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MOTIVATION, ANSCOMBE’S QUARTET
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Same statistics, different shapes
MeanX 9.00, MeanY 7.50, VarianceX 11.00, VarianceY 4.12,
Correlation (x, y) 0.816, Linear Regressiony = 3 + 0.5x



KEY MESSAGES

® Always visualize your data! But, how?

® Need for a better features / statistics of data.



Topological visualization



COMPETITORS

PCA aims to find linear subspace on which data has maximal
variance

UMAP non-linear dimension reduction attempting to preserve
both local and global structure

T-SNE non-linear dimension reduction attempting to preserve
mostly local structure

PHATE diffusion embedding technique to preserve local and
global structure

All methods except first assumes that the data are sampled
from a manifold

The global layout depend on a seed of the method

All returns embedding of the input space into Euclidean
space



SPACES THAT CANNOT BE ISOMETRICALLY EMBEDDED
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An isometric embedding of a metric space (X, dx) to R” is a map
f (X, dx) — R"” such that for all x1,x2 € X, the following
condition holds:

dy (f(x1), f(x2)) = drn(x1, x2)



SPACES WITH NO ISOMETRIC EMBEDDING TO R”

(a) ClusterGraph (b) UMAP (c) t-SNE (d) PHATE
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In such cases, topological visualization tools hold a distinct
advantage as they produce a graph representation of the dataset
rather than an embedding to R"” for some n.




Mapper—type algorithms



How to obtain an
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overlapping cover?
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CONVENTIONAL MAPPER
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Hyperparameters: lens, resolution, gain, clustering method
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BALL MAPPER, €

Hyperparameters: ¢, metric

Y C X such that for every x € X there exist y € Y such that
d(x,y) < e. Course of dimensionality warning!



ClusterGraph



SAME NUMBER OF CLUSTERS, DIFFERENT LAYOUT

Four Gaussian distributions, square shape Square shape clusters

Clustering is the process of grouping a set of objects or data points
into distinct groups (clusters) where points in the same group are
more similar to each other than to those in other groups.
How to understand layout of clusters?



(GEOMETRIC ORGANIZATION OF CLUSTERS
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CLUSTERGRAPH VS COMPETITORS, TOY EXAMPLE

In 500 dimensions.
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CLUSTERGRAPH VS COMPETITORS, TOY EXAMPLE
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FI1GURE: Gaussian lines
ClusterGraph FIGURE: Gaussian lines T-SNE

When we do not know the structure of dataset, how
can we assess which visualization is better?



TOPOLOGICAL VISUALIZATION SCORE

ClusterGraph Metric Distortion between nodes
® We define the Metric Distortion as
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e with X the dataset, n the number of clusters, CG a
ClusterGraph

® dcg(x, y) the distance between two points in the ClusterGraph

° d§(x,y) the shortest path between two points in the
k-nearest neighbors graph
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CLUSTERGRAPH SCORE

Score improvement

® Quality of the output visualization

® Allow to prune "shortcut” edges providing graph with a better
score
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(A) Noisy circles pruned pruned

Comparison before and after pruning for the noisy circles dataset




CLUSTER GRAPH AND FRIENDS, TRISOMIC MICE

DATASET
ClusterGraph UMAP t-SNE
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LET US DIMENSIONALIZE OUR CODOMAIN

® So far mapper-type algorithms have mostly focused on
visualizing a point cloud X and f : X — R

® What about two high dimensional point clouds X, Y and a
function, or a relation f : X — Y?



DIFFERENT FEATURES OF THE SAME DATA

Jones Alexander
polynomial polynomial
> \ / 4
Knots
Homfly-pt

polynomial



BALL MAPPER: f :R" D X = Y CR™

Jones Alexander
polynomial polynomial
N 4
Knots
Homfly-pt

polynomial



SPACE OF ALEXANDER VS JONES (15 CROSSINGS)

SHOW LABELS
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SPACE OF ALEXANDER VS JONES (15 CROSSINGS)
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SPACE OF ALEXANDER VS JONES (15 CROSSINGS)
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SPACE OF ALEXANDER VS JONES (15 CROSSINGS)

SHOW LABELS
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Map

ALEXANDER TO JONES

https://dioscuri-tda.org/BallMapperKnots.html



https://dioscuri-tda.org/BM_plots/maps_mappers/alexander_to_jones_15.html

TOPOLOGICAL VISUALIZATION METHODS

® Ball Mapper,

® cran.r-project.org/web/packages/BallMapper
® github.com/dioscuri-tda/pyBallMapper
® pip install pyBallMapper

o (Cluster graph,
® github.com/dioscuri-tda/ClusterGraph
® pip install clustergraph

® Quality scores of the representions.


cran.r-project.org/web/packages/BallMapper
github.com/dioscuri-tda/pyBallMapper
github.com/dioscuri-tda/ClusterGraph

Euler characteristic curves and
profiles



FEULER CHARACTERISTIC

x=V-E+F

1758, by Euler



EULER CHARACTERISTIC - DEFINITION

We are interested in computing the Euler characteristic of the
simplicial complex K defined as

X(K) = (=1)"|Kq|

n>0

= 3 (-1)"B4(K)

n>0

Euler-Poincare formula



FEULER CHARACTERISTIC CURVE

® | et us consider a filtered simplicial complex K with filtration
function f : K — R.
o [tinduceDcKyCcKoC...CK,=K

Euler Characteristic
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ROBUSTNESS, P-WASSERSTEIN STABILITY
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ECC ENJOYS SIMILAR STABILITY PROPERTY

ECC are stable with respect to the 1-Wasserstein distance:

IECC(X) = ECC(Y)[ly < ) 2WA(Dgmi(X), Dgmi(Y))
k
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WHyY TO USE ECC?

Easy to compute, pure combinatorics
Embarrassingly parallel
Stable

Present in many theorems from various branches of
mathematics

What about multifiltrations?



EULER PROFILES

e ECC is an alternating sum of indicator function on simplices.
® In one dimension it is a Heaviside function,

® For many, its suitable generalization.
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noisy circle
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EULER PROFILES, ROBUSTNESS
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Sampling from unit circle (left) with added salt and pepper noise

(colored by distance to kth nearest neighbor, on the right)




EULER PROFILES, ROBUSTNESS

Euler Characteristic Profiles
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EULER PROFILES, STABITY
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EULER PROFILES, TOY EXAMPLE

MR T
5

Stripes and tartans



EULER PROFILES, TOY EXAMPLE
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EULER CURVES AND PROFILES

Fast, parallel and distributed algorithms exists
No problem with multifiltrations,

Stable,

0 Code available on
github.com/dioscuri-tda/pyEulerCurves

pip install pyEulerCurves


github.com/dioscuri-tda/pyEulerCurves

Topotests



(GOODNESS OF FIT TESTS

¢ One-sample problem: We are given a data sample
X = {x1,%,...,X:},% € RY and cumulative distribution
function F : R? — [0,1]. Does the data X follow the
distribution F: X ~ F?

Hy: X ~F vs. H : X = F



KOLMOGOROV-SMIRNOV TEST
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® We use KS as benchmark
® One-sample: D, = sup, |Fn(x) — F(x)]|

e Compare to tabulated values of the statistics.



n=1000, dim=3

TorPOTEST

1000 1 — Erlyln,n)
800 —— example y(r) for N(0,1)xN{0,1)xN{0,1)
= example y(r) for T3xT3xT3
600 —— example (r) for U(0,1)xU(0,1)xU(0,1)
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Compute expected ECC for point clouds of size n sampled

from F,
Compute critical values,

Compute ECC for your sample and its distance to the

expected ECC,

Check if it is closer than the critical value.or net.



TRUE Distribution

SIMULATION RESULTS (ONE-SAMPLE)

i A Test Power: probability that Hop

is correctly rejected when Hj is

e ¢ S true

® Samples sizes 100-5000
data points
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® test power estimated using
1000 MC replications

i § ® power compared with KS
(d <3)
® o on diagonal is expected
average power at a = 0.05:
d = 3,n =250 TT:0.9016, KS : 0.8087
d =5,n =500 TT:0.8465, KS: — — —
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TopoTests yielded higher
power than KS in most of
the cases



TRUE Distribution

SIMULATION RESULTS (ONE-SAMPLE)
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ALTERNATIVE Distribution

average power at a = 0.05:
d =3,n =250 TT:0.9016, KS :0.8087
d =5,n =500 TT:0.8465, KS: — — —

Test Power: probability that Hyp
is correctly rejected when Hj is

true

Samples sizes 100-5000
data points

test power estimated using
1000 MC replications
power compared with KS
(d <3)

« on diagonal is expected
TopoTests yielded higher

power than KS in most of
the cases



TRUE Distribution

SIMULATION RESULTS (ONE-SAMPLE)

TopoTest 5D n=500 alpha=0.05 norm=sup
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ALTERNATIVE Distribution

average power at a = 0.05:

d =3,n =250 TT:0.9016, KS :0.8087
d =5,n=500 TT:0.8465, KS: — — —

Test Power: probability that Hyp
. is correctly rejected when Hj is

true

Samples sizes 100-5000
data points

test power estimated using
1000 MC replications
power compared with KS
(d<3)

« on diagonal is expected
TopoTests yielded higher
power than KS in most of
the cases



ToOPOTESTS: HIGHLIGHTS

Statistical tests based on topological descriptors of the data
constructed

O Code available on
github.com/dioscuri-tda/topotests
pip install topotests

We have a theory that justifies the approach

Performance of the method is higher, while computational
effort is lower, than for Kolmogorov-Smirnov


github.com/dioscuri-tda/topotests

PHILOSOPHICAL REMARK

TDA provide more powerful statistics,
Some asymptotic properties of those statistics can be shown,
But most time theoretical results are hard to get

We need to be estimated using Monte Carlo simulations.



OUTREACH ARTICLES ON THE TOPIC

-u
(A) Topological features, EMS (B) Topological visualization,
Magazine, journals.pan.pl/Content/
https://euromathsoc.org/ 125751 /PDF/66-69_Dlotko_pol.

magazine/articles/190 pdf


https://euromathsoc.org/magazine/articles/190
https://euromathsoc.org/magazine/articles/190
journals.pan.pl/Content/125751/PDF/66-69_Dlotko_pol.pdf
journals.pan.pl/Content/125751/PDF/66-69_Dlotko_pol.pdf
journals.pan.pl/Content/125751/PDF/66-69_Dlotko_pol.pdf

The TDA-Team
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THANK YOU!

(A) Topological features (B) Topological visualization

Pawet Diotko, Dioscuri Centre in Topological Data Analysis
pdlotko @ gmail, http://dioscuri-tda.org/members/pawel.html


http://dioscuri-tda.org/members/pawel.html

Bonus quiz



EXERCISE: CAN YOU SEE IN HIGH DIMENSIONS?

Meet the Lucky Cat. Brings luck to everyone who solve this puzzle.



MAPPER, EXERCISE

128 x 128 = 16384 dimensional space



1'%

e
l

FROM A GRAY SCALE IMAGE TO A POINT
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Gray scale images converted to vectors in high dimensional space



NETWORK BASED LANDSCAPES OF DATA

128 x 128 = 16384 dimensional space



Bonus, tic-tac-toe



LET US GET A BIT LESS SERIOUS...

and a bit more combinatorial




REPRESENTATION OF A FINAL CONFIGURATION

o X oex
X " exe
X 0 x eo
- (O N
[1,0,-1,0,-1,0,-1,0,1] X -

\101
0-10
101

958 configurations labeled as 'first player win', 'first player lose’,
'tie'.



BALL MAPPER PLOT OF THE DATASET
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Ball mapper for e = 2.5 colored by the wins of the first player
(red), loses (white), disjoint clusters (ties).



TAKING SYMMETRIES INTO ACCOUNT

Dihedral group actions



TIK-TAK-TOE, ALL

P. Dlotko, D. Gurnari, R. Sazdanovic, Mapper-type algorithms for

complex data and relations, Journal of Computational and Graphical
Statistics, 1-18
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Z00M IN

® The wins cluster (left) and loses cluster (right) with color
denoting the orbits.

e Different orbits might have different lengths. Asymmetric
configurations have length 8 orbits.

® The maximally symmetric configuration has an orbit of length
1 -the only red node (left).
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	Simulation results

