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Conicity and connectivity
A space X is r -connected if πd(X ) = 0 for every d ≤ r .
Equivalently, every map Sd → X is null-homotopic for each d ≤ r .

A simplicial complex K is r -conic if every subcomplex L ⩽ K with
at most r vertices is contained in a simplicial cone (equivalently in
the closed star st(v) of a vertex).

← a 3-conic complex
which is not 4-conic

Rmk: A 2-conic complex is connected (0-connected).
Prop: A 4-conic complex is simply connected (1-connected).

Proof. A map S1 → K can be
simplicially approximated by a
map φ : C → K , where C is a
cycle with vertices v0, v1, . . .

v1 v2
v3

v0
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Prop: An 8-conic complex is 2-connected.

Proof. We approximate a map S2 → K by a simplicial map from a
triangulation of S2 of this form

With this approach it can be proved that for any r ≥ 0 there exists
k ≥ 0 such that k-conicity implies r -connectivity.

However, there is a much simpler proof of this fact based on ideas
by Meshulam and Kahle, using a version of the Nerve lemma.
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Nerve lemma: Let K be a simplicial complex and {Li}i∈I a family
of subcomplexes covering K . Let r ≥ 0. If each non-empty
intersection Li1 ∩ Li2 ∩ . . . ∩ Lit is (r − t + 1)-connected for every
1 ≤ t ≤ r + 1, then K is r -connected if and only if the nerve
N({Li}i∈I ) is r -connected.

Lemma: Let K be an r -conic simplicial complex. Let t ≤ r and
v1, v2, . . . , vt ∈ K . Then S =

⋂
st(vi ) ⩽ K is (r − t)-conic.

If K and L are simplicial complexes, denote K ⊛ L the
amalgamated join, whose simplices are those of K , those of L, and
unions of simplices of K and L.

Proof of lemma. Let L ⩽ S be a subcomplex of at most r − t
vertices. Then {v1, v2, . . . , vt}⊛ L ⩽ K has at most r vertices and
thus there exists v ∈ K such that {v1, v2, . . . , vt}⊛ L ∈ st(v).
This means that v ⊛ {v1, v2, . . . , vt}⊛ L ⩽ K , so v ⊛ L ⩽ S .
Thus, L ⩽ stS(v).
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Thm: If a simplicial complex K is (2r + 2)-conic, then it is
r -connected. Proof. Let U = {st(v)}v∈K . The nerve N(U) is
2r -connected because it has complete (2r + 1)-skeleton. In
particular it is r -connected. Let 1 ≤ t ≤ r + 1 and let
v1, v2, . . . , vt ∈ K . We want to prove that S =

⋂
st(vi ) is

(r − t + 1)-connected. For t = 1 it is obvious. For 2 ≤ t ≤ r + 1,
we have 0 ≤ r − t + 1 < r and by induction it suffices to check
that S is (2r − 2t + 4)-conic. But the lemma says that S is
(2r + 2− t)-conic, and since t ≥ 2, 2r + 2− t ≥ 2r − 2t + 4.
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Medial regime random complexes

Given n ≥ 0 we construct a random simplicial complex in at most
n vertices.

-Erdős-Rényi (graph) model.
-Linial-Meshulam (2-dimensional), Meshulam-Wallach
(d-dimensional) models.
-Clique model.
-Random geometric models.
-Multiparameter model. We begin with a set V of n elements. For
each σ ⊆ V take some 0 ≤ pσ ≤ 1. For each v ∈ V add this
vertex to the complex with probability pv independently. For each
pair v ,w in the complex, add the 1-simplex with probability pvw .
Continue skeleton by skeleton. The medial regime is the particular
case in which all the pσ lie in an interval [a, b] for fixed
0 < a < b < 1.
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Prop: For any r ≥ 0 a random complex in the medial regime is
r -connected asymptotically almost surely.

Proof. It suffices to show that K is (2r + 2)-conic a.a.s. If L is a
complex with vertex set VL ⊆ V of cardinality smaller than or
equal to 2r + 2, and v ∈ V ∖ VL, the conditional probability

P(L ⩽ st(v)|L ⩽ K ) = pv
∏
σ∈L

pvσ ≥ a#SL+1 ≥ a2
2r+2

.

Thus P(L ⩽̸ st(v)|L ⩽ K ) ≤ 1− a2
2r+2

.
If L is fixed but v /∈ L is not, then

P(L ⩽̸ st(v) ∀v /∈ L|L ⩽ K ) ≤ (1− a2
2r+2

)n−2r−2.
and then

P(L ⩽̸ st(v) ∀v ∈ V |L ⩽ K ) ≤ (1− a2
2r+2

)n−2r−2.
Thus,
P(K is not (2r+2)-conic) ≤

∑
L

P(L ⩽ K and L ⩽̸ st(v) ∀v ∈ V ) ≤( n
2r+2

)
22

2r+2
(1− a2

2r+2
)n−2r−2 → 0.
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With the computation above it can be proved that a random
complex is

log4 log2(n)-connected a.a.s

Farber and Mead proved that dim(K ) ≤ log2 log2(n) a.a.s.
Recall that the (reduced) Lusternik-Schnirelmann category satisfies
the inequality

cat(K ) ≤ dim(K )

conn(K ) + 1
.

Thus

cat(K ) ≤ 2 a.a.s. In particular TC(K ) ≤ 2cat(K ) ≤ 4 a.a.s.

During the last months we have been working to improve this
bounds.
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Thus,
P(K is not (2r+2)-conic) ≤

∑
L

P(L ⩽ K and L ⩽̸ st(v) ∀v ∈ V ) ≤( n
2r+2

)
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2r+2
(1− a4

r+1
)n−2r−2 → 0.



Nerve lemma: Let K be a simplicial complex and {Li}i∈I a family
of subcomplexes covering K . Let r ≥ 0. If each non-empty
intersection Li1 ∩ Li2 ∩ . . . ∩ Lit is (r − t + 1)-connected for every
1 ≤ t ≤ r + 1, then K is r -connected if and only if the nerve
N({Li}i∈I ) is r -connected.
Lemma: Let K be an r -conic simplicial complex. Let t ≤ r and
v1, v2, . . . , vt ∈ K . Then S =

⋂
st(vi ) ⩽ K is (r − t)-conic.

Thm: If a simplicial complex K is (2r + 2)-conic, then it is
r -connected. Proof. Let U = {st(v)}v∈K . The nerve N(U) is
2r -connected because it has complete (2r + 1)-skeleton. In
particular it is r -connected. Let 1 ≤ t ≤ r + 1 and let
v1, v2, . . . , vt ∈ K . We want to prove that S =

⋂
st(vi ) is

(r − t + 1)-connected. For t = 1 it is obvious. For 2 ≤ t ≤ r + 1,
we have 0 ≤ r − t + 1 < r and by induction it suffices to check
that S is (2r − 2t + 4)-conic. But the lemma says that S is
(2r + 2− t)-conic, and since t ≥ 2, 2r + 2− t ≥ 2r − 2t + 4.
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Def: Let r ≥ −1. We say that a complex K satisfies property Tr if
for every 0 ≤ k ≤ r + 1, every n1, n2, . . . , nk ≥ 2 such that
k∑

i=1
ni ≤ r + k + 1 and 0-dimensional subcomplexes Z1,Z2, . . . ,Zk

such that Zi has ni vertices and ⊛k
i=1Zi ⩽ K , we have that ⊛k

i=1Zi

is contained in the star of a vertex.

Thm: K is r -narrow if and only if it satisfies Tr .

Rmk: If K satisfies Tr , then it has at most 2r + 2 vertices and at
most 3r+1 simplices.

Coro: A random complex is log3 log2(n)-connected a.a.s.

cat(K ) ≤ dim(K )

conn(K ) + 1
≤ log2 log2(n)

log3 log2(n)
= log2(3) ∼ 1.58

Thus, cat(K ) ≤ 1 and TC(K ) ≤ 2 a.a.s.

Coro: K is homotopy equivalent to a suspension a.a.s.
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