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Introduction

• Tensors are multi-dimensional arrays, generalizing the
concepts of vectors/matrices.

• Common in many modern applications, including

Neuroscience : MRI/ fMRI data
Recommender systems
Computer vision
...

as well as in classical Statistics, Psychometrics,
Chemometrics, etc.

• Our goal is to develop distribution free inference tools for
analyzing such multi-array data.
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Introduction

• Let
X = Θ + ε

where X,Θ, ε are p1 × p2 × p3 order-3 tensors, Θ ∈ Rp1p2p3

are unknown parameters and ε is a tensor of zero mean, finite
variance random variables εjk`, j = 1, . . . , p1, k = 1, . . . , p2
and ` = 1, . . . , p3.

• Typically, the random variables εjk` are correlated!

• Specification of the covariance structure is important as it
must capture the interactions among the components of ε.

• In turn, it also determines the distributional properties of
estimators and tests.
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Covariance structure

• Here we will use the (resting state) fMRI example to
motivate the covariance structure.

• This imaging modality detects small changes in the magnetic
resonance (MR) of blood vessels near firing neurons as
oxygen levels drop.

• The resulting shifts are voxelized into three-dimensional (3D)
image volumes and then used to identify neural regions of
activity.
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Resting state fMRI
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Covariance structure

• Let I = {(j1, j2, j3) : 1 ≤ jr ≤ pr, r = 1, 2, 3}.
• We shall suppose that there exist a correlation function ρ0 of

a stationary process on Z3 and a permutation π∗ : I → I
such that

Cov(εj,k,`, εj′,k′,`′) = σ2 · ρ0
(
π∗(j, k, `)− π∗(j′, k′, `′)

)
for (j, k, `), (j′, k′, `′) ∈ I.

• We do not impose any distributional assumptions on ε
(otherwise).
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The Testing Problem

• Next, for r = 1, 2, 3, let Ar be a (known) matrix of order
mr × pr.

• We want to test the hypotheses:

H0 : Θ×1 A1 ×2 A2 ×3 A3 = 0 vs.

H1 : Θ×1 A1 ×2 A2 ×3 A3 6= 0,

based on n iid copies of X.

• In the following, we allow the dimensions p1, p2, p3 and
m1,m2,m3 to depend on/diverge with n.
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The Testing Problem

• How do we test H0 vs H1 ?

• First suppose that m1, . . . ,m3 are finite.

If we impose a parametric model on ε, we can use the LRT !
Alternatively, we can use self-normalized estimators of

Θ×1 A1 ×2 A2 ×3 A3

to test H0 vs H1.
For this, we need the asymptotic distribution/variance & its
estimator.

• Both approaches become more challenging if m1, . . . ,m3 are
unbounded !!

• Here we will use the Empirical Likelihood approach of Owen
(1988) that bypasses both challenges!!
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Empirical Likelihood

• What is Empirical Likelihood?

• Consider a parametric model {f(·; θ) : θ ∈ Θ} and let
X1, . . . , Xn be iid, X1 ∼ f(·; θ0). Then, the likelihood function
for θ is

Ln(θ) =
n∏
i=1

f(Xi; θ).

• Under some regularity conditions, Wilk (1938)’s theorem
asserts that

−2 logRn(θ0)→d χp

where Rn(θ0) is the likelihood ratio statistic (LRT) for testing
H0 : θ = θ0.
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Empirical Likelihood

• Empirical Likelihood(EL) of Owen (1988) is a method that
defines a likelihood for certain population parameters without
requiring a parametric model.

• Let X1, . . . , Xn be iid with mean µ ∈ R. The EL for µ is

Ln(µ) = sup
{ n∏
i=1

πi : πi ≥ 0,
∑

πi = 1,
∑

πiXi = µ
}

• The unconstrained maximum is at πi = n−1 for all i. Thus,
the EL ratio statistic for testing H0 : µ = µ0 is
Rn(µ0) = Ln(θ0)

n−n .

• Owen (1988) proved a version of Wilk’s Theorem:

−2 logRn(µ0)→d χ2
1.
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Literature Review: The EL

• Owen (1988, 1990) introduced the Empirical Likelihood (EL)
method for independent random variables.

• Extensions and refinements of the EL method to different
problems are given by

Chen and Hall (1993) : Quantiles
Qin and Lawless (1994) : Estimating Equations
DiCiccio, Hall and Romano (1996) : Bartlett Corrections
Einmahl and McKeague (2003) : Functional Hypothesis
Testing
Bertail (2006) : Semiparametric models
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EL in High Dimensions

• Hjort, McKeague, and Van Keilegom (2009) : Functional
nuisance parameters & Increasing dimensions

• Chen, Peng and Qin (2008): Increasing dimensions
p = o(n1/2)

• A remarkable result of Tsao (2004) showed that for p > n/2,
there is a nontrivial positive probability that true
mean will lie outside the convex hull of {X1, . . . , Xn}.
• Thus, the EL is not usable for p > n/2.
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EL in High Dimensions & alternative approaches

• Chen, Variyath and Abraham (2006) : Adjusted EL (AEL) in
the p > n/2 case

• Emerson and Owen (2009) further refined the AEL.

• Bartolucci (2007) proposed a Penalized EL (PEL), for
p ≤ n.

• Lahiri & Mukherjee (2012) defined a different version of the
PEL that works in p > n case.

• Here we will extend the PEL for the tensor case, allowing the
tensor dimensions to diverge, beyond n.
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The PEL

NOTATION & FRAMEWORK:

• Let X(1),X(2), . . . , be iid copies of X.

• Let η = Θ×1 A1 ×2 A2 ×3 A3 be the parameter of interest!
Thus, we can restate the testing pronblem as

H0 : η = 0 vs. H1 : η 6= 0.

• Write Y
(i)
jk` for the (j, k, `)th element of

Y(i) = X(i) ×1 A1 ×2 A2 ×3 A3, 1 ≤ j ≤ m1, 1 ≤ k ≤ m2,
1 ≤ ` ≤ m3, i ≥ 1.

• Let ∆ be a tensor with (j, k, `)th element

δj,k,`,n = s−1j,k,`,n11(sj,k,`,n 6= 0)

where s2j,k,`,n is the sample variance of {Y (i)
jk` : i = 1, . . . , n}.
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The proposed PEL

• We propose the following version of PEL for testing
H0 : η = 0 vs. H1 : η 6= 0 :

Ln(η)

= sup
{( n∏

i=1

πi

)
exp

(
− λ
∥∥∥[ n∑

i=1

πiY
(i) − η

]
∗∆n

∥∥∥2)
: (π1, . . . , πn) ∈ Πn

}
where ‖A‖2 =

∑
j

∑
k

∑
` a

2
jkl and ∗ denotes the Hadamard

product.
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The proposed PEL

• Here, ∆ = (((δj,k,`,n))) gives the component specific weights
(which are random), and λ ∈ (0,∞) is an overall penalty
factor.

• Note that the unconstrained maximum of
∏n

i=1 πi is n−n.

• Hence, the PEL ratio statistic for testing
H0 : η = 0 vs. H1 : η 6= 0 is given by

Rn =
Ln(0)

n−n
.
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Limit Distribution

Theorem

Let λ = n/[m1m2m3] and
∣∣ρ0((i1, i2, i3))∣∣ ≤ C‖(i1, i2, i3)‖−(1.5+a)

for all i1, i2, i3 ∈ Z and for some a > 0. Then, under some
moment and additional weak dependence conditions, for
1�M ≡ m1m2m3 � n2,

M1/2
[
− logRn − 1

]
/κn →d N(0, 1)

under H0, where Rn is the PEL ratio statistic defined above and
where κn = O(1) is a population parameter depending on the ACF
ρ0(·).
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Limit Distribution

• Remark 1: A consistent estimator of κ2n can be constructed:

using the form of κn, if the permutation π∗ is known!
using the Subsampling method, if the permutation π∗ is
unknown!

• Remark 2: Thus, the PELRT test can be calibrated using
the N(0,1) critical values!

• Remark 3: In the case, all m1,m2,m3 are fixed and finite,
penalization is not needed. The standard EL works.

• Remark 4: The PEL method can be used for validating
joint significance of a region of interest that may have been
identified using marginal analysis.
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Simulation

To be done!!
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The END!!!

Thank you !!
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