
computing diffusion geometry
Iolo Jones & David Lanners, Durham University



A Persistent Homology Approach
for Characterizing Random Spatial Structures
Chiara Fend and Claudia Redenbach

materials data

stochastic model

› new polyhedral complex filtrations of random tessellations

using geometric characteristics

› graphical model validation via

goodness-of-fit testing

› (functional) CLTs for the

persistent Betti numbers

› many other interesting

stochastic structures

null modelobserved

or

X



Super-Polynomial Growth of the Generalized Persistence Diagram
Donghan Kim, Woojin Kim, Wonjun Lee, Dept. of Mathematical Sciences, KAIST

Persistence Diagram
sth

v. Generalized Persistence Diagram (GPD)
: A generalization for the multi-parameter setting

Remark
The number of simplices in a given (1-parameter) filtration bounds the size of its
persistence diagram. The size of the GPD/PD is the cardinality of its support.

Question
What about multi-parameter filtrations? Our answer is no.
Is there an analogy with the 1-parameter setting?



Geometric Realization of AATRN 2025 Michael Bleher

The Tangled Web they Weave:
Exploring Neural Networks with Directed Topology



On the Limitations of Fractal Dimension as a Measure of Generalization
Charlie B. Tan, Inés García-Redondo, Qiquan Wang, Michael M. Bronstein and Anthea Monod

Supervised Learning

Generalization gap

𝒢 𝜔 ≔ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝑡𝑒𝑠𝑡 𝑐𝑜𝑠𝑡

𝒲S ≔ 𝜔1, … , 𝜔𝑛  

S = 𝑧1, … , 𝑧𝑛 ∼ 𝜇⊗𝑛

Linking Generalization and PH

Birdal et al. (2021) and Dupuis et al. (2023):

There exists a positive correlation between the 
generalization gap and the PH dimension of the 

optimization trajectory 𝒲𝑆 near the minimum

Our Contribution

1.  Statistically grounded analysis of the correlation 
between PH dimension and the generalization error – 

hyperparameters have a confounding effect

2.  Found two counterexamples for the 
proposed correlation

Come to poster 8 if you want to hear more about this!



Pruning vineyards: Updating barcodes and representative cycles
IMSI AATRN / Chicago, IL, USA / August 19, 2025

Barbara Giunti, University at Albany SUNY
Jānis Lazovskis, University of Latvia
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1. Filter the topological space 2. Factor the boundary matrix
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3. Update the filtration
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A Survey of Dimension Estimation Methods
James Binnie w/ Paweł Dłotko, John Harvey, Jakub Malinowski, Ka Man Yim

https://arxiv.org/abs/2507.13887v1



Efficient Computation of Persistent Laplacians
Ben Jones and Guo-Wei Wei

PErsistent 
Topological 
Laplacian
Software
> pip install petls

How can I use them?

Filtration Analysis
Persistent

Laplacians

Persistent Topological Laplacians
(PTLs)

Δ 𝑛
𝑎,𝑏: 𝐶𝑛

𝑎 →  𝐶𝑛
𝑎

ker Δ𝑛
𝑎,𝑏 ≅  𝐻𝑛

𝑎,𝑏 𝐾; ℝ

Generalize:
 Graph Laplacian
 Combinatorial Laplacian
 Persistent Homology*

Eigenvalues Summaries

What are they?

What do they mean?

Are they easy to 
compute?

Faster via topology

Faster via linear algebra



Topological graph learning for spatial data from the tumour
microenvironment
Jérémy JP Baffou, Vaishnavi Subramanian, Heather Dawson, Inti Zlobec, Dorina Thanou, and Bernadette J Stolz

Baffou, [...], Stolz, in preparation, 2025.

Point cloud: Potential vertices:

-witness points:

-witness points:

Classification
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Single-system Multi-system
Point cloud: Potential vertices:

-witness points:

-witness points:

GNN

Stolz et al., Bulletin of Mathematical Biology 86(11), 2024.

Question Method 
Relational topological data analysis

Application
Topology encodes spatial architecture in real-world data

August 2025 Lightning Talk: Poster 12 1



The Problem Each generator 
from the 

persistence diagram
gives an “sparse 

Eilenberg-MacLane 
Coordinate”

?

Examples

Circular coordinates

Toroidal coordinates

Projective coordinates

Lens coordinates

{"} ∈ %&'(ℛ * ;ℤ) ./: *(1) → 3'
{( #$ , … , #' )} ∈ +,$(ℛ . ; ℤ') 123,…,24:.(6) → 8'

{"} ∈ %&'(ℛ * ;ℤ-) /0:*(2) → ℝℙ6
{"} ∈ %&'(ℛ * ;ℤ) ./ : *(1) → ℂℙ5

{"} ∈ %&'(ℛ * ; ℤ-) /0: *(2) → 4567'/(ℤ-)

! = ℤ, % = 1

! = ℤ, % = 2
! = ℤ$, & = 1

! = ℤ$,& = 1
! = ℤ$,& = 1

Tony Xiaochen Xiao (Northeastern University)
Advisor: Jose A. Perea

Extracting Sparse Eilenberg-MacLane 
Coordinates via Principal Bundles
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Point-Level Topological Representation Learning on Point Clouds

1 2 3 4Compute persistent 
homology

Pick significant 
generators

Weighted harmonic 
representatives

Average over incident 
simplices

ker 𝐿!

Motivation
• Point cloud descriptors like persistent homology provide one 

powerful global descriptor describing the overall shape of the 
point cloud

• However, often we are interested in how individual points 
relate to global topology

Our method (TOPF) turns global topological features from 
persistent homology into local point-level features using 

harmonic representatives
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Output

Vincent P. Grande, Michael T. Schaub, ICML 2025



Neural network interpretability, pullback covers, Multiscale mapper, Bi-persistence

Latent Space Topology Evolution 
in Multilayer Perceptrons
Latent Space Topology Evolution 
in Multilayer Perceptrons

X଴ ⟶  𝑋ଵ  ⟶    𝑋ଶ ⟶  𝑋ଷ ⟶  𝑋ସ  ⟶   𝑋ହ

La
ye

r p
er

si
st

en
ce

MLP persistence

Keywords:

MLPs are black boxes - we 
lack tools to understand their 
internal representations

Problem: 

Construct simplicial towers (sequences of 
simplicial complexes + simplicial maps) that 
capture topological evolution across 
network layers.

Approach:

• Identify redundant layers
• Optimize layer widths
• Detect overparameterization
• Visualize decision boundaries
• Track data clusters
• Understand misclassifications

Use cases:

17Eduardo Paluzo Hidalgo
epaluzo@us.es

ArXiv.2506.01569





Wasserstein Stability for Barcodes and Persistence Landscapes
Wanchen Zhao      Advisor: Peter Bubenik

Filtered Chain Complexes Barcodes Persistence Landscapes

Metric on the set of interval modules: 

∥{drank(Iw(σ), Iw′￼(σ))}σ∈K∥1 ≥ W rank
1 (Dgm(w), Dgm(w′￼)) ≥ 2∥λ − λ′￼∥1

drank(I, J) := ∫ℝ2

|rank I − rank J |



Persistent homology via ellipsoids
Niklas Canova

ETH Zurich
Sara Kališnik

Penn State University
AaronMoser

ETH Zurich
Bastian Rieck

University of Fribourg
Ana Žegarac
ETH Zurich

Rips

Ellipsoids
Better captures

homology of the
underlying manifold

Poster

• Construction details and properties
• Experimental results

1
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