Theorem (Botnan, Opperman, & Oudot):
For finitely presented M : RY — wvect,
there exists a unigue minimal set of rectan-
gles decomposing RK7, with multiplicities
matching Mabius inversion of RKz(M)

Maobius Inversion of RKz(M)

Fncode rectangles in R%

Persistence

Zachariah Ross
Advisor: Peter Bubenik

University of Florida: Department of Mathematics

Properties:

e stable e doesn't loose information e adaptive to different experiments

Setup:
(I) Signed Barcodes encoded in a polyhedral pair (X, A)

Example: Polyhedral pair (RZ, A) and (R2", A")
(I1) Nested sequence of triangulations of (X, A)

(1) A set of p.l. functionals on (X, A) determined by the nested triangulation

. o Hl Choose Triangulation of
g X to "“fit” training data,
and iteratively refine

Define P.L. func-
fionals by vertices
of each refinement

— ((1,1, a9...044, blbd) - R%d
R = {(a,b) | a; < b; Vi}

Modulo A? of rectangles for which 3i s.t. a; = b,

Vectorization 777

Motivation: Statistics,
Machine Learning,
Functional Analysis

Banach or Hilbert space
Example: Sequence in ¢%: [0.17,0.04,0.0,0.01, 0.0, ...]

AATRN Workshop : University of Chicago

Schauder Bases for Multiparameter

(IV) Def: For V' a topological vector space; B = {¢;}°, C V is a Schauder Basis of
V if Vv € V, there exists unique (a;)°, such that

o0
E a;e; = U

1=0

Theorem (R): For a polyhedral pair (X, A) (I), and nested triangulation, T = {TP}2 (1),
the corresponding sequence of p.l. functionals B = {iC;}:°, (lll) form a Schauder Basis
(IV) of compactly supported Lipschitz functionals on (X, A).

Extending work by Perea, Munch, and Khasawneh, we consider the following.

(V) Def: For a Schauder basis B = {I;}2¢, of compactly supported Lipschitz func-
fionals, the induced map takes signed barcodes encoded in (X, A) to a sequence of
real numbers by evaluating the barcode by each functional of B.

a — (Ki(a));

Theorem (R): Given Polyhedral pair (X, A) (I) and a nested triangulation T (ll), let B
be the induced Schauder Basis of p.l. functionals (IV). Then the induced mapping
(V) is linear, injective, and Lipschitz with respect to the 1-Wasserstein distance on
signed barcodes.

= Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot. Signed Barcodes for
Multi-Parameter Persistence via Rank Decompositions and Rank-Exact Resolutions.
2024. arXiv: 2107.06800 [math.AT]. url: https:/arxiv.org/abs/2107.06800.

= Perea, J.A., Munch, E. & Khasawneh, F.A. Approximating Continuous Functions on

Persistence Diagrams Using Template Functions. Found Comput Math 23,
1215-1272 (2023). https://doi.org/10.1007/5s10208-022-09567-7

thomas.z@ufl.edu
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Chemical Problem

Self-interweaving of n-molecules
Infinite periodic structures

Chain components start and end in
the same position

Strands are rigidly identical
Mutually entangled, high symmetry

BRAUREES:

{ (i4+1) Group structure: Identity

VRIJE
UNIVERSITEIT
%°  AMSTERDAM

Mathematical Solution

concatenation braid

* n-stranded geometric braids

* Finite braids considered upto
conjugation

 Periodic unit is pure

* Minimal crossing number, n(n-1)

* Braid closures should be non-split



Interleaving Loss vs Thickening Parameter

Line Graph Torus Graph, height h=11 6q|— Loss
A ~— Upper Bound: n + Loss
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Estimating Persistent Homology of R™-Valued Functions

Using Function-Geometric Multifiltrations
Ethan André, Jingyi Li, David Loiseaux, and Steve Oudot
Setting: X compact metric space, f : X — R" (both unknown).

Input: f|p for some finite sample P C X with known pairwise distances.
Construct a new persistence module M from P and f|p.

Goal: estimate the persistent homology of f|from|P and f|p /4

H.(F):R"™ — Vec, where F : R™ — Top is a sublevel filtration of f.

_ _ construction of M, theoretical guarantees,
Approxmate H, (‘7:) using M = robustness to noise in the input, algorithm to

compute M, statistical properties, experiments...

0.5H 0.5¢

15 - 15}

25 -2.5




Morse Theory for Chromatic Delaunay Triangulations
A. N., Thomas Chaplin, Adam Brown, and Maria-Jose Jimenez OXFORD

Mathematical
Institute

Setup: X C R? and labelling 1 : X — {0,...,s}. .
» Cech and Vietoris—Rips filtrations have

IR LT too many simplices.
b ‘ i » Alpha filtration not functorial with
: o : respect to inclusion of points.

eI ’ S Chromatic Alpha Filtrations Stable, efficient

sl B AR in low dimensions, and recover the ‘“right”

barcode.
Spatial relations in data ~ maps between filtrations ~ induced maps on Our contributions:
persistent homology. » Filtration radius of family of related

filtrations is discrete Morse.

» Underlying simplicial complex with Cech
filtration values: same simple homotopy
type and barcodes.

» Justification for using Rips filtration
values.

Sebastiano Cultrera di Montesano et al. (2025). “Chromatic Alpha Complexes”. In: Foundations of Data Science. DOI: 11
10.3934/fods.2025003


https://doi.org/10.3934/fods.2025003

Generalized cluster algorithms for Potts lattice gauge theory

Paul Duncan, Anthony E. Pizzimenti, and Ben Schweinhart
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Potts model ~~ topology ~~ random-cluster model

We use topology to generalize important physical models and the algorithms that simulate them.

m arxiv:2507.13503 m github.com/apizzimenti/ATEAMS
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Variability of topological features of resting-state
fMRI networks and clustering approaches

with topological data analysis.
Diaz-Patifio J. C.}, Arelio, I.%, Alcauter S.?

Instituto de

Matemdticas
Unidad Juriquilla
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Characterizing Human Brain Activity with Mapper

Ethan Rooke', Dorit Kliemann', Lisa Byrge?, Dan P. Kennedy?, James Traer’
The University of lowa', University of North Florida?, Indiana University?

fMRI Data

e 148 Participants, 50 autistic
® 1 hour of short films of various genres

e Samples every 0.72 seconds

jueddiyiey

Global relationships
between networks which
are not well described in
neuroscience literature

jueddijiey

Networks group together,
replicating classical findings

Slicing by Time-Parcel



Spectral Stability of Persistent Laplacians

Unify setting for Laplacians
using operator theory

dlc+1 dk R
..._>Ck+1/ /Ck< 'Ck71—>"'
(di+1)” (di)*

Ay = dig1 (A1) + (di) " die
—_————r ——

A g Ay

Transfer notion of persistent Laplacians to this setting

Extend and discuss existing stability results

idea: small changes of chain complex should lead to small
changes of spectrum

IMPERIAL Arne Wolf, work with J. Fan, D. Ruiz, A. Monod



Lightning Talk

A persistence module is a functor f : {0,1,...,m} - R—Mod
This consists of a sequence {f;}; of R-modules with “structure maps”
{f(i <Jj) i = fi}iy
An interval decomposition of f is a choice of bases 8; C f; such that
f(i <j) maps 3; \ ker(f(i < j)) injectively into f3;
Interval decompositions always exist when considering field
coefficients
Persistence modules arise naturally from PH

o Ko CK1CKaC---C Ky

] Hk(IC()) — Hk(ICl) — Hk(’CQ) — = Hk(’Cm)

e interval decompositions provide information for persistence diagrams

Theorem (L., Henselman-Petrusek)

Let f be a persistence module that is pointwise free and finitely-generated
over a PID. Then f splits into a direct sum of interval modules if and only
if the cokernel of every structure map f(i < j) is free.

Jerry Luo (UChicago) IMSI Lightning Talk 19 August 2025 1/1



Ondrej Draganov — ﬂﬂﬂn — lreia—

Six-packs of persistence diagrams for chromatic point sets
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16: Topological Data Analysis distinguishes gut microbiome profiles

of Parkinson’s disease mouse models

Eva Lymberopoulos
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@ Unveiling Topological Structures from Language:
A Comprehensive Survey of TDA Applications in NLP

| Adaku Uchendu, joint work with ThailLe |

* Theoretical Approaches * Non-theoretical Approaches

— TDA techniques that probe text or speech — TDA techniques that improve or explain
to reveal or confirm linguistic phenomena model performance

Theoretical
gD H £3 |‘
Approaches M A
\_ ) Non-theoretical &
Approaches m

Theoretical

approaches can
inform/improve

non-theoretical
approaches

TDA for NLP- 1 DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any LINCOLN LABORATORY
A.U.08/19/25 opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force. © 2024 Massachusetts Institute of Technology.
Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227- MASSACHUSETTS INSTITUTE OF TECHNOLOGY

7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.



Gromov-Hausdorff distance to compare chromatic metric spaces poster
Ondrej Draganov, Sophie Rosenmeier, Nicolé Zava n. 18

Datasets and shapes Topological and metric invariants
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Knot Data Analysis Using Goeritz Invariants

Institute of

SCIENCE TOKYO

We propose a point cloud data analysis method using the Goeritz invariant, one of the

invariants in knot theory.”

1.Point Cloud Data

3.Result of Experiment

> Point cloud: a set of many discrete points
distributed in space

> Examples: Atomic arrangements, CT images,
Protein structure data

» Studies: Topological data analysis (TDA) has been
used to extract geometric features from point
cloud data

2.Goeritz Invariant

» We propose a method to extract knot information
from simplicial complexes constructed by
expanding point cloud data through filtration.

» The Goeritz invariant, which we apply to knot data
analysis, is a topological invariant computed based
on the crossings of knots. '

» The proposed KDA method can
distinguish between two types of
synthetic point clouds that cannot be
distinguished by conventional TDA

3D Point Cloud (10 points)

3D Point Cloud (10 points)

Average Goeritz Invariant vs

Average Goeritz Invariant vs €

Tatsuya Matsuba

Institute of Science Tokyo, School of Engineering, Doctoral Course
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