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From Graphs to Metric Graphs

* Agraphis made up of discrete sets of nodes and edges
A metric graph is a 1-dimensional metric space that can be realized as the underlying space of a graph
— Metric graphs are geometric realizations of graphs with a length function on their edges!

Edge Subdivisions and Refinements

* Foragraph G = (V,E) and #: E — R, alength function, an edge subdivision of e = [u, v] € E is an operation on G:
1. AddanewnodewtolV
2. Replace e by two edges e’ = [u,w] and e’ = [w, v] such that £(e) = £(e’) + £(e")

« G'isarefinement G' = G if G' can be obtained from G by a sequence of edge subdivisions

Notice that refinement is different from
subgraph inclusion!

e |If G'is arefinement, then there exists Q}/\;E}
an injection V(G) - V(G") and a V<K \
surjection E(G') » E(G)

* If G is asubgraph of G', thenV(G) — -x/
V(G") and E(G") » E(G) are both
inclusions

Road network near the Victoria tube station in London
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Graph Kernels and Metric Graph Kernels

Kernels are a central class of similarity function in machine learning and data analysis
They capture nonlinear relationships by embedding data (graphs) into high dimensional feature spaces

Let X be asetand k: X X X — R be a symmetric function. Typically,
n n

z z CiCjk(.X'i,Xj) >0

i=1j=1
For any positive definite kernel k, there exists a unique Hilbert space (RKHS) H and feature map ¢p: X — H such that

k(x,y) = (p(x), ¢(¥))3

A popular way to construct kernels is to use distance functions d(x,y) on X
Schoenberg’s Theorem (Sejdinovic et al., 2013): If d(x y) is conditionally negative type

Z Z cicid(x;,x;) <0

i=1j=1
Then the RBF-defined kernel k(x, y) = exp(—yd?(x,y)) is positive definite for any scaling parameter y > 0.

Definition (Cao & AM, 2025): A graph kernel k is called a metric graph kernel if k(G{, G;) = k(G,, G,) for any refinements
G{ > Gl and Gé > Gz.
— AFAIK, all existing graph kernels are based on nodes, edges, and subgraphs so they fail to be metric graph kernels!
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Algebraic and Tropical Geometry

Algebraic Locus of zeros
of polynomial
Geometry systems
An algebraic variety [Picture This Maths]
. Boundaries
TrO p ICa I between linear

parts of tropical
polynomials

Geometry

A tropical variety [Bohm et al., 2017]
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Torelli Maps

In classical algebraic geometry over the complex numbers:
Every smooth projective algebraic curve X of genus g encodes rich geometric information in Jac(X) = C9/L

The Torelli map sends each curve X to its Jacobian Jac(X); it is injective!

We also have Torelli maps in tropical geometry!

* Tropical curves are not smooth curves but rather metric graphs I

* Jac(l') = RY9/L — To compute stuff, we have to choose a vector
space basis for R™ and a lattice basis for L (more on this later)

A complex
algebraic curve
[Peter Beelen]

The Tropical Torelli Map for Weighted Graphs: Sending a Graph to a Matrix

 LetG = (V,E) be a graph with a positive weight function £: F - R,

* Identify each edge e as [0, (e)] and glue all intervals to get |G|

* |G|isin 1:1 correspondence with abstract tropical curves in tropical geometry (Chan, 2021; Cao & AM, 2025a)

* The classical tropical Torelli map sends any metric graph to a flat torus
* For a weighted graph with generic length function, compute a unique SPD matrix Q to represent the flat torus

* Theorem (Cao & AM, 2025b): Q(G) = Q(G') for any refinement G’ of G
* Q(G) contains the intrinsic geometric and topological information on the underlying metric graph |G|
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Mapping a Graph to a Matrix Using 1-Cycles

Graph Homology

Representing the Graph as a Matrix of 1-Cycles

Let G = (V, E) be a connected graph with n nodes and m edges \
Let Cy(G; R) be the n-dim’l vector space spanned by V; [Image credit: Bastian Rieck]

C1(G; R) be the m-dim’l vector space spanned by E

The boundary map 9: C;(G; R) = Cy(G; R) is a linear map, d([u,v]) = v —u / /
The 1-homology group is H;(G; R) = ker(9) / e

Its dimension g = dim(H1 (G; IR)) =m —n + 1 is called the genus of G; \
any element of 0 € H{(G; R) is called a I-cycle \
e /

Define an inner product Q. on C;(G; R) by QG(el-, e]-) = 6ij\/€(ei)€(ej)
Notice that under Q, an element e¢; € E has norm /£(e;) when viewed as a 1-chain in C;(G; R) rather than its length

£(e;) when viewed as an edge in G (Ji, 2012)
The inner product is compatible with edge subdivision: For e subdivided into e’, e"’

le’ +e"llg = £(e") +£(e") = £(e) = llell3
Then fix a 1-cycle basis o7, ..., o4 for H; (G; R) and the inner product Q. is represented by a matrix Q

Definition (Cao & AM, 2025b): Let M; be the space of weighted graphs of genus g and SPD(g) be the space of g X g SPD
matrices. The tropical Torelli map is given by T: M — SPD(g),G » Q(G)
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Torelli Algorithm

1. Compute a minimal spanning tree T

(a) Example graph

(b) Orientation and minimal spanning tree

2. Fix an orientation, each edge not in T determines a 1-cycle:
O'1=83—82+81; 0y) = €7 —€g —€g, 03 = €g — € — €4 — €

1 -1 1 0

3. Write down the cycle—edge incidence matrix 7 — [0 0 0 0
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4. Compute Q = MLMT = [

6 0

2 6

0 18

|

0 -1 0 -1

0
-1
0

0O 0 O
-1 1 0
-1 0 1



Uniqueness & Computational Complexity

The output becomes unique when we assume genericity of length functions:
Definition: Let G = (V/, E') be a connected graph. A length function £: E = R, is generic if G has a unique minimal
spanning tree and the lengths of edges are distinct.

If G is equipped with a generic length function, it admits a canonical orientation

Theorem (Cao & AM, 2025b): Let G = (V, E) be a connected graph with a generic length function €. Under the canonical
orientation, Q is unique and invariant under any refinement of G.

Complexity of the Tropical Torelli Map: O (gn(g + logn))
* Compute the reduced cycle—edge incidence matrix: 0(gnlogn)
e Compute Q: 0(g*n)

Three Sparsity Classes Based on g

1. Sparse graphs:m =n + ¢ = g = 0(1) then the complexity is O(nlogn)
2. Semi-sparse graphs: m = cn = g = 0(n) then the complexity is 0(n3)
3. Dense graphs: m = n'*¢ = g = 0(n'*°) then the complexity is 0 (n**2¢) [Image credit: Emory Oxford College]
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Tropical Metric Graph Kernels

e (is a symmetric positive definite matrix (SPD)

* To compare graphs with different genus, we enlarge the embedding space to positive semi-definite matrices (PSD):
* Pad Q by zero if dim(Q) < g,
 Extract a submatrix by randomly choosing g, rows and columns if dim(Q) > g,

The Tropical Torelli-Euclidean Kernel:
krre(Gq, G2) = exp(—y[|Q(G1) — Q(GZ)HIZ:)

The Tropical Torelli-Wasserstein Kernel:
krrw (G1, G2) = exp(—yW?(Q(G1), Q(G2)))

where W2(Q(G1), Q(G2)) = Tr(Q(G1)) + Tr(Q(G>)) — 2“(\/\/Q(G1)Q(G2)\/Q(Gl))

This derives from the inner product form (]Rg/\/a, ||-||2) because remember, Jac(I) = RY / L

Computational Complexity: For N matrices Q; of dimension g,, the time complexity for the full kernel matrix is:
« TTE: O(N?g3)
« TTW: O(N?g}
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Experiments: Benchmarking

Benchmarked against 23 graph
datasets and compared to 5 other

graph kernels in classification tasks:

Edge—Histogram kernel
Graphlet sampling kernel
ODD-STh kernel

Shortest Path kernel

k-Core Decomposition kernel

o Acc * Std o Acc * Std o Acc + Std o Acc + Std
084 g 35 i 0.8 0.8 0.8 EE ;IE I {
*“"EH Gs 05 SP kCD TTETTW **"EH @s o0s DLBJ TTE TTW **"EH Gs 05 sp I-(CD‘IDETI’W *"EH as os ’:I;’k’ijjmsrrw
(a) AIDS (b) FRANKENSTEIN  (c) IMDB-BINARY (d) MUTAG
. Acc + Std " Acc + Std " Acc + Std " Acc + Std
0.8 0.8 HE 0.8 E 0.8
*“"EH G5 05 SP kCD TTETTW o D GS ;ﬂ; DKDJTTETFW **"EH G5 05 SP KCD TTETTW %0 E GS 0S SP kCDﬂTFW
(e) NCI109 (f) PROTEIN (g) REDDIT-BINARY  (h) REDDIT-5K
Name log(g/n) Sparsity GS OS SP kCD TTE TTW
AIDS -2.26 S 9.59 44.30 106.51 231.80 2.53 175.45
BZR -2.29 S 8.57 6.49 3.63 11.81 0.73 9.70
MSRC-9 0.36 SS 111.21 5.99 2.78 12.86 1.85 31.72
MSRC-21 0.45 SS 1004.74 109.10 68.17 257.27 25.97 1497.16
BZR-MD 2.26 D 2328.25 0.97 0.91 63.16 19.21 1410.91
ER-MD 2.31 D 5503.19 1.48 2.78 119.88 31.80 5681.93

Imperial College London



An Application to Urban Road Network Classification
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URN CIassificatio_n Results & Runti_me

OS SP TTE TTW

Name n g Acc Time Acc Time  Acc Time Acc Time
(std.)) (std.) (std.) (std.) (std.) (std.)

2-1S 12040 5426 84.00 188.70 92.25 21.01 87.50 1496 93.50 114.63
(66.73) (34.47) (12.21) (5.30) (5.24) (4.90)

2-1M  362.35 18796 M M M M 67.10 105.43 89.75 1357.85
(203.81) (123.03) (7.48) (3.61)

2-2S 9640 38.84 9050 252.25 94.67 39.06 9150 17.82 92.67 166.45
(77.20) (36.89) (1.98) (3.23) (3.11) (3.43)

2-2M  289.60 123.00 M M M M 92.67 119.28 94.50 1553.34
(239.37) (121.43) (3.82) (2.99)

3-8 55.02 2231 6250 99.02 84.01 13.27 87.67 7.25 93.17 79.36
(51.09) (24.06) (15.69) (3.43) (4.03) (2.83)

3-M 25049 131.61 M M M M 75.60 14354 84.13 2750.13
(206.92) (128.22) (2.80) (2.63)

4-S 81.82 37.68 8438 365.67 83.00 67.85 81.12 22.07 81.00 287.45
(74.89) (38.39) (3.80) (4.58) (4.12) (4.36)

4-M 283.36 133.03 M M M M 68.12 155.03 77.25 3187.99
(238.34) (125.64) (3.80) (3.70)
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Summary

Using tropical geometry, we defined new kernels for metric graphs

The kernels are based on the 1-homology group of a graph

They are invariant to edge-subdivisions so we can compare graphs that represent different underlying spaces
First connection between tropical and information geometry

They are fast to compute

They outperform other kernels in the absence of node/edge labels on both synthetic and real data

Limitations

They don’t incorporate label or attribute information

They don’t work on trees! (Maybe add an extra “sink” node to each graph that connects to the rest of the nodes?)
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