IMPERIAL

Topological Graph Kernels from Tropical Geometry

The Geometric Realization of AATRN (Applied Algebraic Topology Research Network) IMSI Chicago

Y. Cao & AM (2025). Metric Graph Kernels via the Tropical Torelli Map, arXiv:2505.12129.

Anthea Monod 18-22 August 2025

From Graphs to Metric Graphs

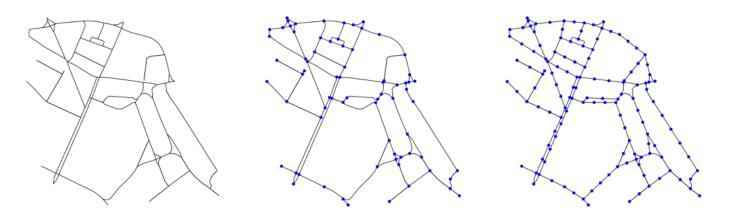
- A graph is made up of discrete sets of nodes and edges
- A metric graph is a 1-dimensional metric space that can be realized as the underlying space of a graph
 - → Metric graphs are geometric realizations of graphs with a length function on their edges!

Edge Subdivisions and Refinements

- For a graph G = (V, E) and $\ell: E \to \mathbb{R}_+$ a length function, an *edge subdivision* of $e = [u, v] \in E$ is an operation on G:
 - 1. Add a new node w to V
 - 2. Replace e by two edges e' = [u, w] and e'' = [w, v] such that $\ell(e) = \ell(e') + \ell(e'')$
- G' is a refinement $G' \ge G$ if G' can be obtained from G by a sequence of edge subdivisions

Notice that refinement is different from subgraph inclusion!

- If G' is a refinement, then there exists an injection $V(G) \rightarrow V(G')$ and a surjection $E(G') \rightarrow E(G)$
- If G is a subgraph of G', then $V(G) \rightarrow V(G')$ and $E(G') \rightarrow E(G)$ are both inclusions



Road network near the Victoria tube station in London

Graph Kernels and Metric Graph Kernels

Kernels are a central class of similarity function in machine learning and data analysis

They capture nonlinear relationships by embedding data (graphs) into high dimensional feature spaces

Let \mathcal{X} be a set and $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a symmetric function. Typically,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) \ge 0$$

For any positive definite kernel k, there exists a unique Hilbert space (RKHS) \mathcal{H} and feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that $k(x,y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{H}}$

A popular way to construct kernels is to use distance functions d(x, y) on \mathcal{X} Schoenberg's Theorem (Sejdinovic et al., 2013): If d(x, y) is conditionally negative type

$$\sum_{i=1}^n \sum_{j=1}^n c_i c_j d(x_i, x_j) \le 0$$

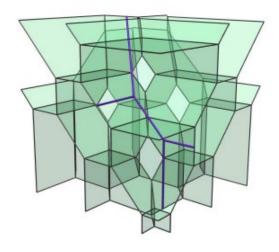
Then the RBF-defined kernel $k(x,y) = \exp(-\gamma d^2(x,y))$ is positive definite for any scaling parameter $\gamma > 0$.

Definition (Cao & AM, 2025): A graph kernel k is called a *metric graph kernel* if $k(G'_1, G'_2) = k(G_1, G_2)$ for any refinements $G'_1 \ge G_1$ and $G'_2 \ge G_2$.

→ AFAIK, all existing graph kernels are based on nodes, edges, and subgraphs so they fail to be metric graph kernels!

Algebraic and Tropical Geometry

An algebraic variety [Picture This Maths]



A tropical variety [Böhm et al., 2017]

Algebraic Geometry

Locus of zeros of polynomial systems

Tropical Geometry

Boundaries between linear parts of tropical polynomials

Torelli Maps

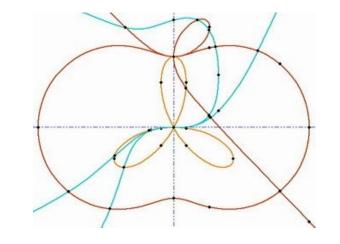
In classical algebraic geometry over the complex numbers:

Every smooth projective algebraic curve X of genus g encodes rich geometric information in $Jac(X) = \mathbb{C}^g/L$

The Torelli map sends each curve X to its Jacobian Jac(X); it is injective!

We also have Torelli maps in tropical geometry!

- Tropical curves are not smooth curves but rather *metric graphs* Γ
- Jac $(\Gamma) = \mathbb{R}^g/L \longrightarrow$ To compute stuff, we have to choose a vector space basis for \mathbb{R}^n and a lattice basis for L (more on this later)



A complex algebraic curve [Peter Beelen]

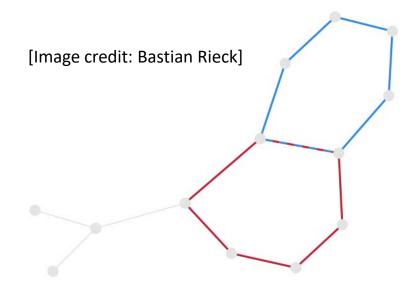
The Tropical Torelli Map for Weighted Graphs: Sending a Graph to a Matrix

- Let G = (V, E) be a graph with a positive weight function $\ell: E \to \mathbb{R}_+$
- Identify each edge e as $[0, \ell(e)]$ and glue all intervals to get |G|
- |G| is in 1:1 correspondence with abstract tropical curves in tropical geometry (Chan, 2021; Cao & AM, 2025a)
- The classical tropical Torelli map sends any metric graph to a flat torus
- For a weighted graph with *generic length function*, compute a unique SPD matrix Q to represent the flat torus
- Theorem (Cao & AM, 2025b): Q(G) = Q(G') for any refinement G' of G
- $ullet \ Q(G)$ contains the intrinsic geometric and topological information on the underlying metric graph |G|

Mapping a Graph to a Matrix Using 1-Cycles

Graph Homology

- Let G = (V, E) be a connected graph with n nodes and m edges
- Let $C_0(G; \mathbb{R})$ be the n-dim'l vector space spanned by V; $C_1(G; \mathbb{R})$ be the m-dim'l vector space spanned by E
- The boundary map $\partial: C_1(G; \mathbb{R}) \to C_0(G; \mathbb{R})$ is a linear map, $\partial([u, v]) = v u$
- The 1-homology group is $H_1(G; \mathbb{R}) = \ker(\partial)$
- Its dimension $g = \dim(H_1(G; \mathbb{R})) = m n + 1$ is called the *genus* of G; any element of $\sigma \in H_1(G; \mathbb{R})$ is called a *1-cycle*



Representing the Graph as a Matrix of 1-Cycles

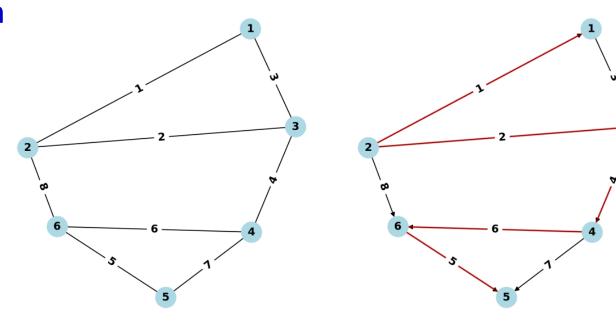
- Define an inner product Q_G on $C_1(G;\mathbb{R})$ by $Q_G(e_i,e_j)=\delta_{ij}\sqrt{\ell(e_i)\ell(e_j)}$
- Notice that under Q_G , an element $e_i \in E$ has norm $\sqrt{\ell(e_i)}$ when viewed as a 1-chain in $C_1(G; \mathbb{R})$ rather than its length $\ell(e_i)$ when viewed as an edge in G (Ji, 2012)
- The inner product is compatible with edge subdivision: For e subdivided into e', e''

$$||e' + e''||_Q^2 = \ell(e') + \ell(e'') = \ell(e) = ||e||_Q^2$$

• Then fix a 1-cycle basis $\sigma_1, ..., \sigma_g$ for $H_1(G;\mathbb{R})$ and the inner product Q_G is represented by a matrix Q

Definition (Cao & AM, 2025b): Let \mathcal{M}_G be the space of weighted graphs of genus g and SPD(g) be the space of $g \times g$ SPD matrices. The *tropical Torelli map* is given by $\mathcal{T}: \mathcal{M}_G \to SPD(g)$, $G \mapsto Q(G)$

Torelli Algorithm



(a) Example graph

- (b) Orientation and minimal spanning tree
- 1. Compute a minimal spanning tree *T*
- 2. Fix an orientation, each edge not in T determines a 1-cycle:

$$\sigma_1 = e_3 - e_2 + e_1$$
; $\sigma_2 = e_7 - e_5 - e_6$; $\sigma_3 = e_8 - e_6 - e_4 - e_2$

3. Write down the cycle–edge incidence matrix $M = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix}$

4. Compute
$$Q = MLM^T = \begin{bmatrix} 6 & 0 & 2 \\ 0 & 18 & 6 \\ 2 & 6 & 20 \end{bmatrix}$$

Uniqueness & Computational Complexity

The output becomes unique when we assume genericity of length functions:

Definition: Let G = (V, E) be a connected graph. A length function $\ell: E \to \mathbb{R}_+$ is *generic* if G has a unique minimal spanning tree and the lengths of edges are distinct.

If G is equipped with a generic length function, it admits a canonical orientation

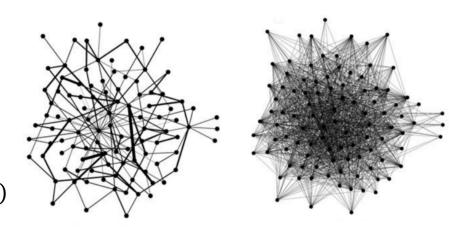
Theorem (Cao & AM, 2025b): Let G = (V, E) be a connected graph with a generic length function ℓ . Under the canonical orientation, Q is unique and invariant under any refinement of G.

Complexity of the Tropical Torelli Map: $O(gn(g + \log n))$

- Compute the reduced cycle–edge incidence matrix: $O(gn \log n)$
- Compute $Q: O(g^2n)$

Three Sparsity Classes Based on g

- 1. Sparse graphs: $m = n + c \implies g = O(1)$ then the complexity is $O(n \log n)$
- 2. Semi-sparse graphs: $m = cn \implies g = O(n)$ then the complexity is $O(n^3)$
- 3. Dense graphs: $m = n^{1+c} \implies g = O(n^{1+c})$ then the complexity is $O(n^{3+2c})$



[Image credit: Emory Oxford College]

Tropical Metric Graph Kernels

- *Q* is a symmetric positive definite matrix (SPD)
- To compare graphs with different genus, we enlarge the embedding space to positive semi-definite matrices (PSD):
 - Pad Q by zero if $\dim(Q) < g_0$
 - Extract a submatrix by randomly choosing g_0 rows and columns if $\dim(Q) > g_0$

The Tropical Torelli–Euclidean Kernel:

$$k_{TTE}(G_1, G_2) = \exp(-\gamma \|Q(G_1) - Q(G_2)\|_F^2)$$

The Tropical Torelli–Wasserstein Kernel:

$$k_{TTW}(G_1, G_2) = \exp(-\gamma W^2(Q(G_1), Q(G_2)))$$

where
$$W^2(Q(G_1),Q(G_2)) = \operatorname{Tr}(Q(G_1)) + \operatorname{Tr}(Q(G_2)) - 2\operatorname{Tr}\left(\sqrt{Q(G_1)}Q(G_2)\sqrt{Q(G_1)}\right)$$

This derives from the inner product form $\left(\mathbb{R}^g/\sqrt{Q}\,,\|\cdot\|_2\right)$ because remember, $\mathrm{Jac}(\Gamma)=\mathbb{R}^g/L$

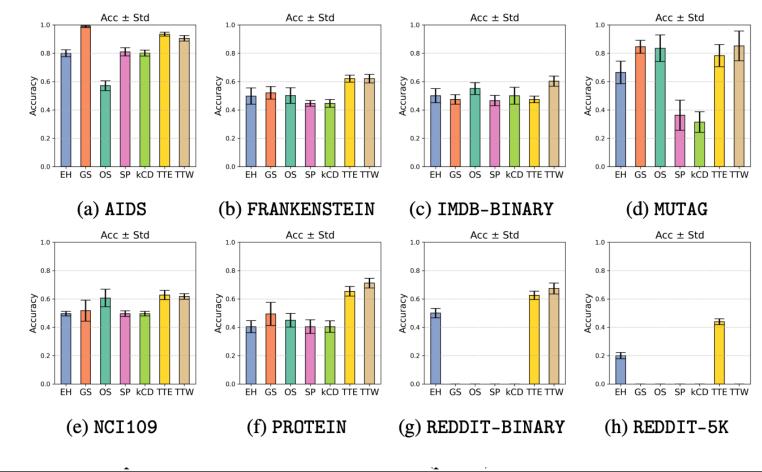
Computational Complexity: For N matrices Q_i of dimension g_0 , the time complexity for the full kernel matrix is:

- TTE: $O(N^2g_0^2)$
- TTW: $O(N^2g_0^3)$

Experiments: Benchmarking

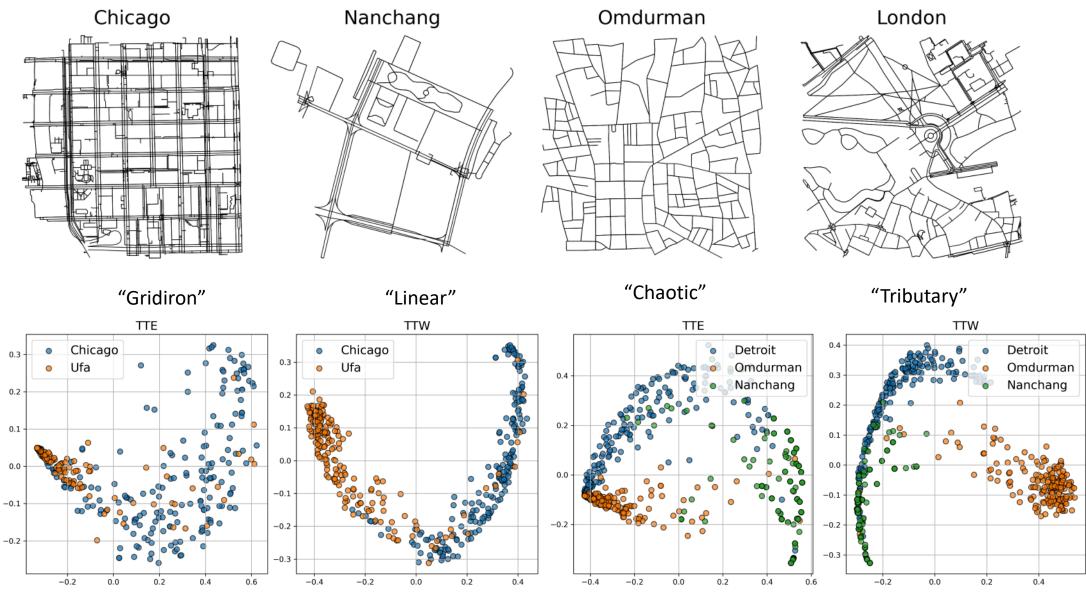
Benchmarked against 23 graph datasets and compared to 5 other graph kernels in classification tasks:

- Edge–Histogram kernel
- Graphlet sampling kernel
- ODD–STh kernel
- Shortest Path kernel
- k-Core Decomposition kernel



Name	$\log(ar{g}/ar{n})$	Sparsity	GS	OS	SP	kCD	TTE	TTW
AIDS	-2.26	S	9.59	44.30	106.51	231.80	2.53	175.45
BZR	-2.29	S	8.57	6.49	3.63	11.81	0.73	9.70
MSRC-9	0.36	SS	111.21	5.99	2.78	12.86	1.85	31.72
MSRC-21	0.45	SS	1004.74	109.10	68.17	257.27	25.97	1497.16
BZR-MD	2.26	D	2328.25	0.97	0.91	63.16	19.21	1410.91
ER-MD	2.31	D	5503.19	1.48	2.78	119.88	31.80	5681.93

An Application to Urban Road Network Classification



URN Classification Results & Runtime

			OS		SP		TTE		TTW	
Name	$ar{n}$ (std.)	\bar{g} (std.)	Acc (std.)	Time	Acc (std.)	Time	Acc (std.)	Time	Acc (std.)	Time
2-1S	120.40 (66.73)	54.26 (34.47)	84.00 (12.21)	188.70	92.25 (5.30)	21.01	87.50 (5.24)	14.96	93.50 (4.90)	114.63
2-1M	362.35	187.96) (<i>123.03</i>)	M	M	M	M	67.10 (7.48)	105.43	89.75 (3.61)	1357.85
2-2S	96.40 (77.20)	38.84 (<i>36.89</i>)	90.50 (1.98)	252.25	94.67 (3.23)	39.06	91.50 (3.11)	17.82	92.67 (3.43)	166.45
2-2M	289.60 (239.37)	123.00) (<i>121.43</i>)	M	M	M	M	92.67 (3.82)	119.28	94.50 (2.99)	1553.34
3-S	55.02 (51.09)	22.31 (24.06)	62.50 (15.69)	99.02	84.01 <i>(3.43)</i>	13.27	87.67 (4.03)	7.25	93.17 (2.83)	79.36
3-M	250.49	131.61 (128.22)	M	M	M	M	75.60 (2.80)	143.54	84.13 (2.63)	2750.13
4-S	81.82	37.68 (38.39)	84.38	365.67	83.00 (4.58)	67.85	81.12 (4.12)	22.07	81.00 (4.36)	287.45
4-M	283.36	,	M	M	M	M	68.12 (3.80)	155.03	77.25 (3.70)	3187.99

Summary

- Using tropical geometry, we defined new kernels for metric graphs
- The kernels are based on the 1-homology group of a graph
- They are invariant to edge-subdivisions so we can compare graphs that represent different underlying spaces
- First connection between tropical and information geometry
- They are fast to compute
- They outperform other kernels in the absence of node/edge labels on both synthetic and real data

Limitations

- They don't incorporate label or attribute information
- They don't work on trees! (Maybe add an extra "sink" node to each graph that connects to the rest of the nodes?)

 References
- Brannetti, S., Melo, M. and Viviani, F., 2011. On the tropical Torelli map. *Advances in Mathematics*, 226(3), pp.2546-2586.
- Cao, Y. and AM, 2025. Computing the Tropical Abel–Jacobi Transform and Tropical Distances for Metric Graphs. arXiv:2504.11619.
- Chan, M., 2021. Moduli spaces of curves: classical and tropical. *Notices of the American Mathematical Society*, 68(10), pp.1-1713.
- Miranda, R., 1995. Algebraic curves and Riemann surfaces (Vol. 5). American Mathematical Soc.
- Thanwerdas, Y. and Pennec, X., 2023. O(n)-invariant Riemannian metrics on SPD matrices. *Linear Algebra and its Applications*, 661, pp.163-201.

IMPERIAL

Y. Cao & AM (2025). Metric Graph Kernels via the Tropical Torelli Map, arXiv:2505.12129.

Thank You!

IMSI Chicago

Anthea Monod 18-22/8/2025 Inés and Arne are here and you should check out their posters and talk to them:

