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• A graph is made up of discrete sets of nodes and edges
• A metric graph is a 1-dimensional metric space that can be realized as the underlying space of a graph

⟶ Metric graphs are geometric realizations of graphs with a length function on their edges!

From Graphs to Metric Graphs

Edge Subdivisions and Refinements
• For a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸  and ℓ:𝐸𝐸 → ℝ+ a length function, an edge subdivision of 𝑒𝑒 = [𝑢𝑢, 𝑣𝑣] ∈ 𝐸𝐸 is an operation on 𝐺𝐺:

1. Add a new node 𝑤𝑤 to 𝑉𝑉
2. Replace 𝑒𝑒 by two edges 𝑒𝑒′ = [𝑢𝑢,𝑤𝑤] and 𝑒𝑒′′ = [𝑤𝑤, 𝑣𝑣] such that ℓ 𝑒𝑒 = ℓ 𝑒𝑒′ + ℓ(𝑒𝑒𝑒𝑒)

• 𝐺𝐺𝐺 is a refinement 𝐺𝐺𝐺 ≥ 𝐺𝐺 if 𝐺𝐺𝐺 can be obtained from 𝐺𝐺 by a sequence of edge subdivisions

Notice that refinement is different from 
subgraph inclusion!

• If 𝐺𝐺𝐺 is a refinement, then there exists 
an injection 𝑉𝑉(𝐺𝐺) → 𝑉𝑉(𝐺𝐺𝐺) and a 
surjection 𝐸𝐸(𝐺𝐺𝐺) → 𝐸𝐸(𝐺𝐺)

• If 𝐺𝐺 is a subgraph of 𝐺𝐺𝐺, then 𝑉𝑉(𝐺𝐺) →
𝑉𝑉(𝐺𝐺𝐺) and 𝐸𝐸(𝐺𝐺𝐺) → 𝐸𝐸(𝐺𝐺) are both 
inclusions

Road network near the Victoria tube station in London
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Kernels are a central class of similarity function in machine learning and data analysis
They capture nonlinear relationships by embedding data (graphs) into high dimensional feature spaces

Let 𝒳𝒳 be a set and 𝑘𝑘:𝒳𝒳 × 𝒳𝒳 → ℝ be a symmetric function. Typically,

�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛

𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) ≥ 0

For any positive definite kernel 𝑘𝑘, there exists a unique Hilbert space (RKHS) ℋ and feature map 𝜙𝜙:𝒳𝒳 → ℋ such that
𝑘𝑘 𝑥𝑥,𝑦𝑦 = 𝜙𝜙 𝑥𝑥 ,𝜙𝜙(𝑦𝑦) ℋ

A popular way to construct kernels is to use distance functions 𝑑𝑑(𝑥𝑥,𝑦𝑦) on 𝒳𝒳
Schoenberg’s Theorem (Sejdinovic et al., 2013): If 𝑑𝑑(𝑥𝑥,𝑦𝑦) is conditionally negative type

�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛

𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) ≤ 0

Then the RBF-defined kernel 𝑘𝑘 𝑥𝑥,𝑦𝑦 = exp(−𝛾𝛾𝑑𝑑2(𝑥𝑥, 𝑦𝑦)) is positive definite for any scaling parameter 𝛾𝛾 > 0.

Definition (Cao & AM, 2025): A graph kernel 𝑘𝑘 is called a metric graph kernel if 𝑘𝑘 𝐺𝐺1′ ,𝐺𝐺2′ = 𝑘𝑘(𝐺𝐺1,𝐺𝐺2) for any refinements 
𝐺𝐺1′ ≥ 𝐺𝐺1 and 𝐺𝐺2′ ≥ 𝐺𝐺2.
⟶ AFAIK, all existing graph kernels are based on nodes, edges, and subgraphs so they fail to be metric graph kernels!

Graph Kernels and Metric Graph Kernels
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Algebraic and Tropical Geometry
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Geometry
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An algebraic variety [Picture This Maths] 

A tropical variety [Böhm et al., 2017]
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In classical algebraic geometry over the complex numbers:
Every smooth projective algebraic curve 𝑋𝑋 of genus 𝑔𝑔 encodes rich geometric information in Jac 𝑋𝑋 = ℂ𝑔𝑔/𝐿𝐿

The Torelli map sends each curve 𝑋𝑋 to its Jacobian Jac(𝑋𝑋); it is injective!

Torelli Maps

The Tropical Torelli Map for Weighted Graphs: Sending a Graph to a Matrix
• Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a graph with a positive weight function ℓ:𝐸𝐸 → ℝ+
• Identify each edge 𝑒𝑒 as [0, ℓ(𝑒𝑒)] and glue all intervals to get 𝐺𝐺
• |𝐺𝐺| is in 1:1 correspondence with abstract tropical curves in tropical geometry (Chan, 2021; Cao & AM, 2025a)
• The classical tropical Torelli map sends any metric graph to a flat torus
• For a weighted graph with generic length function, compute a unique SPD matrix 𝑄𝑄 to represent the flat torus 
• Theorem (Cao & AM, 2025b): 𝑄𝑄 𝐺𝐺 = 𝑄𝑄 𝐺𝐺′  for any refinement 𝐺𝐺𝐺 of 𝐺𝐺
• 𝑄𝑄(𝐺𝐺) contains the intrinsic geometric and topological information on the underlying metric graph |𝐺𝐺|

We also have Torelli maps in tropical geometry!
• Tropical curves are not smooth curves but rather metric graphs Γ
• Jac Γ = ℝ𝑔𝑔/𝐿𝐿 ⟶ To compute stuff, we have to choose a vector 

space basis for ℝ𝑛𝑛 and a lattice basis for 𝐿𝐿 (more on this later)

A complex 
algebraic curve 
[Peter Beelen]
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Mapping a Graph to a Matrix Using 1-Cycles
Graph Homology
• Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a connected graph with 𝑛𝑛 nodes and 𝑚𝑚 edges
• Let 𝐶𝐶0(𝐺𝐺;ℝ) be the 𝑛𝑛-dim’l vector space spanned by 𝑉𝑉;

𝐶𝐶1(𝐺𝐺;ℝ) be the 𝑚𝑚-dim’l vector space spanned by 𝐸𝐸 
• The boundary map 𝜕𝜕:𝐶𝐶1(𝐺𝐺;ℝ) → 𝐶𝐶0(𝐺𝐺;ℝ) is a linear map, 𝜕𝜕 𝑢𝑢, 𝑣𝑣 = 𝑣𝑣 − 𝑢𝑢
• The 1-homology group is 𝐻𝐻1 𝐺𝐺;ℝ = ker(𝜕𝜕)
• Its dimension 𝑔𝑔 = dim 𝐻𝐻1 𝐺𝐺;ℝ = 𝑚𝑚 − 𝑛𝑛 + 1 is called the genus of 𝐺𝐺;

any element of 𝜎𝜎 ∈ 𝐻𝐻1(𝐺𝐺;ℝ) is called a 1-cycle

Representing the Graph as a Matrix of 1-Cycles
• Define an inner product 𝒬𝒬𝐺𝐺  on 𝐶𝐶1(𝐺𝐺;ℝ) by 𝒬𝒬𝐺𝐺 𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖 ℓ(𝑒𝑒𝑖𝑖)ℓ(𝑒𝑒𝑗𝑗)
• Notice that under 𝒬𝒬𝐺𝐺, an element 𝑒𝑒𝑖𝑖 ∈ 𝐸𝐸 has norm ℓ(𝑒𝑒𝑖𝑖) when viewed as a 1-chain in 𝐶𝐶1(𝐺𝐺;ℝ) rather than its length 

ℓ(𝑒𝑒𝑖𝑖) when viewed as an edge in 𝐺𝐺 (Ji, 2012)
• The inner product is compatible with edge subdivision: For 𝑒𝑒 subdivided into 𝑒𝑒′, 𝑒𝑒𝑒𝑒

𝑒𝑒′ + 𝑒𝑒𝑒𝑒 𝒬𝒬
2 = ℓ 𝑒𝑒′ + ℓ 𝑒𝑒𝑒𝑒 = ℓ 𝑒𝑒 = 𝑒𝑒 𝒬𝒬

2

• Then fix a 1-cycle basis 𝜎𝜎1, … ,𝜎𝜎𝑔𝑔 for 𝐻𝐻1 𝐺𝐺;ℝ  and the inner product 𝒬𝒬𝐺𝐺  is represented by a matrix 𝑄𝑄

[Image credit: Bastian Rieck]

Definition (Cao & AM, 2025b): Let ℳ𝐺𝐺  be the space of weighted graphs of genus 𝑔𝑔 and 𝑆𝑆𝑆𝑆𝑆𝑆(𝑔𝑔) be the space of 𝑔𝑔 × 𝑔𝑔 SPD 
matrices. The tropical Torelli map is given by 𝒯𝒯:ℳ𝐺𝐺 → 𝑆𝑆𝑆𝑆𝑆𝑆 𝑔𝑔 ,𝐺𝐺 ↦ 𝑄𝑄(𝐺𝐺)
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Torelli Algorithm

1. Compute a minimal spanning tree 𝑇𝑇
2. Fix an orientation, each edge not in 𝑇𝑇 determines a 1-cycle:

𝜎𝜎1 = 𝑒𝑒3 − 𝑒𝑒2 + 𝑒𝑒1; 𝜎𝜎2 = 𝑒𝑒7 − 𝑒𝑒5 − 𝑒𝑒6; 𝜎𝜎3 = 𝑒𝑒8 − 𝑒𝑒6 − 𝑒𝑒4 − 𝑒𝑒2

3. Write down the cycle–edge incidence matrix

4. Compute 𝑄𝑄 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇 =
6 0 2
0 18 6
2 6 20
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Uniqueness & Computational Complexity
The output becomes unique when we assume genericity of length functions:
Definition: Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a connected graph. A length function ℓ:𝐸𝐸 → ℝ+ is generic if 𝐺𝐺 has a unique minimal 
spanning tree and the lengths of edges are distinct.

If 𝐺𝐺 is equipped with a generic length function, it admits a canonical orientation

Theorem (Cao & AM, 2025b): Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a connected graph with a generic length function ℓ. Under the canonical 
orientation, 𝑄𝑄 is unique and invariant under any refinement of 𝐺𝐺.

Complexity of the Tropical Torelli Map: 𝑂𝑂(𝑔𝑔𝑔𝑔(𝑔𝑔 + log𝑛𝑛))
• Compute the reduced cycle–edge incidence matrix: 𝑂𝑂 𝑔𝑔𝑔𝑔 log𝑛𝑛
• Compute 𝑄𝑄: 𝑂𝑂 𝑔𝑔2𝑛𝑛

Three Sparsity Classes Based on 𝑔𝑔
1. Sparse graphs: 𝑚𝑚 ≍ 𝑛𝑛 + 𝑐𝑐 ⟹ 𝑔𝑔 = 𝑂𝑂 1 then the complexity is 𝑂𝑂(𝑛𝑛 log𝑛𝑛)
2. Semi-sparse graphs: 𝑚𝑚 ≍ 𝑐𝑐𝑐𝑐 ⟹ 𝑔𝑔 = 𝑂𝑂 𝑛𝑛 then the complexity is 𝑂𝑂(𝑛𝑛3)
3. Dense graphs: 𝑚𝑚 ≍ 𝑛𝑛1+𝑐𝑐 ⟹ 𝑔𝑔 = 𝑂𝑂(𝑛𝑛1+𝑐𝑐) then the complexity is 𝑂𝑂(𝑛𝑛3+2𝑐𝑐) [Image credit: Emory Oxford College]
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Tropical Metric Graph Kernels
• 𝑄𝑄 is a symmetric positive definite matrix (SPD)
• To compare graphs with different genus, we enlarge the embedding space to positive semi-definite matrices (PSD):

• Pad 𝑄𝑄 by zero if dim 𝑄𝑄 < 𝑔𝑔0
• Extract a submatrix by randomly choosing 𝑔𝑔0 rows and columns if dim 𝑄𝑄 > 𝑔𝑔0

The Tropical Torelli–Euclidean Kernel:
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺1,𝐺𝐺2 = exp(−𝛾𝛾 𝑄𝑄 𝐺𝐺1 − 𝑄𝑄(𝐺𝐺2) 𝐹𝐹

2)

The Tropical Torelli–Wasserstein Kernel:
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺1,𝐺𝐺2 = exp(−𝛾𝛾𝑊𝑊2 𝑄𝑄 𝐺𝐺1 ,𝑄𝑄(𝐺𝐺2) )

where

This derives from the inner product form ⁄ℝ𝑔𝑔 𝑄𝑄 , � 2  because remember, Jac Γ = ℝ𝑔𝑔 ∕ 𝐿𝐿

Computational Complexity: For 𝑁𝑁 matrices 𝑄𝑄𝑖𝑖  of dimension 𝑔𝑔0, the time complexity for the full kernel matrix is:
• TTE: 𝑂𝑂 𝑁𝑁2𝑔𝑔02

• TTW: 𝑂𝑂(𝑁𝑁2𝑔𝑔03)
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Experiments: Benchmarking

Benchmarked against 23 graph 
datasets and compared to 5 other 
graph kernels in classification tasks:
• Edge–Histogram kernel
• Graphlet sampling kernel
• ODD–STh kernel
• Shortest Path kernel
• 𝑘𝑘-Core Decomposition kernel
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An Application to Urban Road Network Classification

“Gridiron” “Linear” “Chaotic” “Tributary”
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URN Classification Results & Runtime
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Summary
• Using tropical geometry, we defined new kernels for metric graphs
• The kernels are based on the 1-homology group of a graph
• They are invariant to edge-subdivisions so we can compare graphs that represent different underlying spaces
• First connection between tropical and information geometry
• They are fast to compute
• They outperform other kernels in the absence of node/edge labels on both synthetic and real data
Limitations
• They don’t incorporate label or attribute information
• They don’t work on trees! (Maybe add an extra “sink” node to each graph that connects to the rest of the nodes?)
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