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Prelude

» Algorithms, as a systematic procedure for problem solving, have a long history
arithmetic or geometric calculation by humans since ancient time

» Modern computations via computers: paradigm shift in algorithms

» Fusing modern Al and Data: another revolution ?

Geometric calculation, Modern algorithms enabled by
by unknown artist, computers,
I 5th century by Gemini, Oct 2024
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New Frontier: Neural Algorithmic Design

» Huge literature in classical algorithms design in TCS

Deep insights, elegant algorithmic frameworks, theoretical guarantees ...
But:

Not all theoretically sound algorithms readily transfer to practice
Algorithms usually not adapted to data

» Amazing power of Al in learning from data

But:
Does a learned model generalize (especially OOD)?
Does a specific architecture even have the capacity to implement specific algorithms (expressivity) ?

Overarching Goal

How can we combine algorithmic ideas and insights with neural networks to develop
more powerful frameworks that can learn from / adapt to data
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Focus of This Talk

» Efficient and effective neural models to solve geometric / topological problems

» Some challenges:

Expressive power: \What are the suitable neural architecture with the capacity to solve a given
problem?

Size (OOD) generalization: Can a neural model with bounded complexity (in terms of #
parameters) extrapolate / OOD generalize to input of arbitrary (unseen) sizes

Practical performance: how to facilitate learning “~“procedures” instead of just fitting train data?

Careful consideration of the interplay of type of data, neural

architecture and task structures
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Introduction

» A neural network models a function fy: X - Y

Input: 3 2 Output:
: —
000
UCSanDiegp T
HALICIOGLU DATASCIE%ZE INSTITUTE Geometrlc Reallzatlon OfAATRN’ IMSI’ 2025 TILQ;QS




Introduction

» A neural network models a function fg: X - Y

» Model performance affected by the interplay of neural architecture and type of data
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Picture taken from the survey paper by [Sato, 2020]
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Introduction

» A neural network models a function fg: X - Y
» Model effectiveness affected by the interplay of neural architecture and type of data
» Model effectiveness also affected by the interplay of neural architecture and task structure

Graph Neural Network Bellman-Ford algorithm

Soruins: ML o uins:
hu® = E, MLP(hy(D, hylcD) d[k][u] = min, d[k-1][v] + cost (v, u)

Learns a simple reasoning step

Picture taken from [Xu et al., ICLR 2020]
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This Talk

» Main theme: “aligning” neural models with task and algorithmic structures
Suitable consideration of symmetries required

Combine the power of NNs and algorithmic ideas / scaffolds to encourage learning
“procedures” instead of fitting data, facilitating effectiveness and size generalization

» Some Remarks

» Two examples of practical neural algorithmic models for geometric problems

Neural approximation of Wasserstein distance for Euclidean point sets
[Chen, W., NeurlPS’23]

Efficient neural models to approximate a certain family of geometric optimization
problems

[Chen, Ciolli, Sidiropoulos, W., preprint 2025]
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It all started in topological data analysis ...

» A neural approximation of extended persistence over graphs

Efficient surrogate to compute persistent summaries for graph motifs
Differentiable: potentially allowing for optimizing for descriptor functions on graphs

» Inspired by a union-find based algorithm to compute extended persistence/levelset zigzag
persistence on graphs

Modeled the problem as an edge-wise prediction problem over graphs

Developed a modified graph neural network to conceptually more aligned with the algorithm
[Yan, Ma, Gao, Tang, W., Chen , NeurlPS 2022]
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A Theoretical justification of algorithmic alignment
» Graph neural networks with low sparsity-regularized loss on small well-crafted training set
provably extrapolate for shortest path (via Bellman-Ford procedure) on arbitrary graphs

[Nerem, Chen, Dasgupta, W., arXiv 2025]
A first result of this kind!

Theorem [Low loss of overparameterized GNN learns K-step Bellman-Ford]

Let H,,,.ni e the specific set of only O(K) graphs. Let G,-4i, be such that Hq0i1 € Girgin With M

1 . _ . it
total nodes. Assume 0 <7 < MmemiD) If the regularized training loss L, of Ay is within ¢ of

the optimal with 0 < € < n, and then for any positively weighted graph G (of arbitrary size),
applying Ay to G approximates the K-step BF for each node with additive error 0(¢).
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Practical Neural algorithmic models:
Example 1: Neural approximation of Wasserstein distance for point sets

in Euclidean spaces
[Chen, W., NeurlPS’23]
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Motivation

» High-level questions:

Efficient and differentiable distance for complex objects (e.g, Wasserstein distance between

Euclidean point sets)

What are the right architectures for them: efficient with theoretical guarantees / justifications,
respecting suitable group operations?

» In what follows:

Neural approximation for \Wasserstein distance between

Euclidean point sets

Aligned with a sketching-based approximation algorithm to reduce

model complexity to be constant

The right neural architecture to universally approximate Symmetric and
factor-wise group invariant function over product space
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Wasserstein Distance

» Adistance to compare distributions supported on the same metric space

also commonly used in machine learning, e.g, in generative models

» £,-Wasserstein distance (Earth-mover distance):

Given a, f € P(Z) supported on a metric space (Z,d;), y € P(Z X Z) is a coupling between «
and B ify(-,Z) = a(:), while y(Z,) = B(-). Let C(a, ) denote the set of all couplings between «

and .
The (£1-) Wasserstein distance between a and [ is defined as

dw(a. )= 1nf / dz(z, 2" y(dz x d=").
vella,B) J 7w 7
» In this talk we focus on distributions induced from weighted point sets in Euclidean
space
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Computational Complexity

» Input: two weighted point-sets of size O(n)
» 0(n3logn) in general (for the more general optimal transport distance)
» Sinkhorn distance:

Entropic regularization speeds up computation to 0(n?)
[Cuturi 2013], [Altschuler et al, 2017]

Our Goal:

Efficient bounded-size neural model to approximate Wasserstein distance for point
sets of arbitrary sizes, with theoretical justification

Differentiable — can be used in ML pipelines where Wasserstein distance is used (e.qg,
as part of loss)
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Modeling Wasserstein Distance Function

» For simplicity: input are point sets 4 and B in a hypercube in R?, of cardinality at most N
dy (A, B) is the Wasserstein distance between the empirical measures induced by A and B

» We can represent A (and B) by a vector in (R4)" = RNd -
» Wasserstein distance function:
dy : RV® x RN R N o
o
» dy, should satisfy the following properties: [ —
d

Symmetric: dy, (4,B) = dy (B, A)
Each factor is permutation invariant on the left, that is, for any permutations I1,,I1, € S(N)
dw (A, B) = dy (114,11 B)
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SFGI Product Functions

Definition (Symmetric and factor-wise invariant product function)

et XX = X x --- x X. We define a symmetric and factor-wise group
invariant (SFGI) product functions as f : X* — R where f is symmetric
and invariant to the group action G = G x G x --- x G and G is a group
acting on X

» In the case of Wasserstein distance function
X = RN k =2, G is the permutation group Sy on N elements

» More general:
Distance to the mean of k point sets (or other geometric objects) under Wasserstein distance
Other than permutations, one may also want to require rotation invariance for each factor
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Group Equivariant / Invariant Networks

» Many interesting work in geometric deep learning

e.g., the book [Bronstein, Bruna, Cohen and VeliCkovi¢, 2021]

DeepSet [Zaheer et al 2017], [Wagstaff et al, 2022], Invariant Graph Networks (IGN) [Maron et
al 2019], [Fereydounian et al, 2022], our work [Tabaghi and W., 2024] ...

» Sign and basis invariant networks [Lim et al, 2023] , Stable and Expressive
Position Encodings (SPE) [Huang et al, 2024]

Elegant ways to handle both basis and permutation invariance
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First Observation

» Lemma (simplified):
For any € > 0, there is a continuous permutation-invariant function @: X - Rt and a continuous
function p: R® - R such that

|dw(A,B) — p(®(A) + (B))| <€

Here, t is called the latent dimension.

Siamese network
+ MLP
to approximate
dy (A, B)

A={xq, ... xy}—

B = {ylr "'lyN}_>

—> Pg(A) _l
@—»

Po

—> pg(Py(A) + Py(B))
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However

Siamese network
+ MLP

to approximate
dy (4, B)

A={xq, .., xy}— P, —»CDQ(A)—l

P

Po

—>q5¢9(19)4T

B = {ylr ""yN}_> @9

» The function @: RV? — R! need to be permutation invariant

» @ can be implemented by DeepSet [Zaheer et al 2017]

—> pe (P (4) + Py (B))

» However, in general DeepSet requires model complexity O(Nd) to achieve universality for
permutation invariant functions over R¥¢ [Tabaghi, W., 2024]
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Second ldea: Sketching for Approximation

» A simple approximation algorithm via e-cover

e
T
\

A weighted point set
> A = h(Ah);
and |A'| = a =a(d,¢)

Black dots:
input point set A € R

such that dy, (A, B") approximates dy; (A4, B) within additive error O (¢)
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Second ldea: Sketching for Approximation

» A simple approximation algorithm via e-cover

7 L U1
L » (25)
. . h »
| Va |

A weighted point set
> A= h(A);
and |A'| = a = a(d,¢)

h: RN4 — R? can be expressed as h(P) = Y.,.cp h(x) where h: R% —» R®

UCSanDiego Geometric Realization of AATRN, IMS, 2025 TILEBS

HALICIOGLU DATA SCIENCE INSTITUTE

Black dots:
input point set A € R




Final Result

i Euclidean )
Siamese embeddings from Siamese

netvork on  gm pooling over network on Final sum-pooling and MLP
set elements sef elements embeddings

3 h(_ﬂ} x’?.g._ [.1“;)—} (;590 > (‘bgg(h(.c’l}:] —
i=1 -

A:{mlw-*sxn} > he

1

> P0s —> poy(¢e,(h(A)) + ¢, (h(A4)))

D
\L/

> h(B) =Y ho(5)—>| Py, > ¢0,(h(B)) —

B = {yl 7777 ym}' > he

1

Theorem (informal):

For point sets 4 and B from R¢ of cardinality at most N, the neural network of the form

error € > 0, where h: R% - R, ¢: R*(® - R4’ and p: R* - R are all continuous and a’ = a(8)?2.
Furthermore, the required model complexity (number of parameters) depends only on d and e.

UC San Diego

HALICIOGLU DATA SCIENCE INSTITUTE

Geometric Realization of AATRN, IMSI, 2025

TILEdS



Empirical Results

» Mean relative error between approximation and ground truth Wasserstein distances

» WPCE: [Kawano et al., 2020]
SOTA neural approximation of Wasserstein distance via a Siamese autoencoder framework

» Nspeepsets- just Siamese DeepSets, without final outer MLP (modeling p)

Dataset Input size NproductNet (Ourx)l WPCE Nsuwpaﬂts Sinkhorn
iy sohere 1100, 300] 0.046 + 0.043 0341 + 0202 0362 +0241 0.187 +0.232
y-sphere-- 1300, 500] 0.158 + 0.198 0356 + 0.286 0.608 + 0.431 0.241 + 0.325
oheres (100, 300] 0.015 + 0.014 0269 + 0285 0291 + 0316 0.137 +0.122
NOISY=SpHEres (300, 500] 0.049 + 0.054 | 0423 +0.408 0.508 + 0.473 0.198 + 0.181
P 256 0.097 £0.073 | 0.120+0.103 0.123 +0.092 0.073 + 0.009
Hi [200, 300] 0.131 + 0.096 1712+ 0.869 0917 + 0.869 0.064 + 0.008
ModelNetsmal] 120 200 0.084 + 0.077 0.077 + 0.075 0.105 + 0.096 0.101 + 0.032
B 1300, 500] 0.111 + 0.086 0241 +0.198 0261 +0.245 0.193 +0.155
ModeINetlaroc 2048 0.140 + 0.206 0.159 + 0.141 0.166 + 0.129  0.148 + 0.048
€% 11800, 2000] 0.162 + 0.228 0392 + 0378 0.470 + 0.628 0.188 + 0.088
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Training Time

Table 2: Training time and number of epochs needed for convergence for best model

Dataset JM’Product.Net. WPCE -NFS DeepSets
Hoisv-sphere-3 Time 6min Ihr 46min 9min
SYTSPRETES Epochs 20 100 100
hoisv-sphere-6 Time [2min 4hr 6min Ihr 38min
>3l Epochs 20 100 100
uniform Time Tmin Jhr 36min  lhr 27min
Epochs 23 100 100
o Time 7min Thr 23min [2 min
ModelNet-small Epochs 20 100 100
) Time Smin 3hr Smin 40min
ModelNet-large Epochs 20 100 100

» For inference time, all the above three learning based are similar, all significantly
outperform Sinkhorn approximation as number of points increase.
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Practical neural algorithmic models:

Example 2: Efficient neural models to approximate a certain family of
geometric optimization problems
[Chen, Ciolli, Sidiropoulos, W., preprint 2025]
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Geometric Shape Fitting Problems

» Input:
A set of points P = {p4, ..., p,} € R%,
A target shape-type (balls / ellipsoids, spherical shells, hyperplane slabs)

» Output:

Optimal shape covering input point set P

E.g, minimum enclosing ball, min-width spherical shells, min-width hyperplane slabs etc

Point set P Min-enclosing ball of set P Min-width spherical shell

UC San Diego
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A Warm-up Example: Minimum Enclosing Ball (MEB)

» Input:
A set of points P = {p,, ..., p,} € R%,

» Output:
Radius of the minimum enclosing ball (MEB): r*(P) := min{r | 3c € R%s.t. P € Ball(c;7) }

Point set P Min-enclosing ball of set P
UCSanDiegp T A
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Neural Models for MEB?

» A natural baseline for f: R"® - R Output: Estimated radius

A concatenation of multiple sequence-to- m
sequence permutation equivariant blocks, ° oo
followed by a pulling (readout) I;l I;l
TF / SF
» Choice of seq-to-seq permutation °
equivariant blocks: °
Transformer (TF) blocks TF/SF
Quadratic complexity T T T © oo T T
SumFormer (SF) blocks ATF or SF block
Linear complexity 3 3 T A 3
@ 0 ©
\ , J
Input: a sequence of n points in R%
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Neural Models for MEB?

» A natural baseline for f: R"¢ - R
A concatenation of multiple sequence-to-

sequence permutation equivariant blocks, a sequence OfA" points in R¥
foll db |li ’ \
ollowed by a pulling B EE..-EE
t t 1 t ¢
» Choice of seg-to-seq permutation
equivariant blocks: TF/SF
Transformer (TF) blocks N —
Quadratic complexity |\ | ] e e e[] I:}l
SumFormer (SF) blocks Y d

a sequence of n points in R
Linear complexity
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How do these NNs perform?

Training: point sets each with 200 points

Testing: point sets each with 50 to 3K points

Accuracy: Transformer baseline = Sumformer baseline
» Run-time: Sumformer much faster for larger input

v Vv v

Radius Error vs Input Size (MEB) Runtime vs Input Size (MEB)
MOdEI ] &
—e— E2E Sumformer \\- 0.20 Model
0.07 —s— EZE transformer —e— E2E Sumformer

—e— EZ2E transfoarmer /

0.06

Radius Error
o
o
un

o
o
B

Is SumFormer sufficient?

0.03

Can we do better?

002 A
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Input Size

InPUt Size : R\aalll-ablvll NJL 7N INL Ny 11 Iy oV oI I Im‘gu



A Simple Approximation Algorithm for MEB

» Input:
A set of points P = {py, ..., p,} € R

» MEB approximation algorithm:

Compute Q € P:a s-kernel of P
s.t. |0| « |P]| Point set P

Construct a MEB Ball(c*(Q); r*(Q)) of Q

Return r*(Q), which is an e-approximation of r*(P)

e-kernel Q
UCSanDieggco o "y -
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Constructing e-kernel of small sizes

» A simple algorithm
Let U be a 6-net of S¢~1, for suitable § = 0(¢)

1
ed—1

Ul = 0(

Initialize Q = @
Foru € Udo

Add point q,, = argmax,ep (p,u) to Q
Return Q

note |Q| = |U| = O(Sdl_l) , Which is independent to
the size of P

e
s
s
7’
7’
e
e
s
7
s
s

This is not the most efficient algorithm, and big-O hides constant depending on P as well.

o Qu

UC San Diego
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Relaxed s-kernel

» A neural implementation of e-kernel approximation algorithm ?

» argmax is hard to implement
softmax is usually used as a differentiable replacement of argmax

» However, the resulting Q computed via softmax is no longer a e-kernel

» Arelaxed e-kernel for P is a set of points Q < ConvexHull(P) s.t.
forany u € %=1, w,(Q) e-approximates w,(P); i.e.,
(1 —awy (@) < wy(P) = (14 &) wy(Q)

We show that the relaxed s-kernel leads to similar theoretical guarantees as the classical

g-kernel theory, both for approximating faithful extent measures, and in the combination of
linearization strategy for approximating a broader family of extent measures
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Computing Relaxed e-kernels

Algorithm 1 Relaxed-z-kernels Set My, :=max(A,) = 111&;(1; »)
pE
d 1.
Require: "= {p.....0m) € R, | RLU((us ) + 2w ) — M)
. )+ set of k directions from S%—1 ReLU((u, po) + cw(Ay) — My.,)
2: Q +—{} _ pe(Au) = '
3: foru € Qdo | :
4 A, +— {{u,p) :p e P} ReLU((u, pn) + cw(Ay) — May,,)
5: w(A,) < max A, —min 4,
6: Compute p-(Ay) N
T ‘\‘ IH u
. Pe (AH) H“ E P
/ u (HF’E (Au)||1) P by e = et
8: Q).append(qy) :
9: end for
10: return () tp)

» Relaxed e-kernels of small size (independent to
n = |P| can still be computed easily!

UC San Diego . o
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Neural Module for Relaxed e-kernel Approximation
» The following neural model is aligned with the relaxed s-kernel apprx. Alg.
T
Ns(P) = Ly cor(Se(P)) P
where S, is a SumFormer block, and L, .., represents column-wise L;-normalization.
Intuitively, Ns: R — R*® maps n input points in P ¢ R? to k points in a relaxed e-kernel Q c R¢

Input point set

P CR?
ppr O—— Output e-kernel, Q € Rkxd
P2 41' ]:J .
g-kernel approx. 3 % |
neural network : S (P | i
. > L co L | P - ’{j
s e S (P) [ |
5 T o
ucC SanD1ego Geometric Realization of AATRN, IMSI, 2025 T”_g‘?as
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Neural Module for Relaxed e-kernel Approximation
» The following neural model is aligned with the relaxed e-kernel apprx. Alg.

T
Ns(P) = Ly cor(Se(P)) P
where S, is a SumFormer block, and L, .., represents column-wise L;-normalization.

Intuitively, Ns: R — R*® maps n input points in P ¢ R? to k points in a relaxed e-kernel Q c R¢

Informal Theorem [e-kernel approx. NN]

Given any ¢, a > 0, there exists a SumFormer S, with only a single block, and bounded model
complexity ( depending only on ¢, a and d), such that, for any a-fat point set P ¢ R® of arbitrary
size, NV (P) is a relaxed e-kernel for P.

A SumFormer-based NN with a MLP at the end can approximate

the target faithful extent measure.

UC San Diego
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Experiments |. e-kernel approx. NN

» Effectiveness of our SumFormer based e-kernel approx. NN S,

but with column-wise softmax normalization instead of L; normalization

S.(P) = Softmax(Sg(P))T P

» Comparing with 7; , where the SumFormer is replaced by Transformer

Test Sets
) ) 00D
» Point sets in R3
_ _ _ _ Train Set Method In-dist. Synthetic ModelNet
» Loss is avg dlre-ctlon.al width —_— s 0.049 0.032 0.066
error for 1000 directions P T 0.055  0.106 0.147
Gaussian S. 0.047 0.039 0.064
SurmF —— Jol h Mixture 7T- 0.054 0.066 0.250
» SumFormer based model has o s 0.041 0.099 -
much better OOD 7T- 0.049 0.265 -
generalization than Transformer Mixed S. 0.035 - 0.055
Synthetic T- 0.042 - 0.117
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Experiment |l: Size generalization

» Model trained on a collection of
point sets in 2D, where the size
of each point set is only 200

SumFormer based model and
transformer based model are trained
by same number of epochs

» Tested on point sets of cardinality

up to 5000

» SumFormer based model (blue
curve) generalizes much better
Similar results in higher dimensions

UC San Diego
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But we are not done yet !
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Optimizing for More General Extent Meaures

» Previous approach only works for approximating faithful measures

» A more general approximation for extent measures via Linearization technique
[Agarwal et al., 2003]

» Goal: approximate a certain extent measure pu(P) for any input point set P ¢ R¢

Linearization:

Lift the set of points P = {p, ..., p,,} € R? to a set of linear functions F = {f,, ..., f,,} over R™

such that the target u(P) is the same as IQ}%% Er(x), the minimum extent of F.
X

Approximate extent in dual space
Dualize F to a set of points F* ¢ R™*1
Approximate extent £(G*) from an e-kernel G* of F*

Return the approximate extent £(G*) as an approximation of u(P)

UCSan Diego Geometric Realization of AATRN, IMSI, 2025 TILES
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Neural Framework for Multiple Extents Approximation

» An Encoder-Processor-Decoder framework that can approximate multiple extent
measures where the linearization technique applies.
The encoder-processor-decoder is inspired by [VeliCkoviC and Blundell, 2021]

]V‘extent(P) = Np o Np o Ng(P)

E—— (—
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Neural Framework for Multiple Extent Approximation

» An Encoder-Process-Decoder framework that can approximate multiple extent
measures where the linearization technique applies.

]\@xtent(P) = Np o Np o Ng(P)

The processor network Np is our e-kernel approx. NN as introduced earlier

Task-specific encoder is implemented by MLP applied pointwise
Task-specific decoder is implemented by DeepSet

Input point set
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Experiment lll: Neural models for MEB

» Comparing previous E2E Transformer and E2E SumFormer with new neural

model (Frozen EPD Sumformer)
Much better size generalization

0.07

» Comparing with SoTA approximation
algorithm: 0.06
Eps-kernel + Welzl's randomized incremental

S 0.05
algorithm [Welzl 1991] 5
Our approach 18x approx. error, but 15x § U
faster q |/
0.03
» However, for the more challenging min- /
width annulus problem " RE
Our approach is 19x faster, with similar error 0.01 . -
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Experiment IV: More Comparison with Neural Approaches

» Performance for MEB (minimum enclosing balls), MEE (minimum enclosing ellipsoid),

MEA (minimum enclosing annulus)

» Point sets in R?2

» Sextent (Frozen)

proposed encoder-processor-decoder
framework, with latent dimension =5

> Sextent (E2E)

encoder-processor-decoder
framework, but the processor network
Np is trained end-to-end

> CS‘Baseline (EZE)

simply use SumFormer blocks E2E

» T, : Transformer-based analogs

MEB MEE MEA
Train Set  Method Er Ermin  Er.maj Ew
Sextent (Frozen)  0.020  0.037  0.022 0.028
Sextent (E2E) 0.023  0.056  0.047  0.022
Synthetic Textent (Frozen)  0.099  0.041 0.027 0.454
Textent (E2E) 0.024  0.038  0.022  0.026
SBaseline (E2E)  0.048  0.378  0.426  1.010
TBaseline (E2E) 0.030 0.071 0.047  0.066
Sextent (Frozen) 0.020  0.056  0.047  0.076
Sextent (E2E) 0.010 0.078  0.050 0.145
SQUID Textent (Frozen)  0.068  0.058 0.032 0.096
Textent (E2E) 0.190 0.093  0.045 0.099
SBaseline (E2E)  0.027  0.322  0.250 0.084
Tiaseline (E2E) 0.039 0.357 0.049 0.152
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Experiment IV: More Comparison with Neural Approaches

» Performance for MEB (minimum enclosing balls), MEE (minimum enclosing ellipsoid),

MEA (minimum enclosing annulus)

» Sextent (Frozen) usually the best

» Sextent(”) usually outperforms
analogous :Tf'extent(*)

» However, T, ,se01ine (E2E) outperforms
‘Sbaseline(E2E) !

» Intuitively, without alignment,
SumFormer sometimes is much
worse than Transformer, while with
alignment it is better

MEB MEE MEA
Train Set  Method Er Ermin  Er.maj Ew
Sextent (Frozen)  0.020  0.037  0.022 0.028
Sextent (E2E) 0.023  0.056  0.047  0.022
Synthetic Textent (Frozen)  0.099  0.041 0.027 0.454
Textent (E2E) 0.024  0.038  0.022  0.026
SBaseline (E2E)  0.048  0.378  0.426  1.010
TBaseline (E2E) 0.030 0.071 0.047  0.066
Sextent (Frozen) 0.020  0.056  0.047  0.076
Sextent (E2E) 0.010 0.078  0.050 0.145
SQUID Textent (Frozen)  0.068  0.058 0.032 0.096
Textent (E2E) 0.190 0.093  0.045 0.099
SBaseline (E2E)  0.027  0.322  0.250 0.084
Tiaseline (E2E) 0.039 0.357 0.049 0.152
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Concluding Remarks

» Model performance relies on interplay of data type, model architecture, task structure and also
optimization (model training)

» Size (OOD) generalization important in handling geometric and topological problems

» Using algorithmic insights combined with ML to develop more principled neural algorithms
E.g, using algorithmic scaffolding to design neural models

» General Neural algorithm models for solving hard (e.g., combinatorial optimization) problems
remain challenging (both in theory and practice)

Optimization of such neural models to achieve generalization widely open

Are there “universal” recipes for more broader classes of problems / algorithms ?
Composition of such generalizable modules? collaboration of neural algorithmic agents?
How to probe a learned model to identify what “procedure” is learned?

Recurrent, chain-of-thoughts, or looped mechanism
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