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Prelude 
 Algorithms, as a systematic procedure for problem solving, have a long history 
 arithmetic or geometric calculation by humans since ancient time

 Modern computations via computers: paradigm shift in algorithms 

 Fusing modern AI and Data: another revolution ? 

Geometric calculation, 
by unknown artist, 

15th century

Modern algorithms enabled by 
computers, 

by Gemini,  Oct 2024
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New Frontier: Neural Algorithmic Design 
 Huge literature in classical algorithms design in TCS
 Deep insights, elegant algorithmic frameworks, theoretical guarantees … 
 But: 

 Not all theoretically sound algorithms readily transfer to practice 
 Algorithms usually not adapted to data 

 Amazing power of AI in learning from data  
 But: 

 Does a learned model generalize (especially OOD)? 
 Does a specific architecture even have the capacity to implement specific algorithms (expressivity) ? 

Overarching Goal
How can we combine algorithmic ideas and insights with neural networks to develop 

more powerful frameworks that can learn from / adapt to data
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 Efficient and effective neural models to solve geometric / topological problems

 Some challenges:
 Expressive power:  What are the suitable neural architecture with the capacity to solve a given 

problem?  
 Size (OOD) generalization:  Can a neural model with bounded complexity (in terms of # 

parameters)  extrapolate / OOD generalize to input of arbitrary (unseen) sizes
 Practical performance: how to facilitate learning ``procedures’’ instead of just fitting train data?  

Focus of This Talk 

Careful consideration of the interplay of type of data, neural 
architecture and task structures
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Introduction
 A neural network models a function 𝑓𝑓𝜃𝜃:  𝑋𝑋 →  𝑌𝑌 

𝑓𝑓𝜃𝜃 ∶  𝑅𝑅3 → 𝑅𝑅2 Input:  
𝑥𝑥 ∈ 𝑅𝑅3

Output:  
𝑦𝑦 ∈ 𝑅𝑅2
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Introduction
 A neural network models a function 𝑓𝑓𝜃𝜃:  𝑋𝑋 →  𝑌𝑌 
 Model performance affected by the interplay of neural architecture and type of data

Image downloaded from 
towardsdatascience.com

CNN for image data

Picture taken from the survey paper by [Sato, 2020] 

GNN for graph data
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Introduction
 A neural network models a function 𝑓𝑓𝜃𝜃:  𝑋𝑋 →  𝑌𝑌 
 Model effectiveness affected by the interplay of neural architecture and type of data
 Model effectiveness also affected by the interplay of neural architecture and task structure

Picture taken from [Xu et al., ICLR 2020] 
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This Talk 
 Main theme: “aligning” neural models with task and algorithmic structures
 Suitable consideration of symmetries required
 Combine the power of NNs and algorithmic ideas / scaffolds to encourage learning 

“procedures” instead of fitting data, facilitating effectiveness and size generalization 

 Some Remarks 

 Two examples of practical neural algorithmic models for geometric problems 
 Neural approximation of Wasserstein distance for Euclidean point sets 

 [Chen, W., NeurIPS’23] 
 Efficient neural models to approximate a certain family of geometric optimization 

problems 
 [Chen, Ciolli, Sidiropoulos, W., preprint 2025] 
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 A neural approximation of extended persistence over graphs 
 Efficient surrogate to compute persistent summaries for graph motifs 
 Differentiable: potentially allowing for optimizing for descriptor functions on graphs 

 Inspired by a union-find based algorithm to compute extended persistence/levelset zigzag 
persistence on graphs 
 Modeled the problem as an edge-wise prediction problem over graphs 
 Developed a modified graph neural network to conceptually more aligned with the algorithm 
 [Yan, Ma, Gao, Tang, W., Chen , NeurIPS 2022]

It all started in topological data analysis … 
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A Theoretical justification of algorithmic alignment 
 Graph neural networks with low sparsity-regularized loss on small well-crafted training set 

provably extrapolate for shortest path (via Bellman-Ford procedure) on arbitrary graphs 
 [Nerem, Chen, Dasgupta, W., arXiv 2025] 
 A first result of this kind!

Theorem [Low loss of overparameterized GNN learns K-step Bellman-Ford] 

Let ℋ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  be the specific set of only 𝑂𝑂(𝐾𝐾) graphs. Let 𝒢𝒢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 be such that ℋ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⊆ 𝒢𝒢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with 𝑀𝑀 

total nodes. Assume 0 < 𝜂𝜂 < 1
𝑀𝑀(𝐿𝐿𝐿𝐿+𝑚𝑚+1)

 . If the regularized training loss 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 of 𝒜𝒜𝜃𝜃 is within 𝜀𝜀 of 
the optimal with 0 ≤ 𝜀𝜀 < 𝜂𝜂, and then for any positively weighted graph 𝐺𝐺 (of arbitrary size), 
applying 𝒜𝒜𝜃𝜃 to 𝐺𝐺 approximates the K-step BF for each node with additive error 𝑂𝑂(𝜀𝜀).
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Practical Neural algorithmic models: 
Example 1: Neural approximation of Wasserstein distance for point sets 

in Euclidean spaces
[Chen, W., NeurIPS’23] 
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Motivation
 High-level questions: 
 Efficient and differentiable distance for complex objects (e.g, Wasserstein distance between 

Euclidean point sets) 
 What are the right architectures for them: efficient with theoretical guarantees / justifications, 

respecting suitable group operations?  

12

 In what follows:
 Neural approximation for Wasserstein distance between 

Euclidean point sets 
 Aligned with a sketching-based approximation algorithm to reduce 

model complexity to be constant
 The right neural architecture to universally approximate Symmetric and 

factor-wise group invariant function over product space 
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Wasserstein Distance 
 A distance to compare distributions supported on the same metric space
 also commonly used in machine learning, e.g, in generative models 

13

 ℓ1-Wasserstein distance (Earth-mover distance):
 Given 𝛼𝛼,𝛽𝛽 ∈ 𝒫𝒫 𝑍𝑍  supported on a metric space 𝑍𝑍,𝑑𝑑𝑍𝑍 ,  𝛾𝛾 ∈ 𝒫𝒫 𝑍𝑍 × 𝑍𝑍  is a coupling between 𝛼𝛼 

and 𝛽𝛽 if 𝛾𝛾 ⋅,𝑍𝑍 = 𝛼𝛼 ⋅ , while 𝛾𝛾 𝑍𝑍,⋅ = 𝛽𝛽(⋅).  Let 𝐶𝐶(𝛼𝛼,𝛽𝛽) denote the set of all couplings between 𝛼𝛼 
and 𝛽𝛽.  

 The (ℓ1-) Wasserstein distance between 𝛼𝛼 and 𝛽𝛽 is defined as  

 In this talk we focus on distributions induced from weighted point sets in Euclidean 
space  
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Computational Complexity
 Input: two weighted point-sets of size 𝑂𝑂(𝑛𝑛) 

 𝑂𝑂 𝑛𝑛3 log𝑛𝑛  in general (for the more general optimal transport distance) 

 Sinkhorn distance: 
 Entropic regularization speeds up computation to 𝑂𝑂(𝑛𝑛2) 
 [Cuturi 2013] , [Altschuler et al, 2017]

14

Our Goal: 
Efficient bounded-size neural model to approximate Wasserstein distance for point 

sets of arbitrary sizes, with theoretical justification 
 

Differentiable – can be used in ML pipelines where Wasserstein distance is used (e.g, 
as part of loss)
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 For simplicity:  input are point sets 𝐴𝐴 and 𝐵𝐵 in a hypercube in 𝑅𝑅𝑑𝑑, of cardinality at most 𝑁𝑁
 𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵  is the Wasserstein distance between the empirical measures induced by 𝐴𝐴 and 𝐵𝐵 

 We can represent 𝐴𝐴 (and 𝐵𝐵) by a vector in 𝑅𝑅𝑑𝑑 𝑁𝑁 = 𝑅𝑅𝑁𝑁𝑁𝑁

 Wasserstein distance function:
 𝑑𝑑𝑊𝑊 ∶ 𝑅𝑅𝑁𝑁𝑁𝑁 × 𝑅𝑅𝑁𝑁𝑁𝑁 → 𝑅𝑅 

 𝑑𝑑𝑊𝑊 should satisfy the following properties: 
 Symmetric: 𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵 = 𝑑𝑑𝑊𝑊(𝐵𝐵,𝐴𝐴) 
 Each factor is permutation invariant on the left, that is, for any permutations Π1,Π2 ∈ 𝑆𝑆 𝑁𝑁  

 𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵 = 𝑑𝑑𝑊𝑊(Π1𝐴𝐴,Π2𝐵𝐵) 

Modeling Wasserstein Distance Function

15

𝑁𝑁

𝑑𝑑
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SFGI Product Functions

 In the case of Wasserstein distance function
 𝒳𝒳 = 𝑅𝑅𝑁𝑁𝑁𝑁 , 𝑘𝑘 = 2, 𝐺𝐺 is the permutation group 𝑆𝑆𝑁𝑁 on 𝑁𝑁 elements  

 More general: 
 Distance to the mean of 𝑘𝑘 point sets (or other geometric objects) under Wasserstein distance 
 Other than permutations, one may also want to require rotation invariance for each factor 

16
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Group Equivariant / Invariant Networks
 Many interesting work in geometric deep learning
 e.g., the book [Bronstein, Bruna, Cohen and Veličković, 2021] 
 DeepSet [Zaheer et al 2017], [Wagstaff et al, 2022], Invariant Graph Networks (IGN) [Maron et 

al 2019], [Fereydounian et al, 2022], our work [Tabaghi and W., 2024] … 

 Sign and basis invariant networks [Lim et al, 2023] , Stable and Expressive 
Position Encodings (SPE) [Huang et al, 2024]
 Elegant ways to handle both basis and permutation invariance

17
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First Observation
 Lemma (simplified): 

For any 𝜖𝜖 > 0, there is a continuous permutation-invariant function 𝛷𝛷:𝒳𝒳 → 𝑅𝑅𝑡𝑡 and a continuous 
function 𝜌𝜌:𝑅𝑅𝑡𝑡 → 𝑅𝑅 such that

𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵 − 𝜌𝜌(𝛷𝛷 𝐴𝐴 + 𝛷𝛷 𝐵𝐵 ) < 𝜖𝜖 
Here, 𝑡𝑡 is called the latent dimension. 

𝐴𝐴 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁}

𝐵𝐵 = {𝑦𝑦1, … ,𝑦𝑦𝑁𝑁}

𝛷𝛷𝜃𝜃

𝛷𝛷𝜃𝜃

𝛷𝛷𝜃𝜃(𝐴𝐴)

𝛷𝛷𝜃𝜃(𝐵𝐵)

⊕ 𝜌𝜌𝜃𝜃 𝜌𝜌𝜃𝜃(𝛷𝛷𝜃𝜃 𝐴𝐴 + 𝛷𝛷𝜃𝜃 𝐵𝐵 )
Siamese network 

+ MLP 
to approximate 
𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵
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However

19

 The function 𝛷𝛷:𝑅𝑅𝑁𝑁𝑁𝑁 → 𝑅𝑅𝑡𝑡 need to be permutation invariant

 𝛷𝛷 can be implemented by DeepSet [Zaheer et al 2017]

 However, in general DeepSet requires model complexity O 𝑁𝑁𝑁𝑁  to achieve universality for 
permutation invariant functions over 𝑅𝑅𝑁𝑁𝑁𝑁 [Tabaghi, W., 2024] 

𝐴𝐴 = {𝑥𝑥1, … , 𝑥𝑥𝑁𝑁}

𝐵𝐵 = {𝑦𝑦1, … ,𝑦𝑦𝑁𝑁}

𝛷𝛷𝜃𝜃

𝛷𝛷𝜃𝜃

𝛷𝛷𝜃𝜃(𝐴𝐴)

𝛷𝛷𝜃𝜃(𝐵𝐵)

⊕ 𝜌𝜌𝜃𝜃 𝜌𝜌𝜃𝜃(𝛷𝛷𝜃𝜃 𝐴𝐴 + 𝛷𝛷𝜃𝜃 𝐵𝐵 )
Siamese network 

+ MLP 
to approximate 
𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵
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Second Idea: Sketching for Approximation 
 A simple approximation algorithm via 𝜀𝜀-cover  

Black dots: 
input point set 𝐴𝐴 ⊂ 𝑅𝑅𝑑𝑑 

A weighted point set
 𝐴𝐴′ =  ℎ(𝐴𝐴) ; 

and 𝐴𝐴′ = 𝑎𝑎 = 𝑎𝑎(𝑑𝑑, 𝜀𝜀)

such that 𝑑𝑑𝑊𝑊 𝐴𝐴′,𝐵𝐵′  approximates 𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵  within additive error 𝑂𝑂(𝜀𝜀) 
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Second Idea: Sketching for Approximation 
 A simple approximation algorithm via 𝜀𝜀-cover  

Black dots: 
input point set 𝐴𝐴 ⊂ 𝑅𝑅𝑑𝑑 

A weighted point set
 𝐴𝐴′ =  𝒉𝒉(𝐴𝐴) ; 

and 𝐴𝐴′ = 𝑎𝑎 =  𝑎𝑎(𝑑𝑑, 𝜀𝜀)

𝒉𝒉:𝑅𝑅𝑁𝑁𝑁𝑁 → 𝑅𝑅𝑎𝑎 can be expressed as 𝒉𝒉 𝑃𝑃 = ∑𝑥𝑥∈𝑃𝑃 ℎ 𝑥𝑥  where ℎ:𝑅𝑅𝑑𝑑 → 𝑅𝑅𝑎𝑎
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Final Result 

Theorem (informal): 
For point sets 𝐴𝐴 and 𝐵𝐵 from 𝑅𝑅𝑑𝑑 of cardinality at most 𝑁𝑁, the neural network of the form 

𝒩𝒩𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐴𝐴,𝐵𝐵 = 𝜌𝜌𝜃𝜃3 𝜙𝜙𝜃𝜃2 ∑𝑥𝑥∈𝐴𝐴 ℎ𝜃𝜃1 𝑥𝑥  + 𝜙𝜙𝜃𝜃2 ∑𝑥𝑥∈𝐴𝐴 ℎ𝜃𝜃1 𝑥𝑥  can approximate 𝑑𝑑𝑊𝑊 𝐴𝐴,𝐵𝐵  within any 
error 𝜖𝜖 > 0, where ℎ:𝑅𝑅𝑑𝑑 → 𝑅𝑅𝑎𝑎 𝛿𝛿 ,𝜙𝜙:𝑅𝑅𝑎𝑎 𝛿𝛿 → 𝑅𝑅𝑎𝑎′ , and 𝜌𝜌:𝑅𝑅𝑎𝑎′ → 𝑅𝑅 are all continuous and 𝑎𝑎′ ≈ 𝑎𝑎 𝛿𝛿 2. 
Furthermore, the required model complexity (number of parameters) depends only on 𝑑𝑑 and 𝜖𝜖. 

22
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Empirical Results 
 Mean relative error between approximation and ground truth Wasserstein distances
 WPCE: [Kawano et al., 2020]
 SOTA neural approximation of Wasserstein distance via a Siamese autoencoder framework

 𝒩𝒩𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: just Siamese DeepSets, without final outer MLP (modeling 𝜌𝜌)  

23



Geometric Realization of AATRN, IMSI, 2025

Training Time

 For inference time, all the above three learning based are similar, all significantly 
outperform Sinkhorn approximation as number of points increase. 

24
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Practical neural algorithmic models: 
Example 2: Efficient neural models to approximate a certain family of 

geometric optimization problems 
[Chen, Ciolli, Sidiropoulos, W., preprint 2025] 
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Geometric Shape Fitting Problems
 Input: 
 A set of points 𝑃𝑃 = 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 ⊂ 𝑅𝑅𝑑𝑑 , 
 A target shape-type (balls / ellipsoids, spherical shells, hyperplane slabs) 

 Output: 
 Optimal shape covering input point set 𝑃𝑃 

 E.g, minimum enclosing ball, min-width spherical shells, min-width hyperplane slabs etc 

Point set 𝑃𝑃 Min-enclosing ball of  set 𝑃𝑃 Min-width spherical shell

𝑤𝑤
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Min-enclosing ball of  set 𝑃𝑃

A Warm-up Example: Minimum Enclosing Ball (MEB)
 Input: 
 A set of points 𝑃𝑃 = 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 ⊂ 𝑅𝑅𝑑𝑑 , 

 Output:
 Radius of the minimum enclosing ball (MEB): 𝑟𝑟∗ 𝑃𝑃 ≔ min { 𝑟𝑟 ∣ ∃c ∈ 𝑅𝑅𝑑𝑑  𝑠𝑠. 𝑡𝑡.  𝑃𝑃 ⊆ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐; 𝑟𝑟  }

Point set 𝑃𝑃

𝑟𝑟∗
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Neural Models for MEB? 
 A natural baseline for 𝑓𝑓:𝑅𝑅𝑛𝑛𝑛𝑛 → 𝑅𝑅 
 A concatenation of multiple sequence-to-

sequence permutation equivariant blocks, 
followed by a pulling (readout) 

 Choice of seq-to-seq permutation 
equivariant blocks:
 Transformer (TF) blocks

 Quadratic complexity

 SumFormer (SF) blocks 
 Linear complexity

a sequence of 𝑛𝑛 points in 𝑅𝑅𝑑𝑑

A TF or SF block

TF / SF

TF / SF

Estimated radius

Input:

Output:
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Neural Models for MEB? 
 A natural baseline for 𝑓𝑓:𝑅𝑅𝑛𝑛𝑛𝑛 → 𝑅𝑅 
 A concatenation of multiple sequence-to-

sequence permutation equivariant blocks, 
followed by a pulling 

 Choice of seq-to-seq permutation 
equivariant blocks:
 Transformer (TF) blocks

 Quadratic complexity

 SumFormer (SF) blocks 
 Linear complexity

a sequence of 𝑛𝑛 points in 𝑅𝑅𝑘𝑘

TF / SF

a sequence of 𝑛𝑛 points in 𝑅𝑅𝑑𝑑
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How do these NNs perform? 
 Training: point sets each with 200 points
 Testing: point sets each with 50 to 3K points 
 Accuracy: Transformer baseline  ≈ Sumformer baseline
 Run-time: Sumformer much faster for larger input

Is SumFormer sufficient?
 

Can we do better?  
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A Simple Approximation Algorithm for MEB
 Input: 
 A set of points 𝑃𝑃 = 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 ⊂ 𝑅𝑅𝑑𝑑

 MEB approximation algorithm: 

 Compute 𝑄𝑄 ⊆ 𝑃𝑃: a 𝜀𝜀-kernel of 𝑃𝑃 
 s.t. 𝑄𝑄 ≪ 𝑃𝑃  

 Construct a MEB Ball 𝑐𝑐∗(𝑄𝑄 ; 𝑟𝑟∗(𝑄𝑄)) of 𝑄𝑄  

 Return 𝑟𝑟∗ 𝑄𝑄 , which is an 𝜀𝜀-approximation of 𝑟𝑟∗(𝑃𝑃) 

Point set 𝑃𝑃

𝜀𝜀-kernel 𝑄𝑄
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Constructing 𝜀𝜀-kernel of small sizes 
 A simple algorithm
 Let 𝑈𝑈 be a 𝛿𝛿-net of 𝑆𝑆𝑑𝑑−1, for suitable 𝛿𝛿 = 𝑂𝑂(𝜀𝜀)

 𝑈𝑈 = 𝑂𝑂( 1
𝜀𝜀𝑑𝑑−1

) 

 Initialize 𝑄𝑄 = ∅
 For 𝑢𝑢 ∈ 𝑈𝑈 do 

 Add point 𝑞𝑞𝑢𝑢 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑝𝑝∈𝑃𝑃 ⟨𝑝𝑝,𝑢𝑢⟩ to 𝑄𝑄  

 Return 𝑄𝑄 

 note 𝑄𝑄| = |𝑈𝑈 = 𝑂𝑂( 1
𝜀𝜀𝑑𝑑−1

) , which is independent to 
the size of 𝑃𝑃

𝑞𝑞𝑢𝑢

𝑢𝑢

This is not the most efficient algorithm, and big-O hides constant depending on 𝑃𝑃 as well. 
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Relaxed 𝜀𝜀-kernel 
 A neural implementation of 𝜀𝜀-kernel approximation algorithm ? 
 argmax is hard to implement
 softmax is usually used as a differentiable replacement of argmax 

 However, the resulting 𝑄𝑄 computed via softmax is no longer a 𝜀𝜀-kernel 

 A relaxed 𝜀𝜀-kernel for 𝑃𝑃 is a set of points 𝑄𝑄 ⊆ ConvexHull(𝑃𝑃) s.t.
 for any 𝑢𝑢 ∈ 𝑆𝑆𝑑𝑑−1, 𝑤𝑤𝑢𝑢 𝑄𝑄  𝜀𝜀-approximates 𝑤𝑤𝑢𝑢 𝑃𝑃 ; i.e., 

1 − 𝜀𝜀 𝑤𝑤𝑢𝑢 𝑄𝑄 ≤  𝑤𝑤𝑢𝑢 𝑃𝑃 ≤  1 + 𝜀𝜀  𝑤𝑤𝑢𝑢 𝑄𝑄  

We show that the relaxed 𝜀𝜀-kernel leads to similar theoretical guarantees as the classical 
𝜀𝜀-kernel theory, both for approximating faithful extent measures, and in the combination of 

linearization strategy for approximating a broader family of extent measures 
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Computing Relaxed 𝜀𝜀-kernels

 Relaxed 𝜀𝜀-kernels of small size (independent to 
𝑛𝑛 = |𝑃𝑃| can still be computed easily!
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Neural Module for Relaxed 𝜀𝜀-kernel Approximation
 The following neural model is aligned with the relaxed 𝜀𝜀-kernel apprx. Alg. 

𝒩𝒩𝑆𝑆 𝑃𝑃 = 𝐿𝐿1,𝑐𝑐𝑐𝑐𝑐𝑐 𝑆𝑆𝜀𝜀 𝑃𝑃
𝑇𝑇 𝑃𝑃 

where 𝑆𝑆𝜀𝜀 is a SumFormer block, and 𝐿𝐿1,𝑐𝑐𝑐𝑐𝑐𝑐  represents column-wise 𝐿𝐿1-normalization. 
 Intuitively, 𝒩𝒩𝑆𝑆:𝑅𝑅𝑛𝑛𝑛𝑛 → 𝑅𝑅𝑘𝑘𝑘𝑘 maps 𝑛𝑛 input points in 𝑃𝑃 ⊂ 𝑅𝑅𝑑𝑑 to 𝑘𝑘 points in a relaxed 𝜀𝜀-kernel 𝑄𝑄 ⊂ 𝑅𝑅𝑑𝑑 

𝑆𝑆𝜀𝜀(𝑃𝑃) 𝑆𝑆𝜀𝜀(𝑃𝑃)

𝜀𝜀-kernel approx. 
neural network
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Neural Module for Relaxed 𝜀𝜀-kernel Approximation
 The following neural model is aligned with the relaxed 𝜀𝜀-kernel apprx. Alg. 

𝒩𝒩𝑆𝑆 𝑃𝑃 = 𝐿𝐿1,𝑐𝑐𝑐𝑐𝑐𝑐 𝑆𝑆𝜀𝜀 𝑃𝑃
𝑇𝑇 𝑃𝑃 

where 𝑆𝑆𝜀𝜀 is a SumFormer block, and 𝐿𝐿1,𝑐𝑐𝑐𝑐𝑐𝑐  represents column-wise 𝐿𝐿1-normalization. 
 Intuitively, 𝒩𝒩𝑆𝑆:𝑅𝑅𝑛𝑛𝑛𝑛 → 𝑅𝑅𝑘𝑘𝑘𝑘 maps 𝑛𝑛 input points in 𝑃𝑃 ⊂ 𝑅𝑅𝑑𝑑 to 𝑘𝑘 points in a relaxed 𝜀𝜀-kernel 𝑄𝑄 ⊂ 𝑅𝑅𝑑𝑑 

Informal Theorem [𝜀𝜀-kernel approx. NN]

Given any 𝜀𝜀,𝛼𝛼 > 0, there exists a SumFormer 𝑆𝑆𝜀𝜀 with only a single block, and bounded model 
complexity ( depending only on 𝜀𝜀,𝛼𝛼 and 𝑑𝑑), such that, for any 𝛼𝛼-fat point set 𝑃𝑃 ⊂ 𝑅𝑅𝑑𝑑 of arbitrary 
size, 𝒩𝒩𝜀𝜀(𝑃𝑃) is a relaxed 𝜀𝜀-kernel for 𝑃𝑃. 

A SumFormer-based NN with a MLP at the end can approximate 
the target faithful extent measure. 
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Experiments I: 𝜀𝜀-kernel approx. NN
 Effectiveness of our SumFormer based 𝜀𝜀-kernel approx. NN 𝒮𝒮𝜀𝜀 
 but with column-wise softmax normalization instead of 𝐿𝐿1 normalization

 𝒮𝒮𝜀𝜀 𝑃𝑃 = 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆𝜀𝜀 𝑃𝑃
𝑇𝑇  𝑃𝑃

 Comparing with 𝒯𝒯𝜀𝜀 , where the SumFormer is replaced by Transformer 

 Point sets in 𝑅𝑅3 
 Loss is avg directional width 

error for 1000 directions 

 SumFormer based model has 
much better OOD 
generalization than Transformer
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Experiment II: Size generalization

 Model trained on a collection of 
point sets in 2D, where the size 
of each point set is only 200
 SumFormer based model and 

transformer based model are trained 
by same number of epochs 

 Tested on point sets of cardinality 
up to 5000 

 SumFormer based model (blue 
curve) generalizes much better 
 Similar results in higher dimensions 
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But we are not done yet !
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Optimizing for More General Extent Meaures 
 Previous approach only works for approximating faithful measures 
 A more general approximation for extent measures via Linearization technique
 [Agarwal et al., 2003] 

 Goal: approximate a certain extent measure 𝜇𝜇(𝑃𝑃) for any input point set 𝑃𝑃 ⊂ 𝑅𝑅𝑑𝑑 

 Linearization:  
 Lift the set of points 𝑃𝑃 = 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 ⊂ 𝑅𝑅𝑑𝑑 to a set of linear functions 𝐹𝐹 = 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛  over 𝑅𝑅𝑚𝑚 

such that the target 𝜇𝜇 𝑃𝑃  is the same as  min
x∈𝑅𝑅𝑚𝑚

ℰ𝐹𝐹(𝑥𝑥), the minimum extent of 𝐹𝐹.  

 Approximate extent in dual space
 Dualize 𝐹𝐹 to a set of points 𝐹𝐹∗ ⊂ 𝑅𝑅𝑚𝑚+1 
 Approximate extent ℰ(𝐺𝐺∗) from an 𝜀𝜀-kernel 𝐺𝐺∗ of 𝐹𝐹∗ 

 Return the approximate extent ℰ(𝐺𝐺∗) as an approximation of 𝜇𝜇 𝑃𝑃
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Neural Framework for Multiple Extents Approximation
 An Encoder-Processor-Decoder framework that can approximate multiple extent 

measures where the linearization technique applies.
 The encoder-processor-decoder is inspired by [Veličković and Blundell, 2021]   

𝒩𝒩𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃 = 𝒩𝒩𝐷𝐷 ∘𝒩𝒩𝑃𝑃 ∘𝒩𝒩𝐸𝐸(𝑃𝑃)

linearization𝜀𝜀-kernel approxextent computation
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Neural Framework for Multiple Extent Approximation
 An Encoder-Process-Decoder framework that can approximate multiple extent 

measures where the linearization technique applies.
 𝒩𝒩𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃 = 𝒩𝒩𝐷𝐷 ∘𝒩𝒩𝑃𝑃 ∘𝒩𝒩𝐸𝐸(𝑃𝑃)

 The processor network 𝒩𝒩𝑃𝑃 is our 𝜀𝜀-kernel approx. NN as introduced earlier
 Task-specific encoder is implemented by MLP applied pointwise
 Task-specific decoder is implemented by DeepSet
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Experiment III: Neural models for MEB 
 Comparing previous E2E Transformer and E2E SumFormer with new neural 

model (Frozen EPD Sumformer)
 Much better size generalization 

  Comparing with SoTA approximation 
algorithm:
 Eps-kernel + Welzl’s randomized incremental 

algorithm [Welzl 1991] 
 Our approach 18x approx. error, but 15x 

faster 

 However, for the more challenging min-
width annulus problem 
 Our approach is 19x faster, with similar error
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Experiment IV: More Comparison with Neural Approaches
 Performance for MEB (minimum enclosing balls), MEE (minimum enclosing ellipsoid), 

MEA (minimum enclosing annulus) 

 Point sets in 𝑅𝑅2 
 𝒮𝒮𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (Frozen) 

 proposed encoder-processor-decoder 
framework, with latent dimension = 5 

 𝒮𝒮𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (E2E) 
 encoder-processor-decoder 

framework, but the processor network 
𝑁𝑁𝑃𝑃 is trained end-to-end 

 𝒮𝒮𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (E2E)
 simply use SumFormer blocks E2E

 𝒯𝒯∗ : Transformer-based analogs
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Experiment IV: More Comparison with Neural Approaches
 Performance for MEB (minimum enclosing balls), MEE (minimum enclosing ellipsoid), 

MEA (minimum enclosing annulus) 

 𝒮𝒮𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (Frozen) usually the best

 𝒮𝒮𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(*)  usually outperforms 
analogous 𝒯𝒯𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(*) 

 However, 𝒯𝒯𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(E2E) outperforms 
𝒮𝒮𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(E2E) ! 

 Intuitively, without alignment, 
SumFormer sometimes is much 
worse than Transformer, while with 
alignment it is better
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Concluding Remarks
 Model performance relies on interplay of data type, model architecture, task structure and also 

optimization (model training)
 Size (OOD) generalization important in handling geometric and topological problems 
 Using algorithmic insights combined with ML to develop more principled neural algorithms

 E.g, using algorithmic scaffolding to design neural models 

 General Neural algorithm models for solving hard (e.g., combinatorial optimization) problems 
remain challenging (both in theory and practice)
 Optimization of such neural models to achieve generalization widely open 
 Are there “universal” recipes for more broader classes of problems / algorithms ? 
 Composition of such generalizable modules? collaboration of neural algorithmic agents? 
 How to probe a learned model to identify what “procedure” is learned? 
 Recurrent, chain-of-thoughts, or looped mechanism 
 … 

46
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