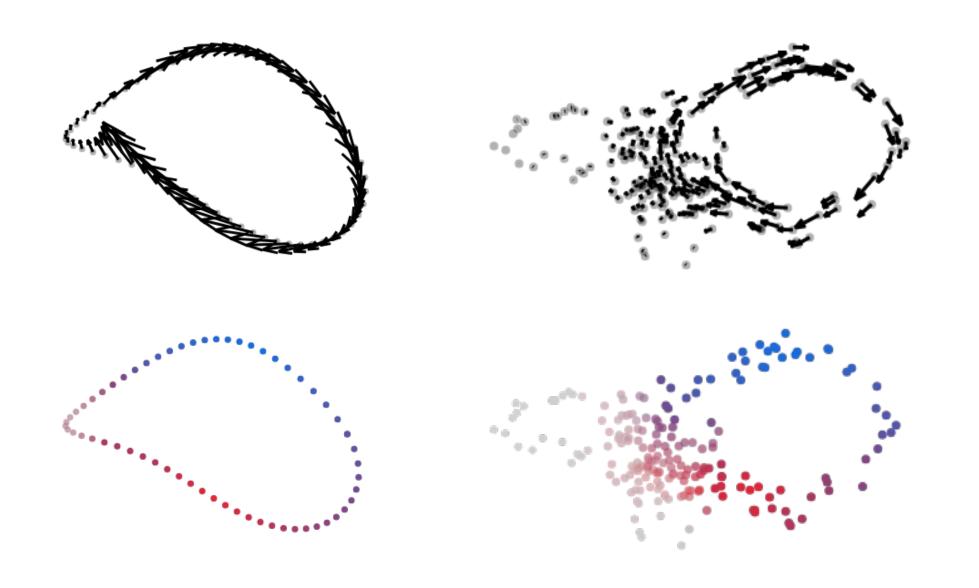
computing diffusion geometry

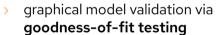
Iolo Jones & David Lanners, Durham University



A Persistent Homology Approach for Characterizing Random Spatial Structures Chiara Fend and Claudia Redenbach

new polyhedral complex filtrations of random tessellations using geometric characteristics

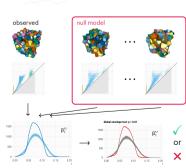
materials data



stochastic model

(functional) CLTs for the persistent Betti numbers

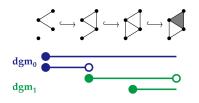
many other interesting stochastic structures



Super-Polynomial Growth of the Generalized Persistence Diagram

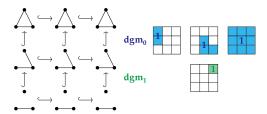
Donghan Kim, Woojin Kim, Wonjun Lee, Dept. of Mathematical Sciences, KAIST

Persistence Diagram



v. Generalized Persistence Diagram (GPD)

: A generalization for the multi-parameter setting



Remark

The number of simplices in a given (1-parameter) filtration bounds the **size of** its persistence diagram.

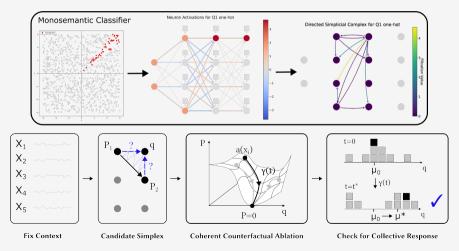
The **size of the GPD/PD** is the cardinality of its support.

Question

What about multi-parameter filtrations? Is there an analogy with the 1-parameter setting?

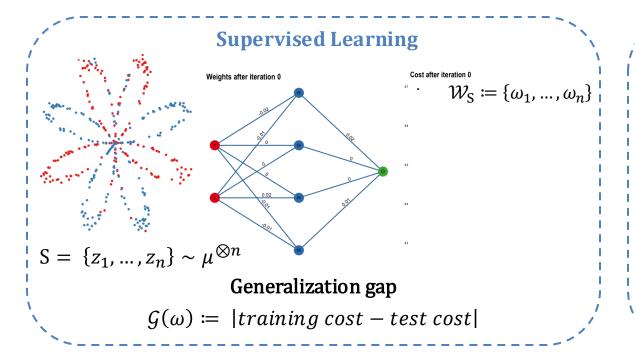
Our answer is **no**.

The Tangled Web they Weave: Exploring Neural Networks with Directed Topology



On the Limitations of Fractal Dimension as a Measure of Generalization

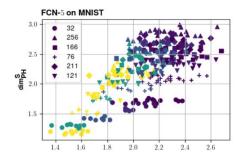
Charlie B. Tan, *Inés García-Redondo*, Qiquan Wang, Michael M. Bronstein and Anthea Monod



Linking Generalization and PH

Birdal *et al.* (2021) and Dupuis *et al.* (2023):

There exists a **positive correlation** between the **generalization gap** and the **PH dimension** of the optimization trajectory W_S near the minimum



Our Contribution

1. Statistically grounded analysis of the correlation between PH dimension and the generalization error – hyperparameters have a confounding effect

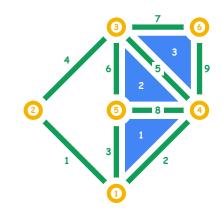
2. Found **two counterexamples** for the proposed correlation

Pruning vineyards: Updating barcodes and representative cycles

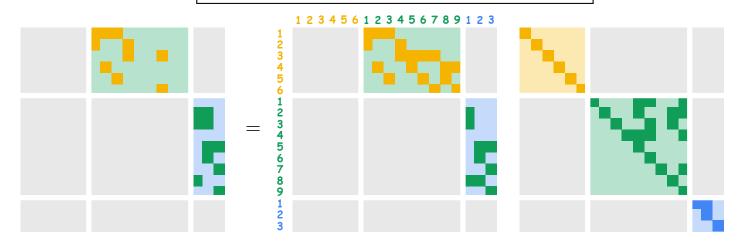
IMSI AATRN / Chicago, IL, USA / August 19, 2025

Barbara Giunti, University at Albany SUNY Jānis Lazovskis, University of Latvia

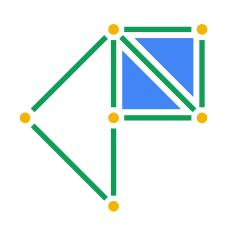
1. Filter the topological space

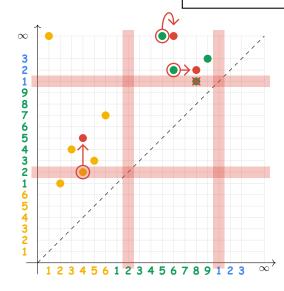


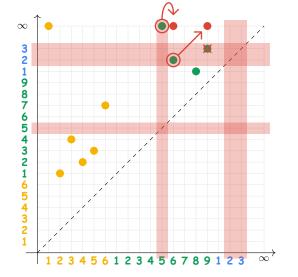
2. Factor the boundary matrix

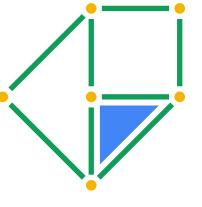


3. Update the filtration









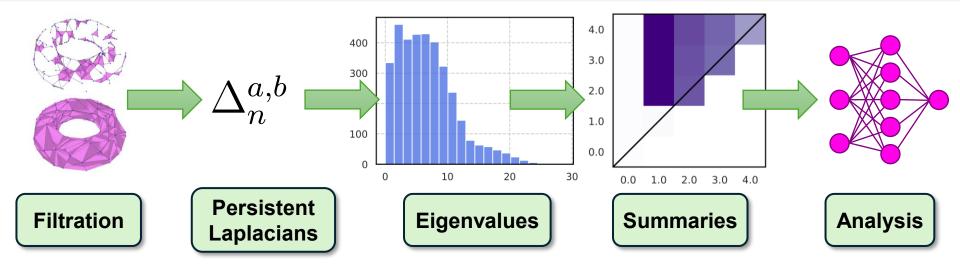
A Survey of Dimension Estimation Methods

James Binnie w/ Paweł Dłotko, John Harvey, Jakub Malinowski, Ka Man Yim

https://arxiv.org/abs/2507.13887v1

Efficient Computation of Persistent Laplacians

Ben Jones and Guo-Wei Wei



Persistent Topological Laplacians (PTLs)

$$\Delta_n^{a,b}: C_n^a \to C_n^a$$

$$\ker \Delta_n^{a,b} \cong H_n^{a,b}(K;\mathbb{R})$$

Generalize:

Graph Laplacian
Combinatorial Laplacian
Persistent Homology*

What are they?

What do they mean?

Are they easy to compute?

Faster via topology

Faster via linear algebra

How can I use them?

PErsistent

Topological

Laplacian

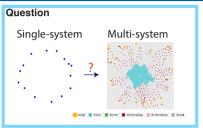
Software

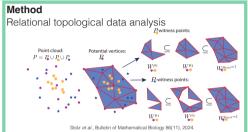
> pip install petls

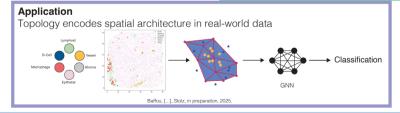
Topological graph learning for spatial data from the tumour

microenvironment

Jérémy JP Baffou, Vaishnavi Subramanian, Heather Dawson, Inti Zlobec, Dorina Thanou, and Bernadette J Stolz



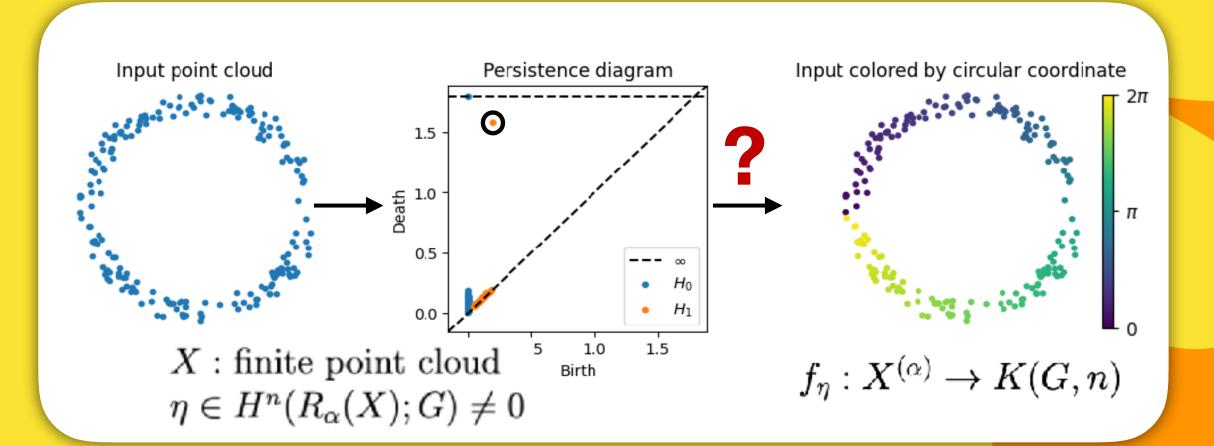




Extracting Sparse Eilenberg-MacLane Coordinates via Principal Bundles

Tony Xiaochen Xiao (Northeastern University) Advisor: Jose A. Perea

The Problem



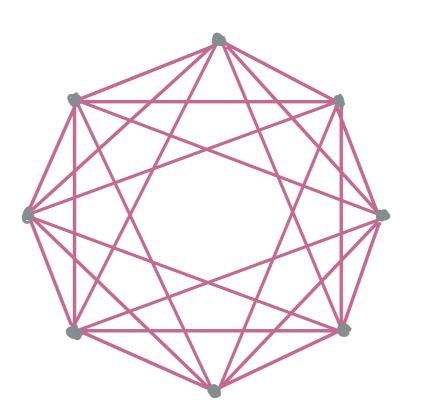
Examples

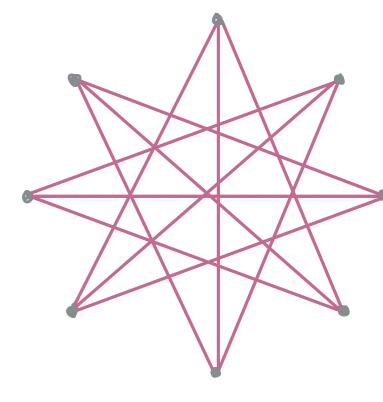
Circular coordinates	$G=\mathbb{Z}$, $n=1$	$f_{\eta}: X^{(\alpha)} \to S^1$
Toroidal coordinates	$G=\mathbb{Z}^l$, $n=1$	$f_{\eta_1,\ldots,\eta_l}:X^{(\alpha)}\to T^l$
Projective coordinates	$G=\mathbb{Z}_2$, $n=1$	$f_{\theta}: X^{(\alpha)} \to \mathbb{RP}^n$
	$G=\mathbb{Z}$, $n=2$	$f_{\nu}: X^{(\alpha)} \to \mathbb{CP}^n$
Lens coordinates	$G=\mathbb{Z}_q$, $n=1$	$f_{\mu}: X^{(\alpha)} \to S^{2n-1}/(\mathbb{Z}_q)$

Each generator from the persistence diagram gives an "sparse Eilenberg-MacLane Coordinate"

Anti-Vietoris-Rips metric thickenings and Borsuk graphs

Sucharita Mallick, Joint work with Henry Adams, Alex Elchesen and, Michael Moy





Similarity matrix: higher values correspond to similar data points.

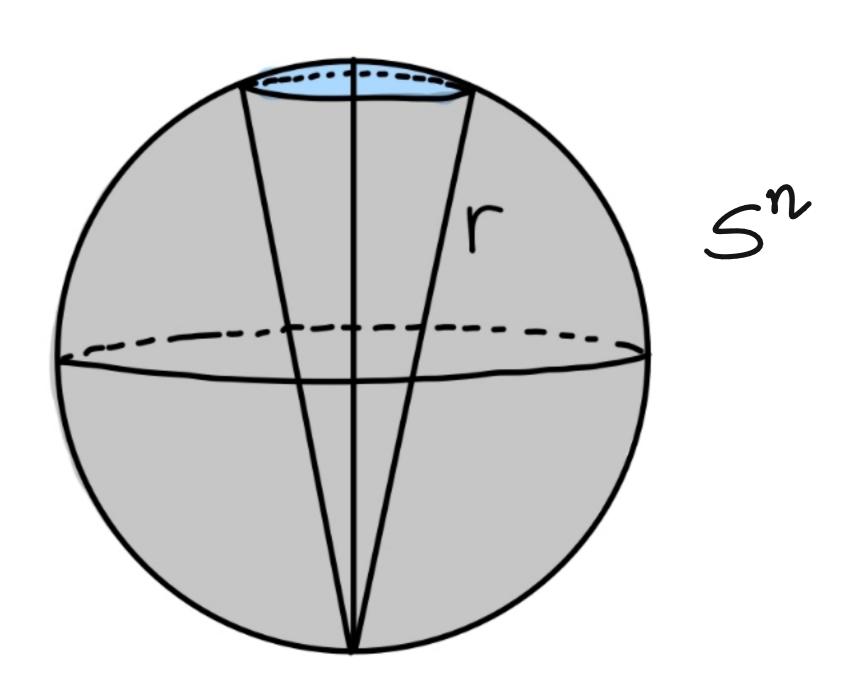
VR(C8;3)

AVR (C8;3)

VR complex from distance matrix

Anti-VR complex from similarity matrix

- Let 5ⁿ be the n-sphere with geodesic metric and diameter T.
- $AVR^{m}(s^{n};r) = \begin{cases} s^{n}, & n > \pi \\ RP^{n}, & \frac{2\pi}{3} < r < \pi \\ *, & p = 0 \end{cases}$
- Certain homotopy types are used as a topological obstruction to the existence of certain graph homorphisms between Borsuk graphs.



Bor(sn;r)

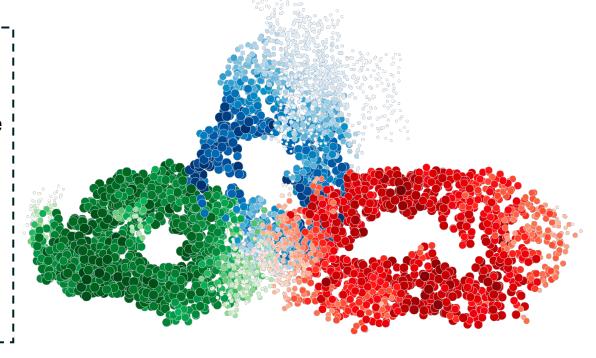
Point-Level Topological Representation Learning on Point Clouds

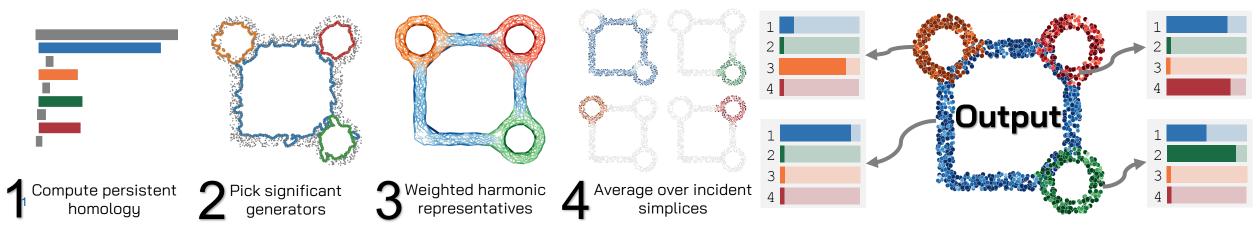
Vincent P. Grande, Michael T. Schaub, ICML 2025

Motivation

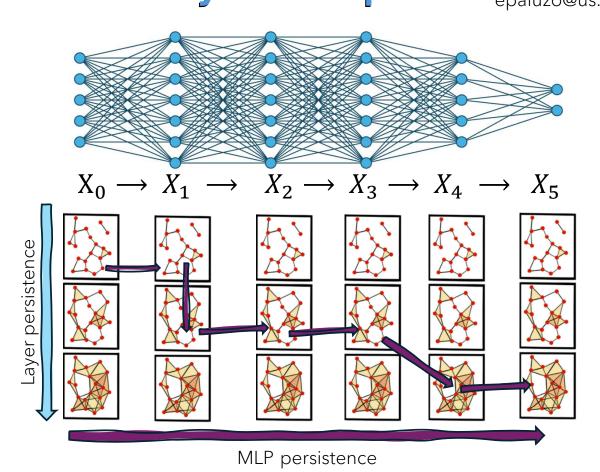
- Point cloud descriptors like persistent homology provide one powerful global descriptor describing the overall shape of the point cloud
- However, often we are interested in how individual points relate to global topology

Our method (TOPF) turns **global topological features** from persistent homology into **local point-level features** using **harmonic representatives**





Latent Space Topology Evolution in Multilayer Perceptrons Eduardo Paluzo Hidalgo epaluzo@us.es



Problem:

MLPs are **black boxes** - we lack tools to understand their internal representations

Approach:

Construct **simplicial towers** (sequences of simplicial complexes + simplicial maps) that capture topological evolution across network layers.

Use cases:

- Identify redundant layers
- Optimize layer widths
- Detect overparameterization
- Visualize decision boundaries
- Track data clusters
- Understand misclassifications

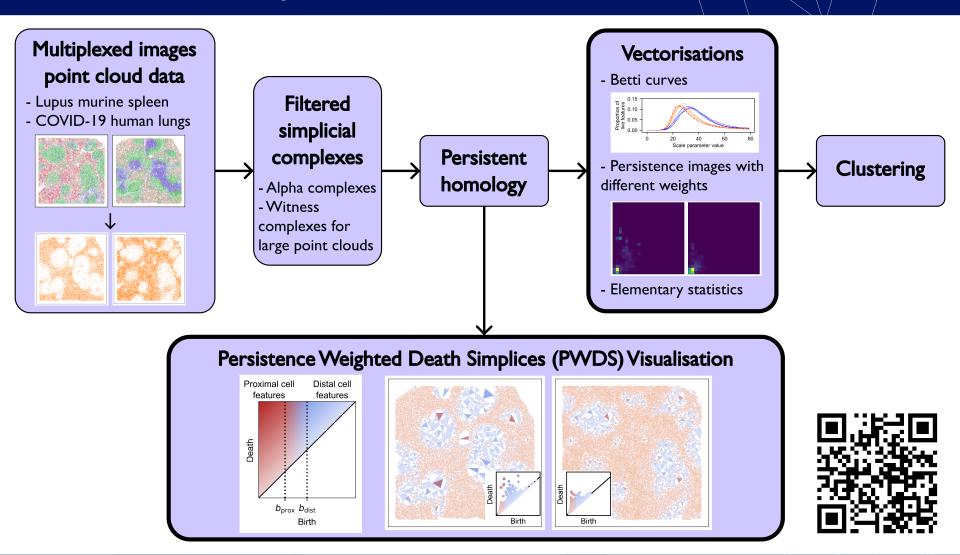
Keywords:

Neural network interpretability, pullback covers, Multiscale mapper, Bi-persistence

ArXiv.2506.01569

Topology across scales on heterogeneous cell data

Maria Torras-Pérez, Iris H.R. Yoon, Praveen Weeratunga, Ling-Pei Ho, Helen M. Byrne, Ulrike Tillmann, Heather A. Harrington



Wasserstein Stability for Barcodes and Persistence Landscapes

Wanchen Zhao Advisor: Peter Bubenik

$$\|\{d_{\text{rank}}(I_{w(\sigma)}, I_{w'(\sigma)})\}_{\sigma \in K}\|_{1} \ge W_{1}^{\text{rank}}(\text{Dgm}(\mathbf{w}), \text{Dgm}(\mathbf{w}')) \ge 2\|\lambda - \lambda'\|_{1}$$

Metric on the set of interval modules:

$$d_{rank}(I,J) := \int_{\mathbb{R}^2} |rank \ I - rank \ J|$$

Persistent homology via ellipsoids

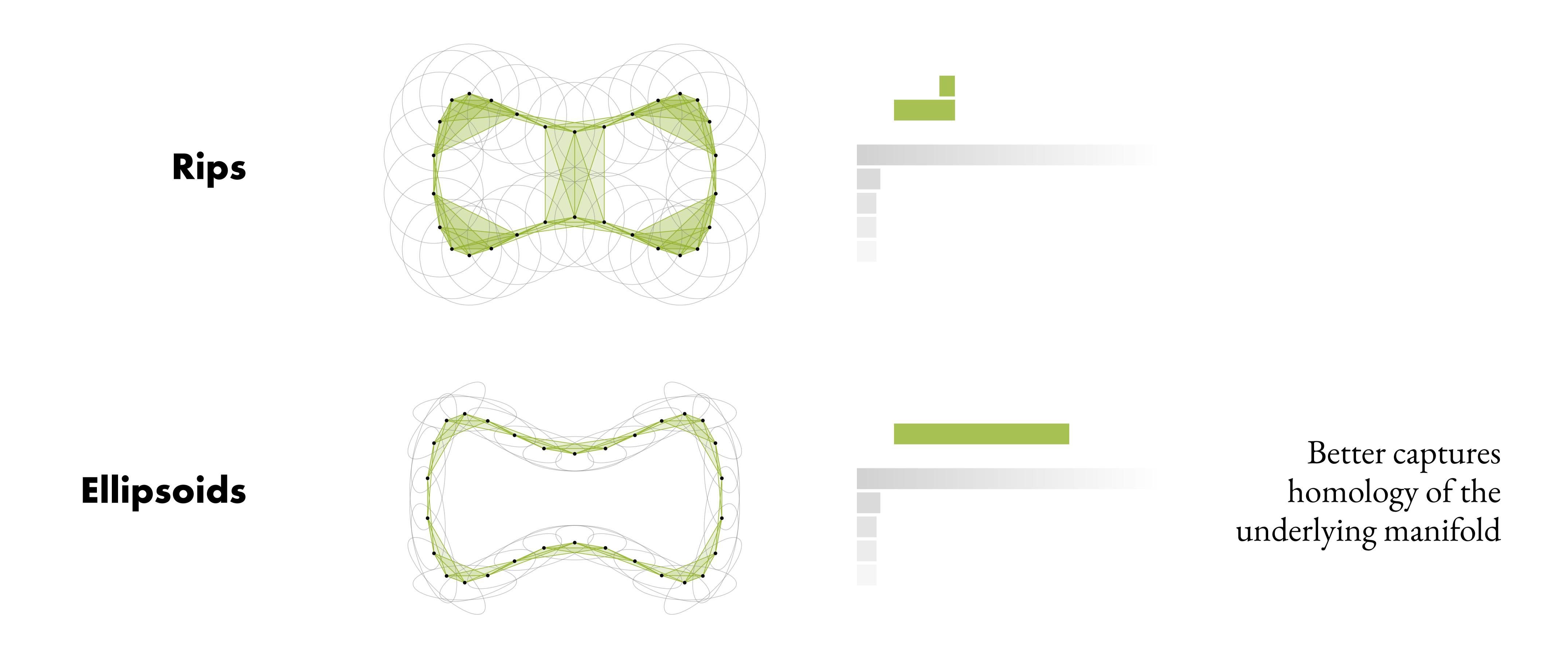
Niklas Canova ETH Zurich

Sara Kališnik
Penn State University

Aaron Moser
ETH Zurich

Bastian Rieck
University of Fribourg

Ana Žegarac ETH Zurich



Poster

- Construction details and properties
- Experimental results