## Spectral Ranking Inferences Based on General Multiway Comparisons

## **Jianqing Fan**

**Princeton** University

https://fan.princeton.edu/

Zhipeng Lou, Weichen Wang, Mengxin Yu



**Jianqing Fan (Princeton University)** 

## **Outlines**

★ Chen, E. Y., Xia, D., Cai, C. and Fan, J. (2024). Semiparametric tensor factor analysis by iteratively projected SVD. *Journal of Royal Statistical Society, B*, **86** (3), 793–823.

★ Chen, E.Y. and Fan, J. (2023). Statistical inference for high-dimensional matrix-variate factor model. *Journal of American Statistical Association*, **118**, 1038-1055

Introduction

- A Discrete Choice Model
- Estimation and Uncertainty Quantification
- Spectral Ranking and Inferences
- Theorectical Justifications
- Numerical studies and Conclusion





Zhipeng Lou

eichen War

イロト イポト イヨト イヨト

Maxine Yu

## **Outlines**

★ Chen, E. Y., Xia, D., Cai, C. and Fan, J. (2024). Semiparametric tensor factor analysis by iteratively projected SVD. *Journal of Royal Statistical Society, B*, **86** (3), 793–823.

★ Chen, E.Y. and Fan, J. (2023). Statistical inference for high-dimensional matrix-variate factor model. *Journal of American Statistical Association*, **118**, 1038-1055

Introduction

- A Discrete Choice Model
- Estimation and Uncertainty Quantification
- Spectral Ranking and Inferences

Theorectical Justifications

Numerical studies and Conclusion



Zhipeng Lou

ichen Wan

イロト イポト イヨト イヨト

Maxine Yu

## Outlines

★ Chen, E. Y., Xia, D., Cai, C. and Fan, J. (2024). Semiparametric tensor factor analysis by iteratively projected SVD. Journal of Roval Statistical Society. B. 86 (3), 793-823.

★ Chen, E.Y. and Fan, J. (2023). Statistical inference for high-dimensional matrix-variate factor model. Journal of American Statistical Association. 118, 1038-1055

Introduction

- A Discrete Choice Model 2
- Estimation and Uncertainty Quantification
- Spectral Ranking and Inferences
- Theorectical Justifications
- Numerical studies and Conclusion







Zhipena Lou

Weichen Wang

Maxine Yu イロト イポト イヨト イヨト 200

## Introduction

< □ > < □ > < □ > < □ > < □ > = □ ≥

★ Ranking plays an important role in many applications: web search, voting, movie/music/book rating, recommendation systems, product designs, sports competitions, refereeing, LLM ...



イロト イポト イヨト イヨト

- ★ In 2024, NeurIPS had 16,671 submissions. In 2023, ICML received 6,538 submissions from 18,535 authors.
- ★ Burden on the system, quality of reviews, indivudual noises.
- ★ ≈ half of the accepted papers in NeurIPS 2021 would be rejected upon a second round of reviews.
  (Su, et al 2025+)
- Many referees reviewed multiple papers and therefore have a complete ranking among reviewed papers.
- ★ Estimate the quality scores and its rank of each paper

**<u>Data</u>**:  $\{(c_{\ell}, A_{\ell})\}$  —top choice  $c_{\ell}$  in the set  $A_{\ell}$ **Comparison graph**: Draw edge when compared.

イロト イポト イヨト イヨト 一日

- ★ In 2024, NeurIPS had 16,671 submissions. In 2023, ICML received 6,538 submissions from 18,535 authors.
- ★ Burden on the system, quality of reviews, indivudual noises.
- ★ ≈ half of the accepted papers in NeurIPS 2021 would be rejected upon a second round of reviews.
  (Su, et al 2025+)
- Many referees reviewed multiple papers and therefore have a complete ranking among reviewed papers.
- ★ Estimate the quality scores and its rank of each paper ★widson of crowd

**<u>Data</u>**:  $\{(c_{\ell}, A_{\ell})\}$  —top choice  $c_{\ell}$  in the set  $A_{\ell}$ **Comparison graph**: Draw edge when compared.

イロト イポト イヨト イヨト 二日

- ★ In 2024, NeurIPS had 16,671 submissions. In 2023, ICML received 6,538 submissions from 18,535 authors.
- ★ Burden on the system, quality of reviews, indivudual noises.
- ★ ≈ half of the accepted papers in NeurIPS 2021 would be rejected upon a second round of reviews.
  (Su, et al 2025+)
- Many referees reviewed multiple papers and therefore have a complete ranking among reviewed papers.
- ★ Estimate the quality scores and its rank of each paper

**<u>Data</u>**:  $\{(c_{\ell}, A_{\ell})\}$  —top choice  $c_{\ell}$  in the set  $A_{\ell}$ **Comparison graph**: Draw edge when compared.



<ロト < 同ト < 巨ト < 巨ト

## **Preference scores and Intrisinc Ability**

★ Most current practical usage of ranks only involves estimating preference scores and displaying the estimated ranks.



Jianging Fan (Princeton University)

★ Is school A indeed better than school B?

★ Is school C indeed among top-20 rankings?

★ How many schools to apply to ensure the top 5 are selected?

Challenge: \*Limitted comparisons

Involve all unknown scores

discrete parameters

contribute to high-dim inference

イロト イポト イヨト イヨト

### ★ Is school A indeed better than school B?

★ Is school C indeed among top-20 rankings?

★ How many schools to apply to ensure the top 5 are selected?

Challenge: ★Limitted comparisons

★Involve all unknown scores

+discrete parameters

contribute to high-dim inference

★ Is school A indeed better than school B?

★ Is school C indeed among top-20 rankings?

How many schools to apply to ensure the top 5 are selected?

Challenge: \*Limitted comparisons

★Involve all unknown scores

discrete parameters

contribute to high-dim inference

(日)

★ Is school A indeed better than school B?

- ★ Is school C indeed among top-20 rankings?
- ★ How many schools to apply to ensure the top 5 are selected?

Challenge: ★Limitted comparisons ★Involve all unknown scores

discrete parameters

contribute to high-dim inference

イロト 人間 ト イヨト イヨト

★ Is school A indeed better than school B?

- ★ Is school C indeed among top-20 rankings?
- ★ How many schools to apply to ensure the top 5 are selected?

Challenge: **★**Limitted comparisons

★Involve all unknown scores

★ discrete parameters

contribute to high-dim inference

イロト 人間 ト イヨト イヨト

## **Related Literature**

#### **Ranking Estimation: Pairwise Comparison**

- Rank centrality for Top-K recovery (Negahban et al., 2016).
- Spectral and MLE method for the BTL model (Chen and Suh, 2015).
- Counting-based algorithm for Top-K recovery (Shah and Wainwright, 2017).
- Spectral and Regularized MLE for Top-K recovery (Chen et al., 2019).
- Spectral and MLE for partial recovery (Chen et al., 2022).

#### Ranking Estimation: M-way comparison

- Label ranking via Plackett-Luce (PL) model (Cheng et al., 2010)
- Fast estimation of PL models (Maystre et al., 2015).
- Top-K recovery via spectral method and PL model (Jang et at., 2018).

#### Ranking Inference: (Han et al, 2020; Liu et al,. 2022; Gao et al,.2022; Fan, et al., 2025+ )

★Pairwise comparisons ★Not general enough

Jianqing Fan (Princeton University)

★ Suboptimal for ranking infer.

くロネ 不得 とくき とくぎる

## **Related Literature**

#### **Ranking Estimation: Pairwise Comparison**

- Rank centrality for Top-K recovery (Negahban et al., 2016).
- Spectral and MLE method for the BTL model (Chen and Suh, 2015).
- Counting-based algorithm for Top-K recovery (Shah and Wainwright, 2017).
- Spectral and Regularized MLE for Top-K recovery (Chen et al., 2019).
- Spectral and MLE for partial recovery (Chen et al., 2022).

#### Ranking Estimation: M-way comparison

- Label ranking via Plackett-Luce (PL) model (Cheng et al., 2010).
- Fast estimation of PL models (Maystre et al., 2015).
- Top-K recovery via spectral method and PL model (Jang et at., 2018).

Ranking Inference: (Han et al, 2020; Liu et al,. 2022; Gao et al,.2022; Fan, et al., 2025+ )

 $\star$ Pairwise comparisons  $\star$ Not general enough

★Suboptimal for ranking infer.

くロネ 不得 とくき とくきと

## **Related Literature**

#### **Ranking Estimation: Pairwise Comparison**

- Rank centrality for Top-K recovery (Negahban et al., 2016).
- Spectral and MLE method for the BTL model (Chen and Suh, 2015).
- Counting-based algorithm for Top-K recovery (Shah and Wainwright, 2017).
- Spectral and Regularized MLE for Top-K recovery (Chen et al., 2019).
- Spectral and MLE for partial recovery (Chen et al., 2022).

#### Ranking Estimation: M-way comparison

- Label ranking via Plackett-Luce (PL) model (Cheng et al., 2010).
- Fast estimation of PL models (Maystre et al., 2015).
- Top-K recovery via spectral method and PL model (Jang et at., 2018).

Ranking Inference: (Han et al, 2020; Liu et al,. 2022; Gao et al,.2022; Fan, et al., 2025+ )

★Pairwise comparisons ★Not general enough

Jianqing Fan (Princeton University)

Suboptimal for ranking infer.

## A discrete choice model

### under a general comparison graph

イロト イポト イヨト イヨト 一日

## Model Settings

Preference scores: *n* items are associated preference scores

 $\boldsymbol{\theta}^* = [\boldsymbol{\theta}_1^*, \cdots, \boldsymbol{\theta}_n^*]^\top, \quad \boldsymbol{\theta}_i^* \in [\boldsymbol{\theta}_L, \boldsymbol{\theta}_U], \forall i \in [n].$ 



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

### **Data**: $\{(c_{\ell}, A_{\ell})\}$ —top choice $c_{\ell}$ in the set $A_{\ell}$ .

$$\Big\{\rho_{i_k}=\frac{e^{\theta_{i_k}^*}}{\sum_{j=1}^M e^{\theta_{i_j}^*}}, k\in[M]\Big\}.$$

## Model Settings

Preference scores: *n* items are associated preference scores

 $\boldsymbol{\theta}^* = [\boldsymbol{\theta}_1^*, \cdots, \boldsymbol{\theta}_n^*]^\top, \quad \boldsymbol{\theta}_i^* \in [\boldsymbol{\theta}_L, \boldsymbol{\theta}_U], \forall i \in [n].$ 



**Data**:  $\{(c_{\ell}, A_{\ell})\}$  —top choice  $c_{\ell}$  in the set  $A_{\ell}$ .

<u>Multinomial outcomes</u>: For each  $(i_1, \dots, i_M) \in A_\ell$ , observe L indep. comparisons and obtain outcomes  $\{(y_{i_{\ell}}^{(\ell)}, \dots, y_{i_{\ell}}^{(\ell)})\}_{\ell=1}^{L}$  with winning prob (Luce's (1959) Choice Axiom)

$$\Big\{\boldsymbol{p}_{i_k} = \frac{\boldsymbol{e}^{\boldsymbol{\theta}_{i_k}^*}}{\sum_{j=1}^M \boldsymbol{e}^{\boldsymbol{\theta}_{i_j}^*}}, k \in [M]\Big\}.$$



イロト イポト イヨト イヨト 二日

## **Learning Objectives**

★ Provide estimation and uncertainty quantification of  $\{\theta_i^*\}_{i=1}^n$  via heterogeneous number of comparisons.



★ Give ranking inferences

 $\star M = 2 \implies$  Bradley-Terry-Luce (BTL) model

#### Jianging Fan (Princeton University)

## Versality of Models

**Top-choice**: General M > 2 and observe the top-choice (*Fan, et al, 25+*)

 $P(i_1 \succ \{i_2, \ldots, i_M\}) = \exp(\theta_{i_1}^*) / (\sum_{k=1}^M \exp(\theta_{i_k}^*)).$ 

Versality:  $\star$ General comparison graph  $\star$ Heterogenous size M and number L

イロト イポト イヨト イヨト 二日





#### **Jianqing Fan (Princeton University)**

## Versality of Models

**Top-choice**: General M > 2 and observe the top-choice (*Fan, et al, 25+*)

 $P(i_1 \succ \{i_2, \ldots, i_M\}) = \exp(\theta_{i_1}^*) / (\sum_{k=1}^M \exp(\theta_{i_k}^*)).$ 

**Plakett-Luce:** If compared, observe the full ranking for *L* independent times.

$$P(i_1 \succ i_2 \succ \cdots \succ i_M) = \prod_{j=1}^{M-1} \frac{\exp(\theta_{i_j}^*)}{\sum_{k=j}^{M} \exp(\theta_{i_k}^*)}$$

Take  $A_1 = \{i_1, \dots, i_M\}, A_2 = \{i_2, \dots, i_M\}, \dots$ 

Versality:  $\star$ General comparison graph  $\star$  Heterogenous size M and number L

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶



$$\implies$$
 BTL

## **Versality of Models**

**Top-choice**: General  $M \ge 2$  and observe the top-choice (*Fan, et al, 25+*)

 $P(i_1 \succ \{i_2,\ldots,i_M\}) = \exp(\theta_{i_1}^*) / (\sum_{k=1}^M \exp(\theta_{i_k}^*)).$ 

Plakett-Luce: If compared, observe the full ranking for L independent times.

$$P(i_1 \succ i_2 \succ \cdots \succ i_M) = \prod_{j=1}^{M-1} \frac{\exp(\theta_{i_j})}{\sum_{k=j}^M \exp(\theta_{i_k})}$$

Take  $A_1 = \{i_1, \cdots, i_M\}, A_2 = \{i_2, \cdots, i_M\}, \cdots$ 

Versality: ★General comparison graph

 $\star$ Heterogenous size *M* and number *L* 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

(0\*)

Ranking Inferences



10/36

⇒ BTI



# Estimation and Uncertainty Quantification

3

イロト (部) (注) () ()

Markov chain (S, P): S contains n items with transition probability P

$$\mathsf{P}_{ij} = \begin{cases} \frac{1}{d} \sum_{\ell \in \mathcal{W}_j \cap \mathcal{L}_i} \frac{1}{f(\mathsf{A}_\ell)}, & \text{if } i \neq j, \\ 1 - \sum_{k: k \neq i} \mathsf{P}_{ik}, & \text{if } i = j. \end{cases} \quad \mathcal{W}_j = \{\ell \in \mathcal{D} | i \in \mathsf{A}_\ell, \mathsf{c}_\ell = j\}, \\ \mathcal{L}_i = \{\ell \in \mathcal{D} | i \in \mathsf{A}_\ell, \mathsf{c}_\ell \neq i\}. \end{cases}$$

★ 
$$W_j$$
 = winning instances for item *j*  $L_i$  = losing instances for item *i*  
★  $W_j \cap L_i$  = instances that *j* wins when *i*, *j* are compared.  
★  $f(A_\ell) > 0$  is a weight, e.g.  $f(A_\ell) = |A_\ell|$ , efficiency.  
★ *d* is chosen large enough to make the diagonals of *P* nonnegative.  
★ Faster than MLE

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Markov chain (S, P): S contains n items with transition probability P

$$P_{ij} = \begin{cases} \frac{1}{d} \sum_{\ell \in \mathcal{W}_j \cap \mathcal{L}_i} \frac{1}{f(\mathcal{A}_\ell)}, & \text{if } i \neq j, \\ 1 - \sum_{k:k \neq i} P_{ik}, & \text{if } i = j. \end{cases} \quad \mathcal{W}_j = \{\ell \in \mathcal{D} | i \in \mathcal{A}_\ell, \mathbf{c}_\ell = j\}, \\ \mathcal{L}_i = \{\ell \in \mathcal{D} | i \in \mathcal{A}_\ell, \mathbf{c}_\ell \neq i\}. \end{cases}$$

★ 
$$\mathcal{W}_{j}$$
 = winning instances for item *j*  $\mathcal{L}_{i}$  = losing instances for item *i*  
★  $\mathcal{W}_{j} \cap \mathcal{L}_{i}$  = instances that *j* wins when *i*, *j* are compared.  
★  $f(A_{\ell}) > 0$  is a weight, e.g.  $f(A_{\ell}) = |A_{\ell}|$ , efficiency.  
★ *d* is chosen large enough to make the diagonals of *P* nonnegative.

★Faster than MLE

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

**Spectral Estimation**: Let  $\hat{\pi}$  be the stationary distribution, i.e.  $\hat{\pi}^{\top} P = \hat{\pi}^{\top}$ . Set

$$\widetilde{\Theta}_i := \log \widehat{\pi}_i - \frac{1}{n} \sum_{k=1}^n \log \widehat{\pi}_k$$
.

**<u>Rationale</u>**: Conditioning on  $\mathcal{G} = \{A_{\ell} | \ell \in \mathcal{D}\}$ , the population transition matrix is

$$P_{ij}^* = E[P_{ij}|\mathcal{G}] = \frac{1}{d} \sum_{l \in \mathcal{D}} \mathbb{1}(i, j \in A_\ell) \frac{\exp(\theta_j^*)}{\sum_{u \in A_\ell} \exp(\theta_u^*)} \frac{1}{f(A_\ell)}, \quad \text{if } i \neq j,$$

Then  $\pi^* = (e^{\theta_1^*}, \dots, e^{\theta_n^*}) / \sum_{k=1}^n e^{\theta_k^*}$  is stationary distribution of  $\mathbf{P}^*$ , since **Detailed balance**:  $P_{ij}^* \pi_i^* = P_{ji}^* \pi_j^*$ .

**Jianqing Fan (Princeton University)** 

イロト イポト イヨト イヨト 二日

**Spectral Estimation**: Let  $\hat{\pi}$  be the stationary distribution, i.e.  $\hat{\pi}^{\top} P = \hat{\pi}^{\top}$ . Set

$$\widetilde{\Theta}_i := \log \widehat{\pi}_i - \frac{1}{n} \sum_{k=1}^n \log \widehat{\pi}_k$$
.

**<u>Rationale</u>**: Conditioning on  $\mathcal{G} = \{A_{\ell} | \ell \in \mathcal{D}\}$ , the population transition matrix is

$$P_{ij}^{*} = E[P_{ij}|\mathcal{G}] = \frac{1}{d} \sum_{l \in \mathcal{D}} \mathbb{1}(i, j \in A_{\ell}) \frac{\exp(\theta_{j}^{*})}{\sum_{u \in A_{\ell}} \exp(\theta_{u}^{*})} \frac{1}{f(A_{\ell})}, \quad \text{if } i \neq j,$$
  
Then  $\pi^{*} = (e^{\theta_{1}^{*}}, \dots, e^{\theta_{n}^{*}}) / \sum_{k=1}^{n} e^{\theta_{k}^{*}} \text{ is } \text{ stationary distribution } \text{ of } \mathbf{P}^{*}, \text{ since } \mathbf{D} \text{ etailed balance}: P_{ij}^{*} \pi_{i}^{*} = P_{ji}^{*} \pi_{j}^{*}.$ 

**Jianqing Fan (Princeton University)** 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## **An illustration**

 $\underline{\text{Data}}: (c_1, A_1) = (3, \{2, 3, 4, 5\}), (c_2, A_2) = (2, \{1, 2, 3\}), (c_3, A_3) = (2, \{2, 5\}), (c_4, A_4) = (4, \{4, 5\}), (c_5, A_5) = (4, \{2, 4\}), (c_6, A_6) = (1, \{1, 4\}), (c_7, A_7) = (5, \{4, 5\}).$ 



★A directed edge from *i* to *j* exists if *i*, *j* are compared and *j* wins ★d = 6 and  $\hat{\pi} = (0.199, 0.531, 0.796, 0.199, 0.066)^{\top}$ .

 $3 \succ 2 \succ 1 = 4 \succ 5$ .

(ロ) (四) (日) (日) (日)

Show 
$$\widehat{\pi}_{i} = \frac{\sum_{j:j \neq i} P_{ji} \widehat{\pi}_{j}}{\sum_{j:j \neq i} P_{ij}} \approx \frac{\sum_{j:j \neq i} P_{ji} \pi_{j}^{*}}{\sum_{j:j \neq i} P_{ij}}$$
 leave-one-out
Show  $\frac{\widehat{\pi}_{i} - \pi_{i}^{*}}{\pi_{i}^{*}} \approx \frac{\sum_{i:j \neq i} (P_{ji} \pi_{i}^{*} - P_{ij} \pi_{i}^{*})}{\pi_{i}^{*} \sum_{j:j \neq i} P_{ij}} \approx \frac{\sum_{j:j \neq i} (P_{ji} e^{\theta_{i}^{*}} - P_{ij} e^{\theta_{i}^{*}})}{\sum_{j:j \neq i} E[P_{ij}|G] e^{\theta_{i}^{*}}} =: J_{i}^{*}$  uniformly

3 Note that  $J_i^*$ 

$$=\frac{\tau_i(\theta^*)}{d}\sum_{l\in\mathcal{D}}\frac{1(i\in A_l)}{f(A_l)}\big\{1(c_l=i)\sum_{u\in A_l, u\neq i}e^{\theta^*_u}-e^{\theta^*_l}1(c_l\neq i)\big\}$$

) variance can be analytically computed with optimal  $f(A_l) \propto \sum_{u \in A_l} e^{\Theta_u}$ 

Asymptotic normality can be established

Show 
$$\widehat{\pi}_{i} = \frac{\sum_{j:j \neq i} P_{ji} \pi_{j}}{\sum_{j:j \neq i} P_{ij}} \approx \frac{\sum_{j:j \neq i} P_{ji} \pi_{j}}{\sum_{j:j \neq i} P_{ij}}$$
 leave-one-out
Show  $\frac{\widehat{\pi}_{i} - \pi_{i}^{*}}{\pi_{i}^{*}} \approx \frac{\sum_{j:j \neq i} (P_{ji} \pi_{i}^{*} - P_{ij} \pi_{i}^{*})}{\pi_{i}^{*} \sum_{j:j \neq i} P_{ij}} \approx \frac{\sum_{j:j \neq i} (P_{ji} e^{\theta_{j}^{*}} - P_{ij} e^{\theta_{i}^{*}})}{\sum_{j:j \neq i} E[P_{ij}] \mathcal{G}] e^{\theta_{i}^{*}}} =: J_{i}^{*}$  uniformly

3 Note that  $J_i^*$ 

$$=\frac{\tau_i(\theta^*)}{d}\sum_{l\in\mathcal{D}}\frac{1(i\in A_l)}{f(A_l)}\big\{1(c_l=i)\sum_{u\in A_l, u\neq i}e^{\theta^*_u}-e^{\theta^*_l}1(c_l\neq i)\big\}$$

) variance can be analytically computed with optimal  $f(A_l) \propto \sum_{u \in A_l} e^{\Theta_u}$ 

Asymptotic normality can be established

ヘロト ヘ回 ト ヘヨト ヘヨト

• Show 
$$\widehat{\pi}_{i} = \frac{\sum_{j:j \neq i} P_{ji} \pi_{j}}{\sum_{j:j \neq i} P_{ij}} \approx \frac{\sum_{j:j \neq i} P_{ji} \pi_{j}}{\sum_{j:j \neq i} P_{ij}}$$
 leave-one-out

2 Show 
$$\frac{\widehat{\pi}_i - \pi_i^*}{\pi_i^*} \approx \frac{\sum_{j:j \neq i} (P_{ji} \pi_j^* - P_{ij} \pi_i^*)}{\pi_i^* \sum_{j:j \neq i} P_{ij}} \approx \frac{\sum_{j:j \neq i} (P_{ji} e^{\theta_j^*} - P_{ij} e^{\theta_i^*})}{\sum_{j:j \neq i} E[P_{ij}|\mathcal{G}] e^{\theta_i^*}} =: J_i^*$$
 uniformly

**③** Note that  $J_i^*$ 

1

$$=\frac{\tau_i(\theta^*)}{d}\sum_{l\in\mathcal{D}}\frac{1(i\in A_l)}{f(A_l)}\big\{1(c_l=i)\sum_{u\in A_l,u\neq i}e^{\theta^*_u}-e^{\theta^*_i}1(c_l\neq i)\big\}$$

) variance can be analytically computed with optimal  $f(A_l) \propto \sum_{u \in A_l} e^{\theta_u}$ 

Asymptotic normality can be established

ヘロア 人間 アメヨア 人間 アー

• Show 
$$\widehat{\pi}_{i} = \frac{\sum_{j:j\neq i} P_{ij}\widehat{\pi}_{j}}{\sum_{j:j\neq i} P_{ij}} \approx \frac{\sum_{j:j\neq i} P_{ji}\pi_{j}^{*}}{\sum_{j:j\neq i} P_{ij}}$$
 leave-one-out  
• Show  $\widehat{\pi}_{i} - \pi_{i}^{*} \approx \frac{\sum_{j:j\neq i} (P_{ji}\pi_{j}^{*} - P_{ij}\pi_{i}^{*})}{\pi_{i}^{*}\sum_{j:j\neq i} P_{ij}} \approx \frac{\sum_{j:j\neq i} (P_{ji}e^{\theta_{i}^{*}} - P_{ij}e^{\theta_{i}^{*}})}{\sum_{j:j\neq i} E[P_{ij}|\mathcal{G}]e^{\theta_{i}^{*}}} =: J_{i}^{*}$  uniformly  
• Note that  $J_{i}^{*} =: \frac{1}{d}\sum_{l\in\mathcal{D}} J_{ll}(\theta^{*})$  sum of indep var.  
 $= \frac{\tau_{i}(\theta^{*})}{d}\sum_{l\in\mathcal{D}} \frac{1(i\in A_{l})}{f(A_{l})} \{1(c_{l}=i)\sum_{u\in A_{l}, u\neq i} e^{\theta_{u}^{*}} - e^{\theta_{i}^{*}}1(c_{l}\neq i)\}$ 

) variance can be analytically computed with optimal  $f(A_l) \propto \sum_{u \in A_l} e^{ heta_u^0}$ 

Asymptotic normality can be established

ヘロア 人間 アメヨア 人間 アー

• Show 
$$\widehat{\pi}_{i} = \frac{\sum_{j:j\neq i} P_{ij} \widehat{\pi}_{j}}{\sum_{j:j\neq i} P_{ij}} \approx \frac{\sum_{j:j\neq i} P_{ji} \pi_{j}^{*}}{\sum_{j:j\neq i} P_{ij}}$$
 leave-one-out  
• Show  $\widehat{\pi}_{i} - \pi_{i}^{*} \approx \frac{\sum_{j:j\neq i} (P_{ji}\pi_{j}^{*} - P_{ij}\pi_{i}^{*})}{\pi_{i}^{*}\sum_{j:j\neq i} P_{ij}} \approx \frac{\sum_{j:j\neq i} (P_{ji}e^{\theta_{i}^{*}} - P_{ij}e^{\theta_{i}^{*}})}{\sum_{j:j\neq i} E[P_{ij}|\mathcal{G}]e^{\theta_{i}^{*}}} =: J_{i}^{*}$  uniformly  
• Note that  $J_{i}^{*} =: \frac{1}{d}\sum_{l\in\mathcal{D}} J_{ll}(\theta^{*})$  sum of indep var.  
 $= \frac{\tau_{i}(\theta^{*})}{d}\sum_{l\in\mathcal{D}} \frac{1(i\in A_{l})}{f(A_{l})} \{1(c_{l}=i)\sum_{u\in A_{l}, u\neq i} e^{\theta_{u}^{*}} - e^{\theta_{i}^{*}}1(c_{l}\neq i)\}$ 

• variance can be analytically computed with optimal  $f(A_l) \propto \sum_{u \in A_l} e^{\theta_u^*}$ 

Symptotic normality can be established

・ロト ・回ト ・ヨト ・ヨト 三日
# **Spectral Ranking**

under General Comparison Graphs

< □ > < □ > < □ > < □ > < □ > = Ξ

## **Uncertainty on estimated ranks**



#### ★Are the top 2 ranked movies really statistically different?

★What is the 95% confidence interval for "Breakfast at Tiffany"?

Э

## **Uncertainty on estimated ranks**



★Are the top 2 ranked movies really statistically different?
 ★What is the 95% confidence interval for "Breakfast at Tiffany"?

#### How to build simultaneous CIs for the ranks of a few items?

Is an item among the top-K ranking with high confidence?

B How to select a set for the top-*K* items with confidence?

Challenges: **★**involve all unknown scores;

★ need new framework

- How to build simultaneous CIs for the ranks of a few items?
- Is an item among the top-K ranking with high confidence?
- Bow to select a set for the top-*K* items with confidence?

Challenges: **†**involve all unknown scores;

★ need new framework

ヘロト ヘ回 ト ヘヨト ヘヨト

- How to build simultaneous CIs for the ranks of a few items?
- Is an item among the top-K ranking with high confidence?
- How to select a set for the top-*K* items with confidence?

Challenges: **†**involve all unknown scores;



イロト 不良 とくほ とくほ とう

- How to build simultaneous CIs for the ranks of a few items?
- Is an item among the top-K ranking with high confidence?
- Bow to select a set for the top-K items with confidence?

Challenges: **★**involve all unknown scores;

★ need new framework

イロト 不良 とくほ とくほ とう

Let  $\mathcal{M} = \{m\}$  be the item of interest and we have simultaneous CI

 $P\{\theta_k^* - \theta_m^* \in [\mathcal{C}_l(k,m), \mathcal{C}_{ll}(k,m)], \forall k \neq m\} > 1 - \alpha$ 



◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

**★** With  $\{\tilde{\sigma}_{mk}\}$  is a uniform consistent SD, define

$$\mathcal{T}_{\mathcal{M}} = \max_{k 
eq m} \left| rac{ ilde{ heta}_k - ilde{ heta}_m - ( heta_k^* - heta_m^*)}{ ilde{\sigma}_{mk}} 
ight|.$$

 $igstar{}$  Show that  $heta_k - heta_k^st pprox J_l( heta^st)$  so that  $ilde{\sigma}_{mk}$  can be computed.

★ Using  $J_l(\tilde{\theta}) = \left[\frac{1}{d}\sum_{l \in \mathcal{D}} J_l(\theta^*)\right]$ , **Gaussian multiplier bootstrap** of  $\mathcal{T}_{\mathcal{M}}$  is

$$G_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| \frac{1}{d \tilde{\sigma}_{km}} \sum_{l \in \mathcal{D}} \{ J_{kl}(\tilde{\theta}) - J_{ml}(\tilde{\theta}) \} \omega_l \right|, \qquad \omega_l \sim_{l.l.d.} N(0, 1)$$

 $igstar{} = P\{\mathcal{T}_{\mathcal{M}} > Q_{1-lpha}\} = lpha igg|,$  where  $Q_{1-lpha}$  be cond. quantile of  $G_{\mathcal{M}}$ .

**Jianqing Fan (Princeton University)** 

イロト イポト イヨト 一日

**★** With  $\{\tilde{\sigma}_{mk}\}$  is a uniform consistent SD, define

$$\mathcal{T}_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| rac{ ilde{ heta}_k - ilde{ heta}_m - ( heta_k^* - heta_m^*)}{ ilde{\sigma}_{mk}} 
ight|.$$

★ Show that  $\tilde{\Theta}_k - \Theta_k^* \approx J_i(\Theta^*)$  so that  $\tilde{\sigma}_{mk}$  can be computed.

★ Using  $J_i(\tilde{\theta}) = \left[\frac{1}{d}\sum_{l \in \mathcal{D}} J_{il}(\theta^*)\right]$ , Gaussian multiplier bootstrap of  $\mathcal{T}_{\mathcal{M}}$  is

$$G_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| \frac{1}{d\tilde{\sigma}_{km}} \sum_{l \in \mathcal{D}} \{ J_{kl}(\tilde{\theta}) - J_{ml}(\tilde{\theta}) \} \omega_l \right|, \qquad \omega_l \sim_{i.i.d.} N(0,1)$$

★  $P\{T_{\mathcal{M}} > Q_{1-\alpha}\} = \alpha$ , where  $Q_{1-\alpha}$  be cond. quantile of  $G_{\mathcal{M}}$ .

**Jianqing Fan (Princeton University)** 

**★** With  $\{\tilde{\sigma}_{mk}\}$  is a uniform consistent SD, define

$$\mathcal{T}_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k 
eq m} \left| rac{ ilde{ heta}_k - ilde{ heta}_m - ( heta_k^* - heta_m^*)}{ ilde{\sigma}_{mk}} 
ight|.$$

★ Show that  $\tilde{\theta}_k - \theta_k^* \approx J_i(\theta^*)$  so that  $\tilde{\sigma}_{mk}$  can be computed.

★ Using  $J_i(\tilde{\theta}) = \left[\frac{1}{d}\sum_{l \in \mathcal{D}} J_{il}(\theta^*)\right]$ , Gaussian multiplier bootstrap of  $\mathcal{T}_{\mathcal{M}}$  is

$$G_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| \frac{1}{d\tilde{\sigma}_{km}} \sum_{l \in \mathcal{D}} \{ J_{kl}(\tilde{\theta}) - J_{ml}(\tilde{\theta}) \} \omega_l \right|, \qquad \omega_l \sim_{i.i.d.} N(0,1)$$

★  $P\{\mathcal{T}_{\mathcal{M}} > Q_{1-\alpha}\} = \alpha$ , where  $Q_{1-\alpha}$  be cond. quantile of  $G_{\mathcal{M}}$ .

**Jianqing Fan (Princeton University)** 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

★ With  $\{\tilde{\sigma}_{mk}\}$  is a uniform consistent SD, define

$$T_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| rac{ ilde{ heta}_k - ilde{ heta}_m - ( heta_k^* - heta_m^*)}{ ilde{\sigma}_{mk}} 
ight|.$$

★ Show that  $\tilde{\theta}_k - \theta_k^* \approx J_i(\theta^*)$  so that  $\tilde{\sigma}_{mk}$  can be computed.

★ Using  $J_i(\tilde{\theta}) = \left[\frac{1}{d}\sum_{l \in \mathcal{D}} J_{il}(\theta^*)\right]$ , Gaussian multiplier bootstrap of  $\mathcal{T}_{\mathcal{M}}$  is

$$G_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| \frac{1}{d\tilde{\sigma}_{km}} \sum_{l \in \mathcal{D}} \{ J_{kl}(\tilde{\theta}) - J_{ml}(\tilde{\theta}) \} \omega_l \right|, \qquad \omega_l \sim_{i.i.d.} N(0,1)$$

★  $P\{\mathcal{T}_{\mathcal{M}} > Q_{1-\alpha}\} = \alpha$ , where  $Q_{1-\alpha}$  be cond. quantile of  $G_{\mathcal{M}}$ .

**Jianqing Fan (Princeton University)** 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

**★** With  $\{\tilde{\sigma}_{mk}\}$  is a uniform consistent SD, define

$$\mathcal{T}_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| rac{ ilde{ heta}_k - ilde{ heta}_m - ( heta_k^* - heta_m^*)}{ ilde{\sigma}_{mk}} 
ight|.$$

★ Show that  $\tilde{\theta}_k - \theta_k^* \approx J_i(\theta^*)$  so that  $\tilde{\sigma}_{mk}$  can be computed.

★ Using  $J_i(\tilde{\theta}) = \left[\frac{1}{d}\sum_{l \in \mathcal{D}} J_{il}(\theta^*)\right]$ , Gaussian multiplier bootstrap of  $\mathcal{T}_{\mathcal{M}}$  is

$$G_{\mathcal{M}} = \max_{m \in \mathcal{M}} \max_{k \neq m} \left| \frac{1}{d\tilde{\sigma}_{km}} \sum_{l \in \mathcal{D}} \{ J_{kl}(\tilde{\theta}) - J_{ml}(\tilde{\theta}) \} \omega_l \right|, \qquad \omega_l \sim_{i.i.d.} N(0,1)$$

★  $P\{\mathcal{T}_{\mathcal{M}} > Q_{1-\alpha}\} = \alpha$ , where  $Q_{1-\alpha}$  be cond. quantile of  $G_{\mathcal{M}}$ .

## High-confidence selection of top K items

Aim: To find 
$$\widehat{I}_{\mathcal{K}}$$
 such that  $\mathbb{P}\left(\mathcal{K}\subset\widehat{I}_{\mathcal{K}}
ight)\geq 1-lpha.$ 

<u>Method</u>: Let  $\mathcal{M} = [n]$  and  $\{[\mathcal{R}_{m}^{\diamond}, n]\}_{m \in [n]}$  be associated  $(1 - \alpha)$  simultaneous left-sided CIs. A natural and **valid** choice is

$$\widehat{I}_{K} = \{1 \leq m \leq n : \mathcal{R}_{m}^{\diamond} \leq K\}$$

(日)

## High-confidence selection of top K items

Aim: To find 
$$\widehat{I}_{\mathcal{K}}$$
 such that  $\mathbb{P}\left(\mathfrak{K}\subset\widehat{I}_{\mathcal{K}}
ight)\geq1-lpha.$ 

<u>Method</u>: Let  $\mathcal{M} = [n]$  and  $\{[\mathcal{R}_m^{\diamond}, n]\}_{m \in [n]}$  be associated  $(1 - \alpha)$  simultaneous left-sided CIs. A natural and **valid** choice is

$$\widehat{I}_{K} = \{1 \leq m \leq n : \mathcal{R}_{m}^{\diamond} \leq K\}$$



・ロト ・回ト ・ヨト ・ヨト

**Two-sample rank change**  $H_0: r_{1m} = r_{2m}$ ?

- $\star$  Rank changes of item *m* before and after a treatment or policy change.
- ★ Different communities e.g. males vs females have different preferences.
- ★ Preferences change in two time periods.

**<u>Test</u>**: Construct simul CI :  $\mathbb{P}(r_{1m} \in [R_{1mL}, R_{1mU}] \text{ and } r_{2m} \in [R_{2mL}, R_{2mU}]) \ge 1 - \alpha$ and reject  $H_0$  if  $[R_{1mL}, R_{1mU}] \cap [R_{2mL}, R_{2mU}] = \emptyset$ .

**Two-sample rank change**  $H_0: r_{1m} = r_{2m}$ ?

- $\star$  Rank changes of item *m* before and after a treatment or policy change.
- ★ Different communities e.g. males vs females have different preferences.
- ★ Preferences change in two time periods.

**<u>Test</u>**: Construct simul CI :  $\mathbb{P}(r_{1m} \in [R_{1mL}, R_{1mU}] \text{ and } r_{2m} \in [R_{2mL}, R_{2mU}]) \ge 1 - \alpha$ and reject  $H_0$  if  $[R_{1mL}, R_{1mU}] \cap [R_{2mL}, R_{2mU}] = \emptyset$ .

Two-sample top-K set change  $H_0: S_{1K} = S_{2K}$ ?

Test whether two top-K sets are identical or not, between two groups, two periods of time, or before and after a significant event or change.

<u>Method</u>: Construct  $(1 - \alpha)$  simultaneous confi. sets  $\mathbb{P}\left(S_{1K} \subset \widehat{I}_{1K} \text{ and } S_{2K} \subset \widehat{I}_{2K}\right) \ge 1 - \alpha$ . Then the  $\alpha$ -level test is

$$\phi_{\mathcal{K}} = \mathbb{I}\{|\widehat{I}_{1\mathcal{K}} \cap \widehat{I}_{2\mathcal{K}}| < \mathcal{K}\}.$$

## **Theorectical Justifications**

< □ > < □ > < □ > < □ > < □ > = Ξ

Assumption 1: Graph is connected and  $n^{\ddagger}n^{1/2}(\log n)^{1/2} = o(n^{\dagger})$ .

$$n^{\dagger} := \max_{i} \sum_{\ell \in \mathcal{D}} \mathbb{1}(i \in A_{\ell}), \qquad n^{\ddagger} := \max_{i \neq j} \sum_{\ell \in \mathcal{D}} \mathbb{1}(i, j \in A_{\ell}).$$

**Assumption 2**: Define  $\Omega = (\Omega_{ij})$  where  $\Omega_{ij} = -P_{ji}\pi_j^*$  and  $\Omega_{ii} = \sum_{j:j \neq i} P_{ij}\pi_i^*$ .

$$C_{1} \frac{n^{\dagger}}{dn} \leq \lambda_{\min,\perp}(E[\Omega|\mathcal{G}]) \leq \lambda_{\max}(E[\Omega|\mathcal{G}]) \leq C_{2} \frac{n^{\dagger}}{dn},$$
$$\|\Omega - E[\Omega|\mathcal{G}]\| = o_{P}\left(\frac{n^{\dagger}}{dn}\right).$$

If each pair is compared for at least one time, then  $n^{\ddagger} \approx 1$ ,  $n^{\ddagger} \approx n$  and both assumptions hold.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 つへの

#### **Theoretical Justification of Spectral Estimator**

#### Theorem 1 (Uniform Approximation of Spectral Estimator)

It holds  $\tilde{\theta}_i - \theta_i^* = J_i^* + o_P(1/\sqrt{n^{\dagger}})$ , uniformly for all  $i \in [n]$ , where  $J_j^* := \frac{\sum_{j:j \neq i} (P_{ji} e^{\theta_j^*} - P_{ij} e^{\theta_i^*})}{\sum_{j:j \neq i} E[P_{ij}|\mathcal{G}] e^{\theta_i^*}}.$ 

This means

$$\begin{split} \|\tilde{\theta} - \theta^*\|_{\infty} &\asymp \|J^*\|_{\infty} \lesssim \sqrt{\frac{\log n}{n^{\dagger}}}, \text{ with probability } 1 - o(1). \\ \mathbf{2} \quad \rho_i(\theta)^{-1}(\tilde{\theta}_i - \theta_i^*) \Rightarrow N(0, 1), \text{ for all } i \in [n] \text{ with} \\ \rho_i(\theta) &= \frac{\left[\sum_{\ell \in \mathcal{D}} 1(i \in A_\ell) \left(\frac{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_i}}{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_i}}\right) \frac{e^{\theta_i}}{f(A_\ell)}\right]}{\left[\sum_{\ell \in \mathcal{D}} 1(i \in A_\ell) \left(\frac{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_i}}{f(A_\ell)}\right) \frac{e^{\theta_i}}{f(A_\ell)}\right]^{1/2}} \end{split}$$

for both  $\theta = \theta^*$  and  $\theta =$  any consistent estimator of  $\theta^*$ .

(日)

#### **Theoretical Justification of Spectral Estimator**

#### Theorem 1 (Uniform Approximation of Spectral Estimator)

It holds  $\tilde{\theta}_i - \theta_i^* = J_i^* + o_P(1/\sqrt{n^{\dagger}})$ , uniformly for all  $i \in [n]$ , where  $\sum_{i:i \neq i} (P_{ii}e^{\theta_i^*} - P_{ij}e^{\theta_i^*})$ 

$$\mathcal{E}_{j:j\neq i}^* := rac{\sum_{j:j\neq i} \mathcal{E}[\mathcal{P}_{ij}|\mathcal{G}] e^{\Theta_i^*}}{\sum_{j:j\neq i} \mathcal{E}[\mathcal{P}_{ij}|\mathcal{G}] e^{\Theta_i^*}}$$

This means

$$\|\tilde{\theta} - \theta^*\|_{\infty} \asymp \|J^*\|_{\infty} \lesssim \sqrt{\frac{\log n}{n^{\dagger}}}, \text{ with probability } 1 - o(1).$$

$$\rho_i(\theta)^{-1}(\tilde{\theta}_i - \theta_i^*) \Rightarrow N(0, 1), \text{ for all } i \in [n] \text{ with}$$

$$\rho_i(\theta) = \frac{\left[\sum_{\ell \in \mathcal{D}} 1(i \in A_\ell) \left(\frac{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_\ell}}{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_\ell}}\right) \frac{e^{\theta_\ell}}{f(A_\ell)}\right]}{\left[\sum_{\ell \in \mathcal{D}} 1(i \in A_\ell) \left(\frac{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_\ell}}{f(A_\ell)}\right) \frac{e^{\theta_\ell}}{f(A_\ell)}\right]^{1/2}$$
for both  $\theta = \theta^*$  and  $\theta = any$  consistent estimates of  $\theta^*$ 

for both  $\theta = \theta^*$  and  $\theta =$  any consistent estimator of  $\theta^*$ .

イロト イポト イヨト 一日

## **Theoretical Justification of Spectral Estimator**

#### **Theorem 1 (Uniform Approximation of Spectral Estimator)**

J

It holds  $\tilde{\theta}_i - \theta_i^* = J_i^* + o_P(1/\sqrt{n^*})$ , uniformly for all  $i \in [n]$ , where  $\sum_{i: i \neq i} (P_{ii}e^{\theta_i^*} - P_{ii}e^{\theta_i^*})$ 

$$\sum_{j:j\neq i}^{*} E[P_{ij}|\mathcal{G}]e^{\theta_{i}^{*}}$$

This means

$$\begin{aligned} & \|\tilde{\theta} - \theta^*\|_{\infty} \asymp \|J^*\|_{\infty} \lesssim \sqrt{\frac{\log n}{n^{\dagger}}}, \text{ with probability } 1 - o(1). \end{aligned} \\ & @ \rho_i(\theta)^{-1}(\tilde{\theta}_i - \theta_i^*) \Rightarrow N(0, 1), \text{ for all } i \in [n] \text{ with} \\ & \rho_i(\theta) = \frac{\left[\sum_{\ell \in \mathcal{D}} 1(i \in A_\ell) \left(\frac{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_i}}{\sum_{u \in A_\ell} e^{\theta_u}}\right) \frac{e^{\theta_i}}{f(A_\ell)}\right]}{\left[\sum_{\ell \in \mathcal{D}} 1(i \in A_\ell) \left(\frac{\sum_{u \in A_\ell} e^{\theta_u} - e^{\theta_i}}{f(A_\ell)}\right) \frac{e^{\theta_i}}{f(A_\ell)}\right]^{1/2}, \end{aligned}$$

for both  $\theta = \theta^*$  and  $\theta =$  any consistent estimator of  $\theta^*$ .

3

ヘロア 人間 アメヨア 人間 アー

★ For the PL model w/ homogenous random graph, Assumption 1 can be relaxed to  $n^{\dagger} \ge n^{\ddagger} \log n$  and Assumption 2 holds.

★ The choice of  $f(\cdot)$  affects the efficiency with optimal  $f(A_{\ell}) \propto \sum_{u \in A_{\ell}} e^{\theta_u^u}$ . (oracle)

★ Two-step approach: •obtain an estimator  $\tilde{\Theta}^{(\text{init})}$  with  $f(A_{\ell}) = |A_{\ell}|$ . (vanilla) •run the spectral method again with  $f(A_{\ell}) = \sum_{u \in A_{\ell}} \exp(\tilde{\Theta}_{u}^{(\text{init})})$ . (two-step)

Much faster than MLE with the same statistical efficiency.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

★ For the PL model w/ homogenous random graph, Assumption 1 can be relaxed to  $n^{\dagger} \ge n^{\ddagger} \log n$  and Assumption 2 holds.

★ The choice of  $f(\cdot)$  affects the efficiency with optimal  $f(A_{\ell}) \propto \sum_{u \in A_{\ell}} e^{\theta_u^*}$ . (oracle)

- ★ Two-step approach: •obtain an estimator  $\tilde{\Theta}^{(init)}$  with  $f(A_{\ell}) = |A_{\ell}|$ . (vanilla) •run the spectral method again with  $f(A_{\ell}) = \sum_{u \in A_{\ell}} \exp(\tilde{\Theta}_{u}^{(init)})$ . (two-step)
- ★ Much faster than MLE with the same statistical efficiency.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

★ For the PL model, we break  $i \succ j \succ k$  into indep. events  $(c_{\ell} = i, A_{\ell} = \{i, j, k\})$ and  $(c_{\ell} = j, A_{\ell} = \{j, k\})$  given *G*. Run spectral ranking.

 $\star$  Assumption 2 holds with probability 1 - o(1) under the PL model.

★ The graph is connected iff  $\binom{n-1}{M-1}p \gtrsim \log n$  (*Cooley et al., 16*). Under the PL model, when *L* ≈ 1, we can prove

$$n^{\ddagger} \asymp \binom{n-2}{M-2} p \lor \log n, \qquad n^{\dagger} \asymp \binom{n-1}{M-1} p.$$

イロト イポト イヨト 一日

★ For the PL model, we break  $i \succ j \succ k$  into indep. events  $(c_{\ell} = i, A_{\ell} = \{i, j, k\})$ and  $(c_{\ell} = j, A_{\ell} = \{j, k\})$  given *G*. Run spectral ranking.

**★** Assumption 2 holds with probability 1 - o(1) under the PL model.

★ The graph is connected iff  $\binom{n-1}{M-1}p \gtrsim \log n$  (*Cooley et al., 16*). Under the PL model, when *L* ≈ 1, we can prove

$$n^{\ddagger} \asymp \binom{n-2}{M-2} p \lor \log n, \qquad n^{\dagger} \asymp \binom{n-1}{M-1} p.$$

★ For the PL model, we break  $i \succ j \succ k$  into indep. events  $(c_{\ell} = i, A_{\ell} = \{i, j, k\})$ and  $(c_{\ell} = j, A_{\ell} = \{j, k\})$  given  $\mathcal{G}$ . Run spectral ranking.

**★** Assumption 2 holds with probability 1 - o(1) under the PL model.

★ The graph is connected iff  $\binom{n-1}{M-1}p \gtrsim \log n$  (*Cooley et al., 16*). Under the PL model, when  $L \asymp 1$ , we can prove

$$n^{\ddagger} \asymp {n-2 \choose M-2} p \lor \log n, \qquad n^{\dagger} \asymp {n-1 \choose M-1} p.$$

Jianqing Fan (Princeton University)

#### Theorem 2 (Uniform approximation)

Under the PL model with  $p \ge \operatorname{poly}(\log n) / {\binom{n-1}{M-1}}$ , the spectral estimator  $\tilde{\theta}_i$  has the uniform approximation:  $\tilde{\theta}_i - \theta_i^* = J_i^* + o_P(1/\sqrt{n^{\dagger}})$ , uniformly for all *i*. This implies

**3**  $\rho_i(\theta)^{-1}(\tilde{\theta}_i - \theta_i^*) \Rightarrow N(0, 1)$  for all  $i \in [n]$  with  $\rho_i^2(\theta^*) = Var(J_i^*|\mathcal{G})$ , for both  $\theta = \theta^*$  and  $\theta =$  any consistent estimator of  $\theta^*$ .

•  $\|\tilde{\theta} - \theta^*\|_{\infty} \asymp \|J^*\|_{\infty} \lesssim \sqrt{\frac{\log n}{\binom{n-1}{n-1}pL}}$ , with probability 1 - o(1).

The rate of convergence and the asymptotic variance matches with those of MLE with optimal  $f(\cdot)$ 

(日)

#### Theorem 2 (Uniform approximation)

Under the PL model with  $p \gtrsim \operatorname{poly}(\log n) / {\binom{n-1}{M-1}}$ , the spectral estimator  $\tilde{\theta}_i$  has the uniform approximation:  $\tilde{\theta}_i - \theta_i^* = J_i^* + o_P(1/\sqrt{n^*})$ , uniformly for all *i*. This implies

• 
$$\|\tilde{\theta} - \theta^*\|_{\infty} \simeq \|J^*\|_{\infty} \lesssim \sqrt{\frac{\log n}{\binom{n-1}{M-1}pL}}$$
, with probability  $1 - o(1)$ .

**2** 
$$\rho_i(\theta)^{-1}(\tilde{\theta}_i - \theta_i^*) \Rightarrow N(0, 1)$$
 for all  $i \in [n]$  with  $\rho_i^2(\theta^*) = Var(J_i^*|\mathcal{G})$ , for both  $\theta = \theta^*$  and  $\theta =$  any consistent estimator of  $\theta^*$ .

The rate of convergence and the asymptotic variance matches with those of MLE with optimal  $f(\cdot)$ 

イロト イポト イヨト 一日

#### Theorem 2 (Uniform approximation)

Under the PL model with  $p \ge \operatorname{poly}(\log n) / {\binom{n-1}{M-1}}$ , the spectral estimator  $\tilde{\theta}_i$  has the uniform approximation:  $\tilde{\theta}_i - \theta_i^* = J_i^* + o_P(1/\sqrt{n^*})$ , uniformly for all *i*. This implies

• 
$$\|\tilde{\theta} - \theta^*\|_{\infty} \asymp \|J^*\|_{\infty} \lesssim \sqrt{\frac{\log n}{\binom{n-1}{M-1}pL}}$$
, with probability  $1 - o(1)$ .

**2** 
$$\rho_i(\theta)^{-1}(\tilde{\theta}_i - \theta_i^*) \Rightarrow N(0, 1)$$
 for all  $i \in [n]$  with  $\rho_i^2(\theta^*) = Var(J_i^*|\mathcal{G})$ , for both  $\theta = \theta^*$  and  $\theta =$  any consistent estimator of  $\theta^*$ .

The rate of convergence and the asymptotic variance matches with those of MLE with optimal  $f(\cdot)$ 

◆ロ → ◆母 → ◆ ヨ → ◆ ヨ → ○ ヨ

**Theorem 3** (Gaussian Multiplier Bootstrap). Let  $Q_{1-\alpha}$  be  $(1-\alpha)$ -th quantile of  $G_{\mathcal{M}}$ .

$$\mathbb{P}\left\{\max_{m\in\mathcal{M}}\max_{k\neq m}\left|\frac{\sqrt{L}\{\tilde{\theta}_k-\tilde{\theta}_m-(\theta_k^*-\theta_m^*)\}}{\tilde{\sigma}_{mk}}\right|>Q_{1-\alpha}\right\}\to\alpha.$$

**\star**Holds for any set  $\mathcal{M}$  with **adaptive** width.

Simultaneous CI for ranks for 
$$\{r_m\}_{m\in\mathcal{M}}$$
 are  $\{[\mathcal{R}_m^\diamond, \quad \mathcal{R}_m^\sharp]\}_{m\in\mathcal{M}}$ ,

$$\mathcal{R}_m^{\circ} = 1 + \sum_{k \neq m} \mathbb{I}\left\{\widehat{\theta}_k - \widehat{\theta}_m > \widetilde{\sigma}_{mk} \times Q_{1-\alpha}\right\}, \qquad \mathcal{R}_m^{\sharp} = n - \sum_{k \neq m} \mathbb{I}\left\{\widehat{\theta}_k - \widehat{\theta}_m < -\widetilde{\sigma}_{mk} \times Q_{1-\alpha}\right\}.$$

**Jianqing Fan (Princeton University)** 

イロト 不良 とくほ とくほ とう

**Theorem 3** (Gaussian Multiplier Bootstrap). Let  $Q_{1-\alpha}$  be  $(1-\alpha)$ -th quantile of  $G_{\mathcal{M}}$ .

$$\mathbb{P}\left\{\max_{m\in\mathcal{M}}\max_{k\neq m}\left|\frac{\sqrt{L}\{\widetilde{\theta}_k-\widetilde{\theta}_m-(\theta_k^*-\theta_m^*)\}}{\widetilde{\sigma}_{mk}}\right|>Q_{1-\alpha}\right\}\to\alpha.$$

**\star**Holds for any set  $\mathcal{M}$  with **adaptive** width.

Simultaneous CI for ranks for 
$$\{r_m\}_{m\in\mathcal{M}}$$
 are  $\{[\mathcal{R}_m^\diamond, \mathcal{R}_m^{\sharp}]\}_{m\in\mathcal{M}}$ ,  
 $\mathcal{R}_m^\diamond = 1 + \sum_{k\neq m} \mathbb{I}\left\{\widehat{\theta}_k - \widehat{\theta}_m > \widetilde{\sigma}_{mk} \times Q_{1-\alpha}\right\}, \qquad \mathcal{R}_m^{\sharp} = n - \sum_{k\neq m} \mathbb{I}\left\{\widehat{\theta}_k - \widehat{\theta}_m < -\widetilde{\sigma}_{mk} \times Q_{1-\alpha}\right\}.$ 

**Jianqing Fan (Princeton University)** 

(日)

# Simulations and Empirical Applications

**Jianqing Fan (Princeton University)** 

イロト イポト イヨト 一日

## **Simulation models and Rates**

- n = 50 with  $\theta_i^*$  evenly distributed on [-2, 2]
- Heterogeneous comparisons among {2,3,4,5} items



E

## **Coverages of Confidence Intervals**

|                   |                         | Vanilla | a Two-S | ided CI | Oracle Two-Sided CI |       |        |  |
|-------------------|-------------------------|---------|---------|---------|---------------------|-------|--------|--|
|                   | $ \mathcal{D} $         | EC(0)   | EC(r)   | Length  | EC(0)               | EC(r) | Length |  |
| $\theta_8^*$      | $ \mathcal{D}  =$ 12000 | 0.954   | 1.000   | 6.384   | 0.954               | 1.000 | 6.298  |  |
|                   | $ \mathcal{D}  =$ 24000 | 0.950   | 1.000   | 4.092   | 0.968               | 1.000 | 4.090  |  |
|                   | $ \mathcal{D}  =$ 36000 | 0.956   | 1.000   | 3.008   | 0.954               | 1.000 | 2.928  |  |
| $\theta_{20}^{*}$ | $ \mathcal{D}  =$ 12000 | 0.952   | 1.000   | 11.602  | 0.960               | 1.000 | 10.082 |  |
|                   | $ \mathcal{D}  =$ 24000 | 0.958   | 1.000   | 7.450   | 0.952               | 1.000 | 6.524  |  |
|                   | $ \mathcal{D} =$ 36000  | 0.954   | 1.000   | 5.788   | 0.958               | 1.000 | 5.068  |  |
| $\theta^*_{30}$   | $ \mathcal{D}  =$ 12000 | 0.950   | 1.000   | 17.502  | 0.962               | 1.000 | 14.072 |  |
|                   | $ \mathcal{D}  =$ 24000 | 0.952   | 1.000   | 11.620  | 0.960               | 1.000 | 9.528  |  |
|                   | $ \mathcal{D}  = 36000$ | 0.956   | 1.000   | 9.262   | 0.958               | 1.000 | 7.748  |  |

★also verified •one-side CI

top-K CS

•two-sample inferences

**Jianqing Fan (Princeton University)** 

|                       | Estimator      | p = 0.02      | p = 0.05      | p = 0.08      | p = 0.11      | p = 0.14      |
|-----------------------|----------------|---------------|---------------|---------------|---------------|---------------|
| <i>l</i> <sub>2</sub> | Vanilla        | 1.092 (0.140) | 0.688 (0.086) | 0.543 (0.061) | 0.301 (0.052) | 0.181 (0.047) |
|                       | Oracle         | 0.902 (0.102) | 0.561 (0.061) | 0.447 (0.043) | 0.248 (0.040) | 0.150 (0.037) |
|                       | Two Step       | 0.906 (0.103) | 0.562 (0.061) | 0.447 (0.043) | 0.248 (0.040) | 0.150 (0.037) |
|                       | MLE            | 0.902 (1.102) | 0.562 (0.061) | 0.447 (0.043) | 0.248 (0.040) | 0.150 (0.037) |
|                       | Two Step – MLE | 0.046 (0.012) | 0.018 (0.004) | 0.011 (0.002) | 0.008 (0.002) | 0.006 (0.001) |
| l∞                    | Vanilla        | 0.427 (0.081) | 0.259 (0.059) | 0.206 (0.041) | 0.116 (0.039) | 0.070 (0.037) |
|                       | Oracle         | 0.338 (0.063) | 0.204 (0.034) | 0.162 (0.030) | 0.091 (0.027) | 0.054 (0.022) |
|                       | Two Step       | 0.337 (0.063) | 0.204 (0.034) | 0.162 (0.030) | 0.091 (0.027) | 0.054 (0.022) |
|                       | MLE            | 0.337 (0.063) | 0.204 (0.034) | 0.162 (0.030) | 0.091 (0.027) | 0.054 (0.022) |
|                       | Two Step – MLE | 0.021 (0.007) | 0.008 (0.002) | 0.005 (0.002) | 0.003 (0.001) | 0.002 (0.001) |

 $\star$  Two-step spectral method and MLE have very similar performance in terms of  $\ell_2$ -norm and  $\ell_{\infty}$ -norm.

**Jianqing Fan (Princeton University)** 

イロト イポト イヨト 一日

<u>Data</u>: Multi-Attribute Dataset on Statisticians (MADStat) containing citation information from 83,331 papers published in 36 journals during 1975-2015 (Ji et al., 23).

<u>Comparisons</u>: Journal A ranks higher than Journal B by a paper in year Y  $\iff$  a paper published in Journal B in year Y cited another paper published in Journal A between the years Y - 10 and Y.

<u>Two-sample testing</u>: We compare journal rankings using papers published in 2006-2010 vs 2011-2015.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

## **Ranking of Statistics Journals**

| 2006 - 2010            |                      |                 |          |         |         | 2011 - 2015            |                               |                 |          |         |         |       |
|------------------------|----------------------|-----------------|----------|---------|---------|------------------------|-------------------------------|-----------------|----------|---------|---------|-------|
| Journal                | $\widetilde{\theta}$ | $\widetilde{r}$ | TCI      | OCI     | UOCI    | $\operatorname{Count}$ | $  \qquad \widetilde{\theta}$ | $\widetilde{r}$ | TCI      | OCI     | UOCI    | Count |
| JRSSB                  | 1.654                | 1               | [1, 1]   | [1, n]  | [1, n]  | 5282                   | 1.553                         | 1               | [1, 2]   | [1, n]  | [1, n]  | 5513  |
| AoS                    | 1.206                | 3               | [2, 4]   | [2, n]  | [2, n]  | 7674                   | 1.522                         | 2               | [1, 2]   | [1, n]  | [1, n]  | 11316 |
| Bka                    | 1.316                | 2               | [2, 3]   | [2, n]  | [2, n]  | 5579                   | 1.202                         | 3               | [3,3]    | [3, n]  | [3, n]  | 6399  |
| JASA                   | 1.165                | 4               | [3, 4]   | [3,n]   | [3,n]   | 9652                   | 1.064                         | 4               | [4, 4]   | [4, n]  | [4, n]  | 10862 |
| JMLR                   | -0.053               | 20              | [14, 25] | [15, n] | [13, n] | 1100                   | 0.721                         | 5               | [5, 7]   | [5, n]  | [5, n]  | 2551  |
| Biost                  | 0.288                | 13              | [10, 18] | [10, n] | [9,n]   | 2175                   | 0.591                         | 6               | [5, 9]   | [5, n]  | [5, n]  | 2727  |
| Bcs                    | 0.820                | 5               | [5, 7]   | [5, n]  | [5,n]   | 6614                   | 0.571                         | 7               | [5, 9]   | [6, n]  | [5, n]  | 6450  |
| $\operatorname{StSci}$ | 0.668                | 7               | [5, 9]   | [5, n]  | [5,n]   | 1796                   | 0.437                         | 8               | [6, 13]  | [6, n]  | [6, n]  | 2461  |
| $\operatorname{Sini}$  | 0.416                | 10              | [9, 14]  | [9,n]   | [8,n]   | 3701                   | 0.374                         | 9               | [8, 13]  | [8, n]  | [8, n]  | 4915  |
| JRSSA                  | 0.239                | 14              | [10, 20] | [10, n] | [9,n]   | 893                    | 0.370                         | 10              | [6, 13]  | [8, n]  | [6, n]  | 865   |
| JCGS                   | 0.605                | 8               | [6, 9]   | [6, n]  | [6, n]  | 2493                   | 0.338                         | 11              | [8, 13]  | [8, n]  | [8, n]  | 3105  |
| Bern                   | 0.793                | 6               | [5, 8]   | [5, n]  | [5, n]  | 1575                   | 0.336                         | 12              | [8, 13]  | [8, n]  | [8, n]  | 2613  |
| ScaJS                  | 0.528                | 9               | [7, 12]  | [7, n]  | [6, n]  | 2442                   | 0.258                         | 13              | [8, 13]  | [9, n]  | [8, n]  | 2573  |
| JRSSC                  | 0.113                | 15              | [11, 22] | [11, n] | [11, n] | 1401                   | 0.020                         | 14              | [14, 19] | [14, n] | [12, n] | 1492  |
| AoAS                   | -1.463               | 30              | [30, 33] | [30, n] | [30, n] | 1258                   | -0.017                        | 15              | [14, 20] | [14, n] | [14, n] | 3768  |
| $\operatorname{CanJS}$ | 0.101                | 17              | [11, 22] | [11, n] | [11, n] | 1694                   | -0.033                        | 16              | [14, 20] | [14, n] | [14, n] | 1702  |

Results are based on two-step spectral estimator.

**Jianqing Fan (Princeton University)** 

★ Is each journal's rank changed significantly? At significance level 10%, the following journals demonstrate significant differences:

AISM, AoAS, Biost, CSTM, EJS, JMLR, JoAS, JSPI.

★ Big-Four journals (AoS, Bka, JASA, and JRSSB) maintain their positions strongly.

★ Are the top-7 ranked journals remain unchanged? We reject. For 2006-2010, the 95% confidence set for the top-7 journals includes:

AoS, Bern, Bcs, Bka, JASA, JCGS JRSSB, ScaJS, StSci.

However, for 2011-2015, the 95% confidence set for the top-7 items includes:

AoS, Bcs, Biost, Bka, JASA, JMLR, JRSSA, JRSSB, StSci.

They only intersect at 6 items < 7, so we reject at  $\alpha = 0.1$ .

## **Ranking of Movies**

| Data: 100 random 3 and 4 candidate elections drawn from the Netflix Prize dataset |       |    |          |                 |                 |       |  |  |  |
|-----------------------------------------------------------------------------------|-------|----|----------|-----------------|-----------------|-------|--|--|--|
| Movie                                                                             | Θ     | ĩ  | TCI      | OCI             | UOCI            | Count |  |  |  |
| The Silence of the Lambs                                                          | 3.002 | 1  | [1,1]    | [1, <i>n</i> ]  | [1, <i>n</i> ]  | 19589 |  |  |  |
| The Green Mile                                                                    | 2.649 | 2  | [2,4]    | [2, <i>n</i> ]  | [2, n]          | 5391  |  |  |  |
| Shrek (Full-screen)                                                               | 2.626 | 3  | [2,4]    | [2, <i>n</i> ]  | [2, <i>n</i> ]  | 19447 |  |  |  |
| The X-Files: Season 2                                                             | 2.524 | 4  | [2,7]    | [2, <i>n</i> ]  | [2, n]          | 1114  |  |  |  |
| Ray                                                                               | 2.426 | 5  | [4,7]    | [4, <i>n</i> ]  | [4, <i>n</i> ]  | 7905  |  |  |  |
| The X-Files: Season 3                                                             | 2.357 | 6  | [4,10]   | [4, <i>n</i> ]  | [2, <i>n</i> ]  | 1442  |  |  |  |
| The West Wing: Season 1                                                           | 2.278 | 7  | [4,10]   | [4, <i>n</i> ]  | [4, <i>n</i> ]  | 3263  |  |  |  |
| National Lampoon's Animal House                                                   | 2.196 | 8  | [6,10]   | [6, <i>n</i> ]  | [5, <i>n</i> ]  | 10074 |  |  |  |
| Aladdin: Platinum Edition                                                         | 2.154 | 9  | [6,13]   | [6, <i>n</i> ]  | [5, <i>n</i> ]  | 3355  |  |  |  |
| Seven                                                                             | 2.143 | 10 | [6,11]   | [7, <i>n</i> ]  | [6, <i>n</i> ]  | 16305 |  |  |  |
| Back to the Future                                                                | 2.030 | 11 | [9,15]   | [9, <i>n</i> ]  | [8, <i>n</i> ]  | 6428  |  |  |  |
| Blade Runner                                                                      | 1.968 | 12 | [10, 16] | [10, <i>n</i> ] | [9, <i>n</i> ]  | 5597  |  |  |  |
| Harry Potter and the Sorcerer's Stone                                             | 1.842 | 13 | [12,22]  | [12, <i>n</i> ] | [11, <i>n</i> ] | 7976  |  |  |  |
| High Noon                                                                         | 1.821 | 14 | [11,25]  | [11, <i>n</i> ] | [10, <i>n</i> ] | 1902  |  |  |  |
| Sex and the City: Season 6: Part 2                                                | 1.770 | 15 | [11,30]  | [11, <i>n</i> ] | [8, <i>n</i> ]  | 532   |  |  |  |
| Jaws                                                                              | 1.749 | 16 | [13,25]  | [13, <i>n</i> ] | [13, <i>n</i> ] | 8383  |  |  |  |
| The Ten Commandments                                                              | 1.735 | 17 | [13,28]  | [13, <i>n</i> ] | [12, <i>n</i> ] | 2186  |  |  |  |
| Willy Wonka & the Chocolate Factory                                               | 1.714 | 18 | [13,26]  | [13, <i>n</i> ] | [13, <i>n</i> ] | 9188  |  |  |  |
| Stalag 17                                                                         | 1.697 | 19 | [12,34]  | [12, <i>n</i> ] | [11, <i>n</i> ] | 806   |  |  |  |
| Unforgiven                                                                        | 1.633 | 20 | [14,29]  | [14, <i>n</i> ] | [14, <i>n</i> ] | 9422  |  |  |  |

Jianqing Fan (Princeton University)

★ Propose a spectral method for a discrete choice model (axiom of choice).

Allow general fixed comp. graph with relaxed conditions (varying *M* and *L* = 1).
 BTL model
 PL model
 Top choice model

★ Establish  $\ell_{\infty}$ -rate and the asymptotic normality based on uniform approx. With the optimal weighting, spectral estimator  $\approx$  MLE under PL model.

- $\star$  Propose a multipler bootsrap and demonstrate it validity.
- ★ Add two-sample inference tools to the ranking inference framework.
- ★ Implement spectral ranking infererence for journal ranking and movie recom.

★ Propose a spectral method for a discrete choice model (axiom of choice).

- ★ Allow general fixed comp. graph with relaxed conditions (varying *M* and *L* = 1).
   ●BTL model ●PL model ●Top choice model
- ★ Establish  $\ell_{\infty}$ -rate and the asymptotic normality based on uniform approx. With the optimal weighting, spectral estimator  $\approx$  MLE under PL model.
- ★ Propose a multipler bootsrap and demonstrate it validity.
- ★ Add two-sample inference tools to the ranking inference framework.
- ★ Implement spectral ranking infererence for journal ranking and movie recom.

イロト イポト イヨト 一日

★ Propose a spectral method for a discrete choice model (axiom of choice).

- ★ Allow general fixed comp. graph with relaxed conditions (varying *M* and *L* = 1).
   ●BTL model ●PL model ●Top choice model
- ★ Establish  $\ell_{\infty}$ -rate and the asymptotic normality based on uniform approx. With the optimal weighting, spectral estimator  $\approx$  MLE under PL model.
- ★ Propose a multipler bootsrap and demonstrate it validity.
- ★ Add two-sample inference tools to the ranking inference framework.
- ★ Implement spectral ranking infererence for journal ranking and movie recom.

## The End



-Fan, J., Lou, Z., Wang, W., and Yu, M. (2025+). Spectral Ranking Inferences based on General Multiway Comparisons. *Operations Research*, to appear.

**Jianqing Fan (Princeton University)** 

< □ > < @ > < 注 > < 注 > ... 注