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Proof. We approximate a map S — K by a simplicial map from a
triangulation of S of this form

With this approach it can be proved that for any r > 0 there exists
k > 0 such that k-conicity implies r-connectivity.

However, there is a much simpler proof of this fact based on ideas
by Meshulam and Kabhle, using a version of the Nerve lemma.
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unions of simplices of K and L.

Proof of lemma. Let L < S be a subcomplex of at most r — t
vertices. Then {vi,va,..., vt} ® L < K has at most r vertices and
thus there exists v € K such that {vi, va,..., v} ® L € st(v).
This means that v & {vi,vo,..., i} ® L< K, sov® L < S.
Thus, L < sts(v).
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(r — t + 1)-connected. For t = 1 it is obvious. For2 <t <r+1,
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-Linial-Meshulam (2-dimensional), Meshulam-Wallach
(d-dimensional) models.

-Clique model.

-Random geometric models.

-Multiparameter model. We begin with a set V of n elements. For
each 0 C V take some 0 < p, < 1. For each v € V add this
vertex to the complex with probability p, independently. For each
pair v, w in the complex, add the 1-simplex with probability p,.,.
Continue skeleton by skeleton. The medial regime is the particular
case in which all the p, lie in an interval [a, b] for fixed
0<a<b<l
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Farber and Mead proved that dim(K) < log, log,(n) a.a.s.
Recall that the (reduced) Lusternik-Schnirelmann category satisfies
the inequality

dim(K)
cat(K) < conn(K) £1°

Thus
cat(K) < 2 a.a.s. In particular TC(K) < 2cat(K) < 4 a.a.s.

During the last months we have been working to improve this
bounds.



: For any r > 0 a random complex in the medial regime is
r-connected asymptotically almost surely.
Proof. It suffices to show that K is (2r + 2)-conic a.a.s. If Lis a
complex with vertex set V| C V of cardinality smaller than or
equal to 2r + 2, and v € V \ V|, the conditional probability

P(L < St(V)‘L < K) = py H Pvo > a#SL+1 > 322’+2.
oel

r+1
34 .

Thus  P(LLst(V)IL<SK)<1-a"" " =1-
If Lis fixed but v ¢ L is not, then
P(Lst(v) Vv ¢ LIL<S K) < (1—a% )22,
and then
P(L & st(v) Vv e VILS K) < (1—a* ")n2r-2,
Thus,
P(K is not (2r+2)-conic) < >~ P(L < K and L £ st(v) Vv € V) <
L

(2r12)222r+2(1 — a2 0,



. Let K be a simplicial complex and {L;};c; a family
of subcomplexes covering K. Let r > 0. If each non-empty
intersection L; N L, N...NLj; is (r — t 4 1)-connected for every
1 <t<r+1, then K is r-connected if and only if the nerve
N({L;}ies) is r-connected.

: Let K be an r-conic simplicial complex. Let t < r and
vi,v2,...,v¢ € K. Then S = st(v;) < K is (r — t)-conic.

Thm: If a simplicial complex K is (2r 4 2)-conic, then it is
r-connected. Proof. Let U = {st(v)},ck. The nerve N(U) is
2r-connected because it has complete (2r + 1)-skeleton. In
particular it is r-connected. Let 1 <t < r—+1 and let
vi,va,...,v¢ € K. We want to prove that S = () st(v;) is

(r — t + 1)-connected. For t = 1 it is obvious. For2 <t <r+1,
we have 0 < r —t+ 1 < r and by induction it suffices to check
that S is (2r — 2t + 4)-conic. But the lemma says that S is

(2r +2 — t)-conic, and since t > 2, 2r +2 — t > 2r — 2t 4+ 4.
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is r-narrow if for every 2 <t <r+2and vi,vp,...,vs € K,
S=st(vi) < Kis (r — t + 1)-narrow.

Thm: If a simplicial complex K is r-narrow, then it is r-connected.
Proof. Let U = {st(v)}vek. The nerve N(i) is r-connected
because it has complete (r + 1)-skeleton. Let 1 <t < r+1 and let
vi,v2,...,v¢ € K. We want to prove that S = (st(v;) is

(r — t + 1)-connected. For t = 1 it is obvious. For2 <t <r+1,
we have 0 < r — t+ 1 < r and by induction it suffices to check
that S is (r — t + 1)-narrow. This holds by definition.



Def: Let r > —1. We say that a complex K satisfies property T, if
forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®%_;Z; < K, we have that ®*_, Z;
is contained in the star of a vertex.



Def: Let r > —1. We say that a complex K satisfies property T, if
forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®f(:12,- < K, we have that ®f-‘:12,-
is contained in the star of a vertex.

Thm: K is r-narrow if and only if it satisfies T,.



Def: Let r > —1. We say that a complex K satisfies property T, if
forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®f(:12,- < K, we have that ®f-‘:12,-
is contained in the star of a vertex.

Thm: K is r-narrow if and only if it satisfies T,.

. If K satisfies T,, then it has at most 2r + 2 vertices and at
most



Def: Let r > —1. We say that a complex K satisfies property T, if
forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®f(:12,- < K, we have that ®f-‘:12,-
is contained in the star of a vertex.

Thm: K is r-narrow if and only if it satisfies T,.

. If K satisfies T,, then it has at most 2r + 2 vertices and at
most 3 11 simplices.



Def: Let r > —1. We say that a complex K satisfies property T, if
forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®f(:12,- < K, we have that ®f-‘:12,-
is contained in the star of a vertex.

Thm: K is r-narrow if and only if it satisfies T,.

. If K satisfies T,, then it has at most 2r + 2 vertices and at
most 3 11 simplices.

Coro: A random complex is logs logx(n)-connected a.a.s.



Def: Let r > —1. We say that a complex K satisfies property T, if

forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®f(:12,- < K, we have that ®f-‘:12,-
is contained in the star of a vertex.

Thm: K is r-narrow if and only if it satisfies T,.

. If K satisfies T,, then it has at most 2r + 2 vertices and at
most 3 11 simplices.

Coro: A random complex is logs logx(n)-connected a.a.s.
cat(K) < dim(K) < log, log,(n)
conn(K) 4+ 1 ~ logs log,(n)

Thus, cat(K) <1 and TC(K) <2 a.as.

= log,(3) ~ 1.58



Def: Let r > —1. We say that a complex K satisfies property T, if

forevery 0 < k <r+1, every ny,np,...,ng > 2 such that

k

> ni < r+ k+1 and 0-dimensional subcomplexes Z;, Zs, ..., Zk
i=1
such that Z; has n; vertices and ®f(:12,- < K, we have that ®f-‘:12,-
is contained in the star of a vertex.
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most 3 11 simplices.

Coro: A random complex is logs logx(n)-connected a.a.s.
cat(K) < dim(K) < log, log,(n)
conn(K) 4+ 1 ~ logs log,(n)

Thus, cat(K) <1 and TC(K) <2 a.as.

= log,(3) ~ 1.58

Coro: K is homotopy equivalent to a suspension a.a.s.



