### Connectivity of random simplicial complexes

Jonathan Barmak (Universidad de Buenos Aires - IMAS) Joint work with Michael Farber (Queen Mary University of London)

The Geometric Realization of AATRN, August 22, 2025

A space X is r-connected if  $\pi_d(X) = 0$  for every  $d \le r$ . Equivalently, every map  $S^d \to X$  is null-homotopic for each  $d \le r$ .









A space X is r-connected if  $\pi_d(X)=0$  for every  $d \leq r$ . Equivalently, every map  $S^d \to X$  is null-homotopic for each  $d \leq r$ . A simplicial complex K is r-conic if every subcomplex  $L \leqslant K$  with at most r vertices is contained in a simplicial cone (equivalently in the closed star  $\operatorname{st}(v)$  of a vertex).



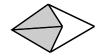
A space X is r-connected if  $\pi_d(X)=0$  for every  $d\leq r$ . Equivalently, every map  $S^d\to X$  is null-homotopic for each  $d\leq r$ . A simplicial complex K is r-conic if every subcomplex  $L\leqslant K$  with at most r vertices is contained in a simplicial cone (equivalently in the closed star  $\operatorname{st}(v)$  of a vertex).



 $\leftarrow$  a 3-conic complex which is not 4-conic

Rmk: A 2-conic complex is connected (0-connected).

A space X is r-connected if  $\pi_d(X)=0$  for every  $d \leq r$ . Equivalently, every map  $S^d \to X$  is null-homotopic for each  $d \leq r$ . A simplicial complex K is r-conic if every subcomplex  $L \leqslant K$  with at most r vertices is contained in a simplicial cone (equivalently in the closed star  $\operatorname{st}(v)$  of a vertex).



Rmk: A 2-conic complex is connected (0-connected).

Prop: A 4-conic complex is simply connected (1-connected).

A space X is r-connected if  $\pi_d(X)=0$  for every  $d\leq r$ . Equivalently, every map  $S^d\to X$  is null-homotopic for each  $d\leq r$ . A simplicial complex K is r-conic if every subcomplex  $L\leqslant K$  with at most r vertices is contained in a simplicial cone (equivalently in the closed star  $\operatorname{st}(v)$  of a vertex).



 $\leftarrow$  a 3-conic complex which is not 4-conic

Rmk: A 2-conic complex is connected (0-connected).

Prop: A 4-conic complex is simply connected (1-connected).

Proof. A map  $S^1 \to K$  can be simplicially approximated by a map  $\varphi: C \to K$ , where C is a cycle with vertices  $v_0, v_1, \ldots$ 

A space X is r-connected if  $\pi_d(X)=0$  for every  $d\leq r$ . Equivalently, every map  $S^d\to X$  is null-homotopic for each  $d\leq r$ . A simplicial complex K is r-conic if every subcomplex  $L\leqslant K$  with at most r vertices is contained in a simplicial cone (equivalently in the closed star  $\operatorname{st}(v)$  of a vertex).

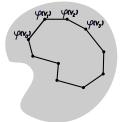


 $\leftarrow$  a 3-conic complex which is not 4-conic

Rmk: A 2-conic complex is connected (0-connected).

Prop: A 4-conic complex is simply connected (1-connected).

Proof. A map  $S^1 \to K$  can be simplicially approximated by a map  $\varphi: C \to K$ , where C is a cycle with vertices  $v_0, v_1, \ldots$ 



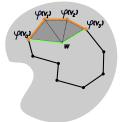
A space X is r-connected if  $\pi_d(X)=0$  for every  $d\leq r$ . Equivalently, every map  $S^d\to X$  is null-homotopic for each  $d\leq r$ . A simplicial complex K is r-conic if every subcomplex  $L\leqslant K$  with at most r vertices is contained in a simplicial cone (equivalently in the closed star  $\operatorname{st}(v)$  of a vertex).



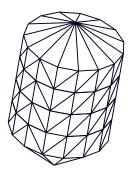
Rmk: A 2-conic complex is connected (0-connected).

Prop: A 4-conic complex is simply connected (1-connected).

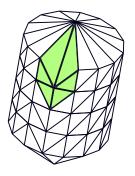
Proof. A map  $S^1 \to K$  can be simplicially approximated by a map  $\varphi: C \to K$ , where C is a cycle with vertices  $v_0, v_1, \ldots$ 



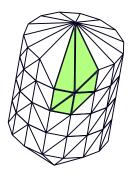
Prop: An 8-conic complex is 2-connected.



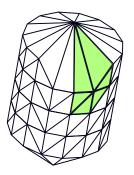




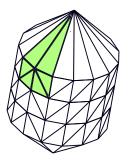
























Prop: An 8-conic complex is 2-connected.

Proof. We approximate a map  $S^2 \to K$  by a simplicial map from a triangulation of  $S^2$  of this form



With this approach it can be proved that for any  $r \ge 0$  there exists  $k \ge 0$  such that k-conicity implies r-connectivity.

Prop: An 8-conic complex is 2-connected.

Proof. We approximate a map  $S^2 \to K$  by a simplicial map from a triangulation of  $S^2$  of this form



With this approach it can be proved that for any  $r \ge 0$  there exists  $k \ge 0$  such that k-conicity implies r-connectivity.

However, there is a much simpler proof of this fact based on ideas by Meshulam and Kahle, using a version of the Nerve lemma.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

If K and L are simplicial complexes, denote  $K \circledast L$  the amalgamated join, whose simplices are those of K, those of L, and unions of simplices of K and L.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

If K and L are simplicial complexes, denote  $K \circledast L$  the amalgamated join, whose simplices are those of K, those of L, and unions of simplices of K and L.

Proof of lemma. Let  $L \leqslant S$  be a subcomplex of at most r-t vertices. Then  $\{v_1, v_2, \ldots, v_t\} \circledast L \leqslant K$  has at most r vertices and thus there exists  $v \in K$  such that  $\{v_1, v_2, \ldots, v_t\} \circledast L \in \operatorname{st}(v)$ . This means that  $v \circledast \{v_1, v_2, \ldots, v_t\} \circledast L \leqslant K$ , so  $v \circledast L \leqslant S$ . Thus,  $L \leqslant \operatorname{st}_S(v)$ .

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Lemma: Let K be an r-conic simplicial complex. Let  $t \leq r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \leqslant K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r + 2)-conic, then it is r-connected.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \operatorname{st}(v_i)$  is (r-t+1)-connected.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \operatorname{st}(v_i)$  is (r-t+1)-connected. For t=1 it is obvious.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \operatorname{st}(v_i)$  is (r-t+1)-connected. For t=1 it is obvious. For  $2\leq t\leq r+1$ , we have  $0\leq r-t+1 < r$  and by induction it suffices to check that S is (2r-2t+4)-conic.

Lemma: Let K be an r-conic simplicial complex. Let  $t \le r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \le K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \operatorname{st}(v_i)$  is (r-t+1)-connected. For t=1 it is obvious. For  $2\leq t\leq r+1$ , we have  $0\leq r-t+1< r$  and by induction it suffices to check that S is (2r-2t+4)-conic. But the lemma says that S is (2r+2-t)-conic, and since  $t\geq 2$ ,  $2r+2-t\geq 2r-2t+4$ .

Given  $n \ge 0$  we construct a random simplicial complex in at most n vertices.

-Erdős-Rényi (graph) model.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.
- -Random geometric models.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.
- -Random geometric models.
- -Multiparameter model.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.
- -Random geometric models.
- -Multiparameter model. We begin with a set V of n elements. For each  $\sigma \subseteq V$  take some  $0 \le p_{\sigma} \le 1$ .

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.
- -Random geometric models.
- -Multiparameter model. We begin with a set V of n elements. For each  $\sigma \subseteq V$  take some  $0 \le p_{\sigma} \le 1$ . For each  $v \in V$  add this vertex to the complex with probability  $p_v$  independently.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.
- -Random geometric models.
- -Multiparameter model. We begin with a set V of n elements. For each  $\sigma \subseteq V$  take some  $0 \le p_\sigma \le 1$ . For each  $v \in V$  add this vertex to the complex with probability  $p_v$  independently. For each pair v, w in the complex, add the 1-simplex with probability  $p_{vw}$ . Continue skeleton by skeleton.

- -Erdős-Rényi (graph) model.
- -Linial-Meshulam (2-dimensional), Meshulam-Wallach (d-dimensional) models.
- -Clique model.
- -Random geometric models.
- -Multiparameter model. We begin with a set V of n elements. For each  $\sigma\subseteq V$  take some  $0\leq p_{\sigma}\leq 1$ . For each  $v\in V$  add this vertex to the complex with probability  $p_v$  independently. For each pair v,w in the complex, add the 1-simplex with probability  $p_{vw}$ . Continue skeleton by skeleton. The medial regime is the particular case in which all the  $p_{\sigma}$  lie in an interval [a,b] for fixed 0< a< b< 1.

Prop: For any  $r \ge 0$  a random complex in the medial regime is r-connected asymptotically almost surely. Proof. It suffices to show that K is (2r + 2)-conic a.a.s.

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma}$$

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1}$$

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

Thus 
$$P(L \nleq \operatorname{st}(v)|L \leqslant K) \leq 1 - a^{2^{2r+2}}$$
.

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

Thus 
$$P(L \nleq \operatorname{st}(v)|L \leqslant K) \leq 1 - a^{2^{2r+2}}$$
.  
If  $L$  is fixed but  $v \notin L$  is not, then  $P(L \nleq \operatorname{st}(v) \ \forall v \notin L | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}$ .  
and then  $P(L \nleq \operatorname{st}(v) \ \forall v \in V | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}$ .

Proof. It suffices to show that K is (2r+2)-conic a.a.s. If L is a complex with vertex set  $V_L \subseteq V$  of cardinality smaller than or equal to 2r+2, and  $v \in V \setminus V_L$ , the conditional probability

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

Thus 
$$P(L \nleq \operatorname{st}(v)|L \leqslant K) \leq 1 - a^{2^{2r+2}}$$
.

If *L* is fixed but  $v \notin L$  is not, then

$$P(L \nleq \operatorname{st}(v) \ \forall v \notin L | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}.$$

and then

$$P(L \nleq \operatorname{st}(v) \ \forall v \in V | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}.$$

$$P(K \text{ is not } (2r+2)\text{-conic}) \leq \sum_{L} P(L \leqslant K \text{ and } L \nleq \operatorname{st}(v) \ \forall v \in V)$$

Proof. It suffices to show that K is (2r+2)-conic a.a.s. If L is a complex with vertex set  $V_L \subseteq V$  of cardinality smaller than or equal to 2r+2, and  $v \in V \setminus V_L$ , the conditional probability

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

Thus 
$$P(L \nleq \operatorname{st}(v)|L \leqslant K) \leq 1 - a^{2^{2r+2}}$$
.

If L is fixed but  $v \notin L$  is not, then

$$P(L \nleq \operatorname{st}(v) \ \forall v \notin L | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}.$$

and then

$$P(L \nleq \operatorname{st}(v) \ \forall v \in V | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}.$$

$$P(K \text{ is not } (2r+2)\text{-conic}) \leq \sum_{L} P(L \leqslant K \text{ and } L \nleq \operatorname{st}(v) \ \forall v \in V) \leq$$

$$\binom{n}{2r+2} 2^{2^{2r+2}} (1-a^{2^{2r+2}})^{n-2r-2}$$

Proof. It suffices to show that K is (2r+2)-conic a.a.s. If L is a complex with vertex set  $V_L \subseteq V$  of cardinality smaller than or equal to 2r+2, and  $v \in V \setminus V_L$ , the conditional probability

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

Thus  $P(L \nleq \operatorname{st}(v)|L \leqslant K) \leq 1 - a^{2^{2r+2}}$ .

If L is fixed but  $v \notin L$  is not, then

$$P(L \nleq \operatorname{st}(v) \ \forall v \notin L | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}.$$

and then

$$P(L \nleq \operatorname{st}(v) \ \forall v \in V | L \leqslant K) \leq (1 - a^{2^{2r+2}})^{n-2r-2}.$$

$$P(K \text{ is not } (2r+2)\text{-conic}) \leq \sum_{L} P(L \leqslant K \text{ and } L \nleq \operatorname{st}(v) \ \forall v \in V) \leq$$

$$\binom{n}{2r+2} 2^{2^{2r+2}} (1-a^{2^{2r+2}})^{n-2r-2} \to 0.$$

 $\log_4 \log_2(n)$ -connected a.a.s

 $\log_4 \log_2(n)$ -connected a.a.s

Farber and Mead proved that  $\dim(K) \leq \log_2 \log_2(n)$  a.a.s.

$$\log_4 \log_2(n)$$
-connected a.a.s

Farber and Mead proved that  $\dim(K) \leq \log_2 \log_2(n)$  a.a.s. Recall that the (reduced) Lusternik-Schnirelmann category satisfies the inequality

$$\mathsf{cat}(K) \leq \frac{\mathsf{dim}(K)}{\mathsf{conn}(K) + 1}.$$

$$\log_4 \log_2(n)$$
-connected a.a.s

Farber and Mead proved that  $\dim(K) \leq \log_2 \log_2(n)$  a.a.s. Recall that the (reduced) Lusternik-Schnirelmann category satisfies the inequality

$$\operatorname{cat}(K) \leq \frac{\dim(K)}{\operatorname{conn}(K) + 1}.$$

Thus

 $cat(K) \le 2$  a.a.s. In particular  $TC(K) \le 2cat(K) \le 4$  a.a.s.

$$\log_4 \log_2(n)$$
-connected a.a.s

Farber and Mead proved that  $\dim(K) \leq \log_2 \log_2(n)$  a.a.s. Recall that the (reduced) Lusternik-Schnirelmann category satisfies the inequality

$$\operatorname{cat}(K) \leq \frac{\operatorname{dim}(K)}{\operatorname{conn}(K) + 1}.$$

Thus

$$cat(K) \le 2$$
 a.a.s. In particular  $TC(K) \le 2cat(K) \le 4$  a.a.s.

During the last months we have been working to improve this bounds.

Proof. It suffices to show that K is (2r+2)-conic a.a.s. If L is a complex with vertex set  $V_L \subseteq V$  of cardinality smaller than or equal to 2r+2, and  $v \in V \setminus V_L$ , the conditional probability

$$P(L \leqslant \operatorname{st}(v)|L \leqslant K) = p_v \prod_{\sigma \in L} p_{v\sigma} \ge a^{\#S_L+1} \ge a^{2^{2r+2}}.$$

Thus  $P(L \nleq \operatorname{st}(v)|L \leqslant K) \leq 1 - a^{2^{2r+2}} = 1 - a^{4^{r+1}}$ . If L is fixed but  $v \notin L$  is not, then

$$P(L \nleq \operatorname{st}(v) \ \forall v \notin L | L \leqslant K) \leq (1 - a^{4^{r+1}})^{n-2r-2}.$$

and then

$$P(L \nleq \operatorname{st}(v) \ \forall v \in V | L \leqslant K) \leq (1 - a^{4^{r+1}})^{n-2r-2}.$$

$$\begin{split} &P\big(\text{$K$ is not } (2r+2)\text{-conic}\big) \leq \sum\limits_{L} P\big(L \leqslant \text{$K$ and $L \nleq \text{st}(v)$ $} \forall v \in V\big) \leq \\ &\binom{n}{2r+2} 2^{2^{2r+2}} (1-a^{4^{r+1}})^{n-2r-2} \to 0. \end{split}$$

Lemma: Let K be an r-conic simplicial complex. Let  $t \leq r$  and  $v_1, v_2, \ldots, v_t \in K$ . Then  $S = \bigcap st(v_i) \leqslant K$  is (r - t)-conic.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \operatorname{st}(v_i)$  is (r-t+1)-connected. For t=1 it is obvious. For  $2\leq t\leq r+1$ , we have  $0\leq r-t+1< r$  and by induction it suffices to check that S is (2r-2t+4)-conic. But the lemma says that S is (2r+2-t)-conic, and since  $t\geq 2$ ,  $2r+2-t\geq 2r-2t+4$ .

Def: A complex K is (-1)-narrow if it is nonempty. For  $r \ge 0$ , K is r-narrow if for every  $2 \le t \le r+2$  and  $v_1, v_2, \ldots, v_t \in K$ ,  $S = \bigcap st(v_i) \le K$  is (r-t+1)-narrow.

Thm: If a simplicial complex K is (2r+2)-conic, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is 2r-connected because it has complete (2r+1)-skeleton. In particular it is r-connected. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \operatorname{st}(v_i)$  is (r-t+1)-connected. For t=1 it is obvious. For  $2\leq t\leq r+1$ , we have  $0\leq r-t+1< r$  and by induction it suffices to check that S is (2r-2t+4)-conic. But the lemma says that S is (2r+2-t)-conic, and since  $t\geq 2$ ,  $2r+2-t\geq 2r-2t+4$ .

Def: A complex K is (-1)-narrow if it is nonempty. For  $r \ge 0$ , K is r-narrow if for every  $2 \le t \le r+2$  and  $v_1, v_2, \ldots, v_t \in K$ ,  $S = \bigcap st(v_i) \le K$  is (r-t+1)-narrow.

Def: A complex K is (-1)-narrow if it is nonempty. For  $r \ge 0$ , K is r-narrow if for every  $2 \le t \le r+2$  and  $v_1, v_2, \ldots, v_t \in K$ ,  $S = \bigcap st(v_i) \le K$  is (r-t+1)-narrow.

Thm: If a simplicial complex K is r-narrow, then it is r-connected. Proof. Let  $\mathcal{U}=\{st(v)\}_{v\in K}$ . The nerve  $N(\mathcal{U})$  is r-connected because it has complete (r+1)-skeleton. Let  $1\leq t\leq r+1$  and let  $v_1,v_2,\ldots,v_t\in K$ . We want to prove that  $S=\bigcap \mathrm{st}(v_i)$  is (r-t+1)-connected. For t=1 it is obvious. For  $1\leq t\leq r+1$ , we have  $1\leq t\leq r+1$  and by induction it suffices to check that  $1\leq t\leq t\leq r+1$  by induction. This holds by definition.

Thm: K is r-narrow if and only if it satisfies  $T_r$ .

Thm: K is r-narrow if and only if it satisfies  $T_r$ .

Rmk: If K satisfies  $T_r$ , then it has at most 2r + 2 vertices and at most

Thm: K is r-narrow if and only if it satisfies  $T_r$ .

Rmk: If K satisfies  $T_r$ , then it has at most 2r + 2 vertices and at most  $3^{r+1}$  simplices.

Thm: K is r-narrow if and only if it satisfies  $T_r$ .

Rmk: If K satisfies  $T_r$ , then it has at most 2r + 2 vertices and at most  $3^{r+1}$  simplices.

Coro: A random complex is  $log_3 log_2(n)$ -connected a.a.s.

Thm: K is r-narrow if and only if it satisfies  $T_r$ .

Rmk: If K satisfies  $T_r$ , then it has at most 2r + 2 vertices and at most  $3^{r+1}$  simplices.

Coro: A random complex is  $log_3 log_2(n)$ -connected a.a.s.

$$\operatorname{cat}(K) \le \frac{\dim(K)}{\operatorname{conn}(K) + 1} \le \frac{\log_2 \log_2(n)}{\log_3 \log_2(n)} = \log_2(3) \sim 1.58$$

Thus,  $cat(K) \le 1$  and  $TC(K) \le 2$  a.a.s.

Thm: K is r-narrow if and only if it satisfies  $T_r$ .

Rmk: If K satisfies  $T_r$ , then it has at most 2r + 2 vertices and at most  $3^{r+1}$  simplices.

Coro: A random complex is  $log_3 log_2(n)$ -connected a.a.s.

$$\operatorname{cat}(K) \le \frac{\dim(K)}{\operatorname{conn}(K) + 1} \le \frac{\log_2 \log_2(n)}{\log_3 \log_2(n)} = \log_2(3) \sim 1.58$$

Thus,  $cat(K) \le 1$  and  $TC(K) \le 2$  a.a.s.

Coro: K is homotopy equivalent to a suspension a.a.s.