

Data Manifolds as Priors for Inverse Problems: From Regularization to Representation

Jiequn Han Center of Computational Mathematics Flatiron Institute, Simons Foundation Input Manifold \mathcal{X}

Institute for Mathematical and Statistical Innovation June 10, 2025

Output Manifold ${\cal Y}$

Inverse Problem

recover x from $y = \mathcal{F}(x) + \varepsilon$

Inverse Problem

recover
$$x$$
 from $y = \mathcal{F}(x) + \varepsilon$

Recover x from fidelity term + prior term

Point estimation:

$$\underset{x}{\operatorname{argmin}} \operatorname{dist}(\mathcal{F}(x), y) + \operatorname{Reg}(x)$$

Bayesian sampling:

$$x \sim p(x|y) \propto p(y|\mathcal{F}(x))p_{\text{prior}}(x)$$

Priors in Inverse Problem

Recover x from fidelity term + prior term

Classical priors (Tikhonov, sparsity, smoothness, etc): simple and often effective, but can fail in complex landscapes in high dimensions

Priors in Inverse Problem

Recover x from fidelity term + prior term

Classical priors (Tikhonov, sparsity, smoothness, etc): simple and often effective, but can fail in complex landscapes in high dimensions

Data manifold as priors: represent data support or its distribution directly

Output Manifold ${\mathcal Y}$

Priors in Inverse Problem

Recover x from fidelity term + prior term

Classical priors (Tikhonov, sparsity, smoothness, etc): simple and often effective, but can fail in complex landscapes in high dimensions

Data manifold as priors: represent data support or its distribution directly

Output Manifold \mathcal{Y}

This talk: two works showing how data manifolds help when (1) data prior or (2) fidelity term is complex

Generative Model

DALLE 3

Stable Diffusion

Score-Based Diffusion and Denoising Oracles

Score-Based Diffusion and Denoising Oracles

By Tweedie's formula, the time-dependent score along OU (or Heat) semigroup is equivalent to denoising oracle

$$\mathsf{DO}_{\pi}(x,t) = \mathbb{E}[X|x = X + tZ], \text{ where } X \sim \pi, Z \sim \mathcal{N}(0,I_d)$$

Diffusion Posterior Sampling for Inverse Imaging Problems

$$x \sim p(x|y) \propto p(y|\mathcal{F}(x)) p_{\mathrm{prior}}(x)$$
 diffusion model

Diffusion Posterior Sampling for Inverse Imaging Problems

$$x \sim p(x|y) \propto p(y|\mathcal{F}(x)) p_{\text{prior}}(x)$$
 diffusion model

Score for prior: $\nabla_x \log p_t(x_t)$

Score for posterior:

$$\nabla_x \log p_t(x_t|y)$$

$$= \nabla_x \log p_t(x_t) + \nabla_x \log p_t(y|x_t)$$

various approximation y

Provable Posterior Sampling

How to rigorously transfer the power of diffusion model/denoising oracle prior to sample posterior?

Provable Posterior Sampling

How to rigorously transfer the power of diffusion model/denoising oracle prior to sample posterior?

We can provably sample posterior distribution for certain linear inverse problems almost for free! (Bruna and Han, NeurIPS 2024)

Joan Bruna (NYU)

Given time-dependent score for OU $dX_t = -X_t dt + \sqrt{2} dW_t$, $X_0 \sim \pi$ (prior)

$$y = Ax + \sigma \varepsilon, \quad x \sim \pi, \ \varepsilon \sim \gamma_d, \ \sigma > 0$$

Target posterior:

$$\nu \propto \pi(x) \exp\{-\frac{1}{2}x^{\top}Qx + x^{\top}b\} := \mathsf{T}_{Q,b}\pi, \text{ with } Q = \frac{1}{\sigma^2}A^{\top}A, b = -\frac{1}{\sigma^2}A^{\top}y$$

Given time-dependent score for OU $dX_t = -X_t dt + \sqrt{2} dW_t$, $X_0 \sim \pi$ (prior)

$$y = Ax + \sigma \varepsilon, \quad x \sim \pi, \ \varepsilon \sim \gamma_d, \ \sigma > 0$$

Target posterior:

$$\nu \propto \pi(x) \exp\{-\frac{1}{2}x^{\top}Qx + x^{\top}b\} := \mathsf{T}_{Q,b}\pi$$
, with $Q = \frac{1}{\sigma^2}A^{\top}A$, $b = -\frac{1}{\sigma^2}A^{\top}y$

Warmup: when $Q \propto \mathrm{Id}$ the task seems 'compatible' with the denoising oracle.

$$T^* = \frac{1}{2}\log(1+\sigma^2), \ \tilde{y} = e^{-T^*}y \implies p(x|\tilde{y}) \stackrel{d}{=} p(X_0|X_{T^*} = \tilde{y})$$

Given time-dependent score for OU $dX_t = -X_t dt + \sqrt{2} dW_t$, $X_0 \sim \pi \text{ (prior)}$

$$y = Ax + \sigma \varepsilon, \quad x \sim \pi, \ \varepsilon \sim \gamma_d, \ \sigma > 0$$

Target posterior:

$$\nu \propto \pi(x) \exp\{-\frac{1}{2}x^{\top}Qx + x^{\top}b\} := \mathsf{T}_{Q,b}\pi$$
, with $Q = \frac{1}{\sigma^2}A^{\top}A$, $b = -\frac{1}{\sigma^2}A^{\top}y$

Warmup: when $Q \propto \mathrm{Id}$ the task seems 'compatible' with the denoising oracle.

$$T^* = \frac{1}{2}\log(1+\sigma^2), \ \tilde{y} = e^{-T^*}y \implies p(x|\tilde{y}) \stackrel{d}{=} p(X_0|X_{T^*} = \tilde{y})$$

We can (1) first initialize $X_{T^*}=e^{-T^*}y$ and (2) run the original reverse SDE from T^* to 0 to get the exact posterior

Given time-dependent score for OU $dX_t = -X_t dt + \sqrt{2} dW_t$, $X_0 \sim \pi$ (prior)

$$y = Ax + \sigma \varepsilon, \quad x \sim \pi, \ \varepsilon \sim \gamma_d, \ \sigma > 0$$

Target posterior:

$$\nu \propto \pi(x) \exp\{-\frac{1}{2}x^{\top}Qx + x^{\top}b\} := \mathsf{T}_{Q,b}\pi$$
, with $Q = \frac{1}{\sigma^2}A^{\top}A$, $b = -\frac{1}{\sigma^2}A^{\top}y$

Warmup: when $Q \propto \mathrm{Id}$ the task seems 'compatible' with the denoising oracle.

$$T^* = \frac{1}{2}\log(1+\sigma^2), \ \tilde{y} = e^{-T^*}y \implies p(x|\tilde{y}) \stackrel{d}{=} p(X_0|X_{T^*} = \tilde{y})$$

We can (1) first initialize $X_{T^*} = e^{-T^*}y$ and (2) run the original reverse SDE from T^* to 0 to get the exact posterior What if a general Q?

Tilted Transport for Posterior Sampling

Consider a time-varying quadratic tilt

$$\nu_{t} \propto \pi_{t}(x) \exp\{-\frac{1}{2}x^{\top}Q_{t}x + x^{\top}b_{t}\}$$

$$\begin{cases} \dot{Q}_{t} = 2(I + Q_{t})Q_{t}, & Q_{0} = Q\\ \dot{b}_{t} = (I + 2Q_{t})b_{t}, & b_{0} = b \end{cases}$$

Theorem (titled transport) Assume t < T such that the ODE is well-defined on [0, t]. By initializing $X_t \sim \nu_t$ and run the reverse SDE from t to 0, we have $X_s \sim \nu_s$ for $s \in [0, t]$, specifically, X_0 gives the desired posterior.

Tilted Transport for Posterior Sampling

Consider a time-varying quadratic tilt

$$\nu_{t} \propto \pi_{t}(x) \exp\{-\frac{1}{2}x^{\top}Q_{t}x + x^{\top}b_{t}\}$$

$$\begin{cases} \dot{Q}_{t} = 2(I + Q_{t})Q_{t}, & Q_{0} = Q\\ \dot{b}_{t} = (I + 2Q_{t})b_{t}, & b_{0} = b \end{cases}$$

Theorem (titled transport) Assume t < T such that the ODE is well-defined on [0, t]. By initializing $X_t \sim \nu_t$ and run the reverse SDE from t to 0, we have $X_s \sim \nu_s$ for $s \in [0, t]$, specifically, X_0 gives the desired posterior.

Tilted Transport for Posterior Sampling

Given a baseline sampling algorithm \mathbf{Alg} and starting time $\tilde{T} = T^* - \epsilon$ (for stable ODE solutions), the tilted transport works in two steps:

- 1. Use the baseline sampling algorithm \mathbf{Alg} to sample $X_{\tilde{T}}$ from $\pi_{\tilde{T}}(x) \mathrm{exp} \Big\{ -\frac{1}{2} x^{\mathsf{T}} Q_{\tilde{T}} x + x^{\mathsf{T}} b_{\tilde{T}} \Big\}$
- 2. Run the original reverse SDE from \tilde{T} to 0 to get the desired sample

measure space

Intuition for Easier Sampling

Equivalent posterior sampling:

$$\nu_t \propto \pi_t(x) \exp\{-\frac{1}{2}x^\top Q_t x + x^\top b_t\}$$

easier prior

easier likelihood

measure space

Provable Sampling

Theorem (Strong Log-Concavity of ν_T) For $t \geq 0$, let $\chi_t(\pi) := \sup_{x \in \mathbb{R}^d} \|\operatorname{Cov}[\mathsf{T}_{tI_d,tx}\pi]\|_{\operatorname{op}}$ denote the susceptibility of π , and let $\kappa = \lambda_{\max}(Q)/\lambda_{\min}(Q)$ denote the condition number of Q. Then ν_{T^*} is strongly log-concave if

$$\chi_{\|Q\|}(\pi) < \|Q\|_{\text{op}}^{-1} \frac{\kappa}{\kappa - 1}$$
.

Sufficient condition relates

- 1. prior susceptibility
- 2. signal-to-noise ratio
- 3. condition of measurement

Provable Sampling

Theorem (Strong Log-Concavity of ν_T) For $t \geq 0$, let $\chi_t(\pi) := \sup_{x \in \mathbb{R}^d} \|\operatorname{Cov}[\mathsf{T}_{tI_d,tx}\pi]\|_{\operatorname{op}}$ denote the susceptibility of π , and let $\kappa = \lambda_{\max}(Q)/\lambda_{\min}(Q)$ denote the condition number of Q. Then ν_{T^*} is strongly log-concave if

$$\chi_{\|Q\|}(\pi) < \|Q\|_{\text{op}}^{-1} \frac{\kappa}{\kappa - 1}$$
.

Sufficient condition relates

- 1. prior susceptibility
- 2. signal-to-noise ratio
- 3. condition of measurement

Provable Sampling

Corollary (tilted transport for Gaussian mixtures) Let $\pi = \mu \star \gamma_{\delta}$ and diam(supp(μ)) $\leq R$, then ν_{T^*} is strongly log-concave if (SNR := $\lambda_{\min}(Q) = \lambda_{\min}(A)^2/\sigma^2$)

$$\frac{(1+\delta \text{SNR}^2)(\delta \kappa(A)^2 + \text{SNR}^{-2})}{\kappa(A)^2 - 1} > R^2.$$

Provable Sampling (cont.)

Imaging Problems

inpainting deblur

Operator Learning for Inverse Map

Output Manifold ${\mathcal Y}$

Operator Learning for Inverse Map

Highlight: the success of pretraining highly depends on the data prior complexity!

Non-convexity in Inverse Scattering

$$\Delta u^{\rm scat} + k^2 u^{\rm scat} = 0, \quad \text{in } \mathbb{R}^2 \setminus \overline{D}$$

High-frequency waves are needed to recover smallscale features.

Non-convexity in Inverse Scattering

$$\Delta u^{\rm scat} + k^2 u^{\rm scat} = 0, \quad \text{in } \mathbb{R}^2 \setminus \overline{D}$$

High-frequency waves are needed to recover small-scale features.

However, as frequency increases, the loss landscape becomes more non-convex, with more bad local minima.

receivers

Neural Network Warm-Start

Inverse obstacle:

Inverse medium:

A neural network warm-start approach for the inverse acoustic obstacle scattering problem, JCP (2023)

Mo Zhou

Manas Rachh Carlos Borges Leslie Greengard

How Much Can We Scale?

How Much Can We Scale?

We need exponentially many samples of training data in terms of shape complexity/ frequency - A purely data-driven method is doomed to limited success

Instance-Wise Adaptive Sampling

Disk Prior

Disk Prior

Disk Prior

Fourier Prior

Fourier Prior

Fourier Prior

Between Pre-training and Inference-Time Scaling

Navidia GTC AI Conference for 2025, Jensen Huang

Self-Refine: Iterative Refinement with Self-Feedback, Madaan et al. (2023)

Between Pre-training and Inference-Time Scaling

Navidia GTC AI Conference for 2025, Jensen Huang

Self-Refine: Iterative Refinement with Self-Feedback, Madaan et al. (2023)

How to distribute computation across the scientific machine learning pipeline?

Summary

- Data manifolds offer richer prior structure for inverse problems, bridging geometry and representation
- Given data manifold, adaptive sampling improves learning efficiency for supervised-learning approach
- Generative modeling provides huge opportunities for real-world complex inverse problems

Thanks for your attention