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Introduction

e Tensors are multi-dimensional arrays, generalizing the
concepts of vectors/matrices.
e Common in many modern applications, including

Neuroscience : MRI/ fMRI data
Recommender systems
Computer vision

as well as in classical Statistics, Psychometrics,
Chemometrics, etc.

® Qur goal is to develop distribution free inference tools for
analyzing such multi-array data.
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Introduction

e Jet
X=0+e¢€

where X, ®, € are p; X py X p3 order-3 tensors, & € RP1P2P3
are unknown parameters and € is a tensor of zero mean, finite
variance random variables €50, 7 =1,...,p1, k=1,...,ps
and £ =1,...,p3.

® Typically, the random variables €, are correlated!

® Specification of the covariance structure is important as it
must capture the interactions among the components of €.

® In turn, it also determines the distributional properties of
estimators and tests.
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Covariance structure

e Here we will use the (resting state) fMRI example to
motivate the covariance structure.

¢ This imaging modality detects small changes in the magnetic
resonance (MR) of blood vessels near firing neurons as
oxygen levels drop.

e The resulting shifts are voxelized into three-dimensional (3D)
image volumes and then used to identify neural regions of
activity.
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Resting state fMRI
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Covariance structure

® Let Z = {(jl?j?aj?)) 1 S jr S Dr, T = ]-a 273}
e We shall suppose that there exist a correlation function py of

a stationary process on Z> and a permutation 7* : Z — T
such that

Cov(€jpe, € pr o) = o2 . 00 (7T*<j, k,0) — (5, k’,f’))

for (4,k,0),(j', k', 0') € T.
® We do not impose any distributional assumptions on €
(otherwise).
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The Testing Problem

e Next, for r =1,2,3, let A, be a (known) matrix of order
My X P

® We want to test the hypotheses:

H02®X1A1X2A2X3A3:O VS.
Hli(")XlAl X2A2X3A3§é0,

based on n iid copies of X.

¢ In the following, we allow the dimensions p1, ps, p3 and
m1, ma, mg to depend on/diverge with n.

S.N. Lahiri (WUSTL)



The Testing Problem

e How do we test Hy vs H; 7
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The Testing Problem

e How do we test Hy vs H; 7
¢ First suppose that my, ..., mg are finite.

o If we impose a parametric model on €, we can use the LRT !
o Alternatively, we can use self-normalized estimators of

® ><1A1 X2A2 ><3A3

to test Hy vs Hi.
o For this, we need the asymptotic distribution/variance & its
estimator.
¢ Both approaches become more challenging if mq, ..., m3 are
unbounded !!

® Here we will use the Empirical Likelihood approach of Owen
(1988) that bypasses both challenges!!
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Empirical Likelihood

e What is Empirical Likelihood?

e Consider a parametric model {f(-;0) : 0 € O} and let
Xy, ..., X, beiid, X7 ~ f(:;60). Then, the likelihood function

for 6 is .

Lo(0) = [ ] £(Xi:6).
i=1
e Under some regularity conditions, Wilk (1938)’s theorem
asserts that
—2log R,,(60) = x,

where R, (6p) is the likelihood ratio statistic (LRT) for testing
HO 10 = 90.
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Empirical Likelihood

e Empirical Likelihood(EL) of Owen (1988) is a method that
defines a likelihood for certain population parameters without
requiring a parametric model.

® Let Xy,...,X, beiid with mean € R. The EL for pu is

L.(n) = sup{ﬁm D> O,Zm = 1,Z7r,~Xi = u}
i=1

® The unconstrained maximum is at m; = n~! for all . Thus,
the EL ratio statistic for testing Hy : pt = pg is
Rn(,u[)) = L;;Sar?)

e Owen (1988) proved a version of Wilk’s Theorem:

—2log R, (110) —d X%-
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Literature Review: The EL

e Owen (1988, 1990) introduced the Empirical Likelihood (EL)
method for independent random variables.

e Extensions and refinements of the EL method to different
problems are given by

Chen and Hall (1993) : Quantiles

Qin and Lawless (1994) : Estimating Equations

DiCiccio, Hall and Romano (1996) : Bartlett Corrections

Einmahl and McKeague (2003) : Functional Hypothesis

Testing

Bertail (2006) : Semiparametric models

S.N. Lahiri (WUSTL)



in High Dimensions

e Hjort, McKeague, and Van Keilegom (2009) : Functional
nuisance parameters & Increasing dimensions

® Chen, Peng and Qin (2008): Increasing dimensions
p=o(n'?)

e A remarkable result of Tsao (2004) showed that for p > n/2,

there is a nontrivial positive probability that true
mean will lie outside the convex hull of {X;,..., X,}.

e Thus, the EL is not usable for p > n/2.
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in High Dimensions & alternative approaches

¢ Chen, Variyath and Abraham (2006) : Adjusted EL (AEL) in
the p > n/2 case

e Emerson and Owen (2009) further refined the AEL.

e Bartolucci (2007) proposed a Penalized EL (PEL), for
p < n.

e Lahiri & Mukherjee (2012) defined a different version of the
PEL that works in p > n case.

e Here we will extend the PEL for the tensor case, allowing the
tensor dimensions to diverge, beyond n.
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The PEL

NOTATION & FRAMEWORK:
e Let XM X® . beiid copies of X.

° Let =0 x4 A1 X9 Ay X3 Az be the parameter of interest!
Thus, we can restate the testing pronblem as

Hy:m=0 vs. Hy:m#0.

e Write Y](kzz for the (j, k, £)th element of
YO =X x; A x9 Ay x3 A3, 1 <5 <my, 1 <k <my,
1<0<mg, i>1.

e Let A be a tensor with (j, k, £)th element
Ojeomn = Sj_’]ig,n]l(sj,k,i,n #0)

where 57, ,, is the sample variance of { jkf ci=1,...,n}.
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The proposed PEL

e We propose the following version of PEL for testing
Hy:n=0 vs. H:n#0:

Ln(n)
= sup{(gm) exp ( — )\H [;mY(i) — n} x A,

S, T) GHn}

)

where [|A[]> =377, 37, a3, and x denotes the Hadamard
product.
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The proposed PEL

® Here, A = (((0;ken))) gives the component specific weights
(which are random), and A € (0,00) is an overall penalty
factor.

e Note that the unconstrained maximum of [[_, m; is n™".

e Hence, the PEL ratio statistic for testing
Hy:n=0 vs. H;:m+#0isgiven by
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Limit Distribution

Theorem

Let X = n/[mlmgmg] and ‘po((’il, ig, Zg)) ‘ S CH(’ll, ig, 7;3)”—(1.5—0—(1)
for all iy,1i5,13 € Z and for some a > 0. Then, under some
moment and additional weak dependence conditions, for

1 < M = mimems < n?,

M2 [ —log Ry — 1 }/hﬁn 4 N(0,1)

under Hy, where R, is the PEL ratio statistic defined above and
where k, = O(1) is a population parameter depending on the ACF

po()-

v
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Limit Distribution

® Remark 1: A consistent estimator of k2 can be constructed:

e using the form of k,, if the permutation 7* is known!
e using the Subsampling method, if the permutation 7* is
unknown!

® Remark 2: Thus, the PELRT test can be calibrated using
the N(0,1) critical values!

® Remark 3: In the case, all my, msy, m3 are fixed and finite,
penalization is not needed. The standard EL works.

¢ Remark 4: The PEL method can be used for validating
joint significance of a region of interest that may have been
identified using marginal analysis.
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Simulation

To be done!!
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The ENDI!!!

Thank you !!
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