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Priors in Inverse Problem

Recover x from fidelity term + prior term

Classical priors (Tikhonov, sparsity, smoothness,
etc): simple and often effective, but can fail in
complex landscapes in high dimensions
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Priors in Inverse Problem

Recover x from fidelity term + prior term

Classical priors (Tikhonov, sparsity, smoothness,
etc): simple and often effective, but can fail in
complex landscapes in high dimensions

Data manifold as priors: represent data support

or its distribution directly It Manifold \
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This talk: two works showing how caia maniiolds help when (1) data prior
or (2) fidelity term is complex




Generative Model

DALLE 3 Stable Diffusion




Score-Based Diffusion and Denoising Oracles
Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw )@
dx = [f(x,t) — ¢°(t)Vx log p; (x)| dt + g(t)dw @

Reverse SDE (noise — data)

Score-Based Generative Modeling through Stochastic Differential Equations, Song et al. (2021)



Score-Based Diffusion and Denoising Oracles
Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw )@
. ’ ore function
dx = [f(x,t) — ¢°(t)Vx log p; (x)| dt + g(t)dw @

Reverse SDE (noise — data)

By Tweedie's formula, the time-dependent score along OU (or Heat) semigroup is
equivalent to denoising oracle

DO, (z,t) = E[X|z = X +tZ], where X ~ 7, Z ~ N(0, 1)

Score-Based Generative Modeling through Stochastic Differential Equations, Song et al. (2021)



Diffusion Posterior Sampling for Inverse Imaging Problems

x ~ p(z|y) < p(y|F () )pprior (T)

Linear

diffusion model

Non-linear

(e) Phase retrieval

BOWE 7

Diffusion Posterior Sampling for General Noisy Inverse Problems, Chung et al. (2023)

(f) Non-uniform




Diffusion Posterior Sampling for Inverse Imaging Problems

z ~ p(z|y) o< p(y|F () )Pprior (T)| HittLcion model

Score for prior:  V, log p; ()

Score for posterior: P

Vi log ps(x¢|y) *’ "
| -

=V logpi(xy) + V. log pi(y|a

Non-linear

(e) Phase retrieval
.

various approximation Tl
y | e & e

Diffusion Posterior Sampling for General Noisy Inverse Problems, Chung et al. (2023)




How to rigorously transfer the power of diffusion model/denoising
oracle prior to sample posterior?



How to rigorously transfer the power of diffusion model/denoising
oracle prior to sample posterior?

We can sample posterior distribution for certain
(Bruna and Han, NeurlPS 2024)

Joan Bruna (NYU)



Given time-dependent score for OU  dX; = —X,dt + v2dW,, Xy ~ 7 (prior)

y=Axr+o0e, x~m, e~y >0
Target posterior:

1 1 1
v o (x) exp{—inQx + b} = , with @ = ;ATA, b= —;ATy
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Target posterior:

1 T . LT LT
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Given time-dependent score for OU  dX; = —X,dt + v2dW,, Xy ~ 7 (prior)

y=Axr+o0e, x~m, e~y >0

Target posterior:

1 1 1
v m(x )exp{——mTQx +x'b} = , with @ = —2ATA, b= ——QATy

o o

when (@ « Id the task seems ‘compatible’ with the denoising oracle.
1 _T*

* ~ -~ d -
T* = Slog(1+0%), j=¢"y = palf) £ p(Xo|Xr- = )

We can

to get the exact posterior
What if a general QD




Tilted Transport for Posterior Sampling

Consider a time-varying quadratic tilt

1
vy o () eXp{—§xTQt:€ +a' b}

Qt =2l +Q)Q:, Qo=@
by = (I +2Q¢)by, bop=10

Theorem (titled transport) Assume t < T such that the ODE is well-defined
on [0,¢]. By initializing X; ~ v; and run the reverse SDE from ¢ to 0, we have
Xs ~ vs for s € [0,t], specifically, X, gives the desired posterior.



Tilted Transport for Posterior Sampling

Consider a time-varying quadratic tilt — a0=001 — q0)=01 — q0)=05 — d0)=1 — q0)=4
Family of Solutions to the ODE q'(t) = 2 q(t) (1 + q(t))
q(t)
1
T T Al
vy o< () eXp{—§x iz +x b} J

Qt =2l +Q)Q:, Qo=@
by = (I +2Q¢)by, bop=10

0.5 1.0 15 20

Theorem (titled transport) Assume t < T such that the ODE is well-defined
on [0,¢]. By initializing X; ~ v; and run the reverse SDE from ¢ to 0, we have
Xs ~ vs for s € [0,t], specifically, X, gives the desired posterior.




Given a baseline sampling algorithm Alg and starting
time T = T™* — € (for stable ODE solutions), the
works in ;

Use the baseline sampling algorithm Alg to sample

1
X from ﬂT(x)eXp{ — EXTQTX + beT}

Run the original reverse SDE from Tto0to get the
desired sample

U
prior\\

same reverse SDE

v
posterio(r\

1 208

measure space

Yd



Intuition for Easier Sampling

Equivalent posterior sampling: vy |y (x ]

eXp{—ngth +xz'b)}

1

easier prior

easier likelihood

same reverse SDE
Step 2

2 . ,
L R IO prior data generation:
". ': 1:‘ . * from a large T and standard Gaussian
. ® e < \
same reverse SDE .
dX;{ = (=X; — 2Vlogm(X;))dt + v2dW,
2 4 e ..
. 3. iy Ay posterior data generation:
. fen ,‘*‘ whs
: J.(-,‘i P from a chosen T'* and boosted posterior

target posterior

v
osteri:r\

p Wi
] Step 1 (init)

boosted posterior by tilted transport
(provably easier to sample)

measure space



Provable Sampling

Theorem (Strong Log-Concavity of vy) For £ > 0, let x¢(7) 1= sup,cga [|Cov[Ter, t27]||lop
denote the susceptibility of m, and let K = Apax(Q)/Amin(Q) denote the condi-
tion number of (). Then vy« is strongly log-concave if

K

X|@)(m) < HQHJle — -

Sufficient condition relates
1. prior susceptibility

2. signal-to-noise ratio

3. condition of measurement



Provable Sampling

Theorem (Strong Log-Concavity of vy) For £ > 0, let x¢(7) 1= sup,cga [|Cov[Ter, t27]||lop
denote the susceptibility of m, and let K = Apax(Q)/Amin(Q) denote the condi-
tion number of (). Then vy« is strongly log-concave if

K

X[ (m) < HQHJplﬁ —

Sufficient condition relates

1. prior susceptibility low-SNR ._
2. signal-to-noise ratio regime: v ~ 7
3. condition of measurement |

 Efficient

P B A-‘.¥
Denoising-type: efficient 10|
at any SNR level



Provable Sampling

Corollary (tilted transport for Gaussian mixtures) Let m = p*ys and diam(supp(u)) <
R, then vp« is strongly log-concave if (SNR := Apin(Q) = Amin(A)?%/0?)

(14 6SNR?)(6k(A)? + SNR™?)

2
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Provable Sampling (cont.)
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Imaging Problems

Original Degraded DMPS DMPS from Boosted Original Degraded DMPS DMPS from Boosted

inpainting deblur



Operator Learning for Inverse Map

NN (y; 0)

TN
~—

Input Manifold X F

Output Manifold )




Operator Learning for Inverse Map

NN (y; 0)

TN
~—

Input Manifold X F

Output Manifold )

Highlight: the success of pretraining highly depends on the caia prior complexity!




Non-convexity in Inverse Scattering

receiver
_________

Auscat 4+ k,2usca,t _ 07 in R2 \E

High-frequency waves are needed to recover small-
scale features.




Non-convexity in Inverse Scattering

receivers

Auscat 4+ k2uscat _ 07 in R2 \ D , ?’S .

High-frequency waves are needed to recover small-
scale features.

However, as frequency increases, the loss - \

5015

landscape becomes more non-convex,

0.05

with more bad local minima. .

B)

F(




Neural Network Warm-Start

1.5
1.0

054 §

Inverse obstacle:

Nz ’

-15 -1.0 =05 00 05 1.0 15

Init w. zero (res=33.17%)

Init w. NN (res=23.86%)

Inverse medium: .

A5
1

A neural network warm-start approach for the inverse acoustic
obstacle scattering problem, JCP (2023)

Mo Zhou  Manas Rachh Carlos Borges Leslie Greengard




How Much Can We Scale?
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How Much Can We Scale?

9%
8%
7%
6%

W 5%
4% -
3% A

2% A

1%

102 10° 104 10 6 8 10 12 14 16 18 20
Ntrain shape complexity M

We need exponentially many samples of training data in terms of shape complexity/
frequency - A purely data-driven method is doomed to limited success




Instance-Wise Adaptive Sampling

____________________ .
| I
|
(m1,q1) base I fine-tuned
| model | — - model
| (m2, g2) | adaptive (M1, q1)
sample ¢ . train predict sampling train predict
Dty | > > (@,d0)1 > > > (@,q")
| 1] PO
: Mn, g . .
| : I (i, 4n) Predict Solution
| (mN 24N, ) | iterate
| I

Y¢ True parameter ¢

Model Update Adaptive Sampling

® Base dataset

® Base model prediction

® Round 1 adaptive dataset

X Round 1 model prediction °

X Round 2 adaptive dataset

q space legend q space



Disk Prior

True field
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Error curves
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ourier Prior

True field

Base model prediction (coef err=46.77%)

Round 1 prediction (coef err=35.92%)

Round 6 prediction (coef err=19.04%)




Error curves
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Input

FROM ONE TO THREE

‘ SCALING LAWS e Eeliehis /\
[ 2

“INTELLIGENCE"
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| o Feedback o Refine

\@/ Model M \@/

e Use M to get feedback on its own output Use ‘M to refine its previous output, given its feedback

Navidia GTC Al Conference for 2025, Jensen Huang Self-Refine: Iterative Refinement with Self-Feedback, Madaan et al. (2023)



FROM ONE TO THREE

SCALING LAWS P /\ /-\
:
IGENCE" POST-TRAINING SCALING

Feedback Refine

\@/ Model M \@/

Use M to get feedback on its own output Use M to refine its previous output, given its feedback

Navidia GTC Al Conference for 2025, Jensen Huang Self-Refine: Iterative Refinement with Self-Feedback, Madaan et al. (2023)

How to distribute computation across the scientific machine learning pipeline?
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- Data manifolds offer richer prior structure for inverse problems, bridging
geometry and representation

- Given data manifold, adaptive sampling improves learning efficiency for
supervised-learning approach

- Generative modeling provides huge opportunities for real-world complex inverse
problems

Thanks for your attention



