The Geometric Realization of AATRN

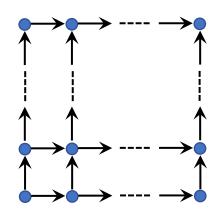
Geometric construction of Kashiwara crystals on multiparameter persistence

Yasu Hiraoka (joint work with Kohei Yahiro)

Kyoto University &
Inamori Research Institute for Science

Content

- 1. Irreducible decompositions of varieties of multi-persistence (not indecomposable decomposition)
- 2. Show good combinatorial/geometric properties on irreducible decomposition, called Kashiwara crystal


Today's talk is more focused on geometric representation theory than on persistence theory

Multi-parameter persistence

2-parameter persistence module

rep on a bound quiver

: commutative relations

(Krull-Schmidt) : indecomposable,

- Problem: is too big (containing non-intervals w/ continuous parameters),
 i.e., indecomposable decomposition (KS) is too fine a classification to characterize multi-parameter persistence.
- One approach: interval approximation, generalized persistence, signed barcode (Asashiba et al, Kim-Mémoli, Botnan-Oppermann-Oudot)

Representation variety

Dimension vector

Representation variety

 (affine algebraic variety)

polynomial

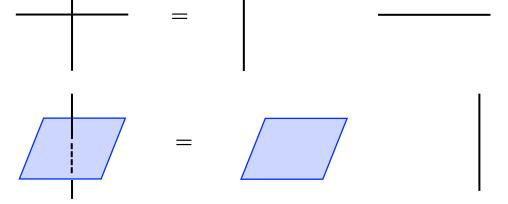
Ex)

Here,

quadratic polynomials

Group acts on (as changes of bases)

e.g., Carlsson & Zomorodian (2009) study classification & parameterization of multi-persistence by applying geometric invariant theory to under this group action.


Irreducible decomposition

- A nonempty algebraic set is irreducible
 - by algebraic sets implies or
- Irreducible decomposition: Every algebraic set can be uniquely expressed as

(finite union)

where are irreducible and for . Each is called an irreducible component.

Ex)

- The set of all irreducible components in
- The main result of this talk shows a combinatorial structure (Kashiwara crystal) on

Kashiwara crystal

: A bound quiver, : undirected graph of , : adjacent matrix of A generalized Cartan matrix : # of vertices Root data : complex vector space, : simple root) are linearly independent weight lattice A Kashiwara crystal is a datum (crystal basis) Kashiwara operators for such that (1)(2)(3)(4)

Remark on geometric representation theory

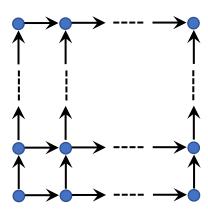
```
quiver
                Cartan matrix
                                             Lie algebra
                quantum group
                                                 (with
quiver
                Ringel-Hall algebra
                                       over
  Theorem 1 (Ringel):
                                  for
  Theorem 2 (Lusztig):
                                             for arbitrary
                                                          and
                          : Grothendieck group of a category of perverse sheaves of
                           a rep variety (i.e., geometric generalization of Theorem 1)
quiver
                         Kashiwara crystal
                double quiver rep variety
                                                       (under preprojective relations)
quiver
                the set of irr components of
  Theorem 3 (Kashiwara-Saito):
                                              (i.e., geometric construction of the crystal)
```

Kashiwara crystal of

#1. Can we construct a crystal of on in a similar way to Kashiwara-Saito? (Do irr. decompositions in multi-persistence have good combinatorial structures?)

Note: Not preprojective relations, but commutative relations

#2. Can we construct a quantum group of which gives as its crystal?


Main result (answer to #1)

dimension vectors

(2)

(3) for

i.e., the moduli variety of all extensions of persistence modules

For

, the Kashiwara operators are defined by

Theorem (H. and Yahiro, arXiv:2504.14844):

give a Kashiwara crystal.

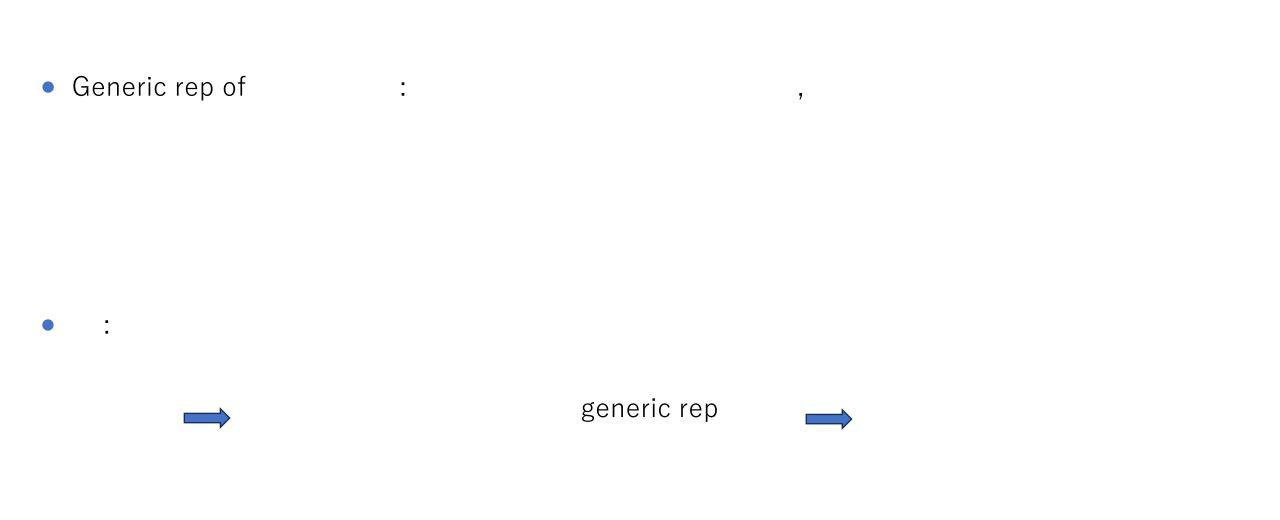
Kashiwara crystal of 1-parameter persistence

For each , is a vector space, hence irreducible.

Theorem:

Intuition of :

- Given a generic , we study whether we can construct the left comm. diagram.
- For , hence 0.
- For , comm. diagram w/generic


Irreducible components of 2 x 2 persistence

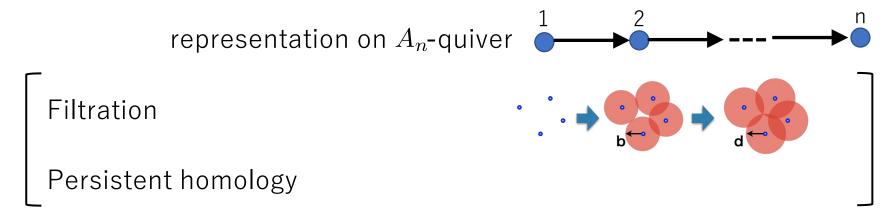
Prop: For

For ,

Theorem:

Intuition of the Kashiwara operators in 2 x 2 persistence

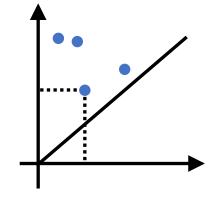
Future work


- Can we construct a quantum group of multi-persistence?
 - quantum group of the bound quiver giving the Kashiwara crystal

- From representation variety to indecomposable decompositions of multi-persistence
 - geometric characterization of interval approximations?
- Assign (generic) invariants as irreducible components
 - discriminative power
 - crystal graph and stability

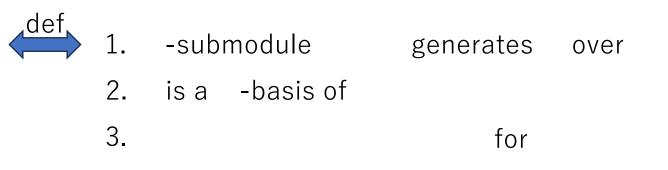
Thank you!

1-parameter persistence


1-parameter persistence module:

(Krull-Schmidt) : indecomposable,

(Gabriel)
$$I[b,d]:0\to\cdots\to0\to \Bbbk\to\cdots\to \Bbbk\to0\to\cdots\to0$$
 expresses the birth & death of a generator


Persistence diagram:

Remark on Kashiwara crystal

Cartan matrix Lie algebra universal enveloping algebra (over)
 quantum group

A crystal basis (Kashiwara crystal)
 of an integrable weight module

4. iff

5.,,,,

can be viewed as a basis of at

Character formula:

• : the irr. highest weight -module, : the highest weight vector

is a (unique) crystal basis

is a crystal basis of

Intuition of the Kashiwara operators in 2 x 2 persistence

• Generic rep of :

• :

generic rep

not generic rep