Quantum Mechanical Closure of Partial Differential Equations with Symmetries

Dimitris Giannakis

Department of Mathematics Dartmouth College

Statistical and Computational Challenges in Probabilistic Scientific Machine Learning IMSI, June 12 2025

Collaborators: David Freeman, Joanna Slawinska, Chris Vales

Motivation

Original system

 $x_{n+1} = \Phi(x_n, \xi(y_n))$ $y_{n+1} = \Psi(x_n, y_n)$

Parameterized system

$$egin{aligned} & x_{n+1} = ilde{\Phi}ig(x_n, ilde{\xi}ig(ilde{y}_nig)ig) \ & ilde{y}_{n+1} = ilde{\Psi}ig(x_n, ilde{y}_nig) \end{aligned}$$

[Palmer 01]

1 States are density operators, i.e., positive, trace-class operators $\rho: H \to H$ on a Hilbert space H, with tr $\rho = 1$.

- **1** States are density operators, i.e., positive, trace-class operators $\rho: H \to H$ on a Hilbert space H, with tr $\rho = 1$.
- 2 (Bounded) observables are self-adjoint operators, $A: H \rightarrow H$.

- **1** States are density operators, i.e., positive, trace-class operators $\rho: H \to H$ on a Hilbert space H, with tr $\rho = 1$.
- 2 (Bounded) observables are self-adjoint operators, $A: H \rightarrow H$.
- 3 Measurement expectation and probability:

$$\mathbb{E}_{\rho}A = \operatorname{tr}(\rho A), \quad \mathbb{P}_{\rho}(\Omega) = \mathbb{E}_{\rho}(E(\Omega)), \quad A = \int_{\mathbb{R}} a \, dE(a).$$

- **1** States are density operators, i.e., positive, trace-class operators $\rho: H \to H$ on a Hilbert space H, with tr $\rho = 1$.
- 2 (Bounded) observables are self-adjoint operators, $A: H \rightarrow H$.
- 3 Measurement expectation and probability:

$$\mathbb{E}_{
ho} A = \operatorname{tr}(
ho A), \quad \mathbb{P}_{
ho}(\Omega) = \mathbb{E}_{
ho}(E(\Omega)), \quad A = \int_{\mathbb{R}} a \, dE(a).$$

4 State evolution between measurements:

$$\rho_t = U^{t*} \rho_0 U^t$$

- **1** States are density operators, i.e., positive, trace-class operators $\rho: H \to H$ on a Hilbert space H, with tr $\rho = 1$.
- 2 (Bounded) observables are self-adjoint operators, $A: H \rightarrow H$.
- 3 Measurement expectation and probability:

$$\mathbb{E}_{
ho}A = \operatorname{tr}(
ho A), \quad \mathbb{P}_{
ho}(\Omega) = \mathbb{E}_{
ho}(E(\Omega)), \quad A = \int_{\mathbb{R}} a \, dE(a).$$

4 State evolution between measurements:

$$\rho_t = U^{t*} \rho_0 U^t.$$

5 State conditioning by measurement (quantum Bayes' rule):

$$ho|_e = rac{\sqrt{e}
ho\sqrt{e}}{{
m tr}(\sqrt{e}
ho\sqrt{e})}, \quad 0 < e \leq I.$$

[G. 19; Freeman et al. 23]

Probability densities $\mathcal{P}(\mu) \stackrel{\mathcal{P}}{\longrightarrow} \mathcal{P}(\mu)$

- $T: X \to X$: Dynamical flow with invariant measure μ .
- $\mathcal{P}(\mu)$: Probability densities in $L^1(\mu)$.
- $P: \mathcal{P}(\mu) \to P(\mu)$: Transfer operator, $P\nu = \nu \circ T^{-t}$.
- $L^{\infty}(\mu)$: Algebra of classical observables.
- $U: H \to H$: Unitary Koopman operator on $H = L^2(\mu)$, $Uf = f \circ T$.

[G. 19; Freeman et al. 23]

• Embedding of probability densities into quantum states on *H*:

$$\Gamma : \mathcal{P}(\mu) \to \mathcal{Q}(H), \quad \Gamma(\nu) = \rho := \langle \nu^{1/2}, \cdot \rangle \nu^{1/2}.$$

- Embedding of observables: $\pi \colon L^{\infty}(\mu) \to B(H)$, $(\pi f)g = fg$.
- Unitary evolution: $Q\rho = U^* \rho U$.
- Quantum–classical consistency:

$$\mathbb{E}_{P\nu}f = \mathbb{E}_{Q(\Gamma\nu)}(\pi f) \equiv \operatorname{tr}((Q(\Gamma\nu))(\pi f)).$$

[G. 19; Freeman et al. 23]

- $H_L \subset H$: Finite-dimensional approximation space, $\Pi_L = \text{proj}_{H_l}$.
- Projection of quantum states:

$$\mathbf{\Pi}_{L}^{\prime}(\rho) = \rho_{L} := \frac{\Pi_{L} \rho \Pi_{L}}{\operatorname{tr}(\Pi_{L} \rho \Pi_{L})}$$

• Projection of evolution operators:

$$Q_L \rho_L = U_L^{t*} \rho_L U_L, \quad U_L = \Pi_L U \Pi_L.$$

[G. 19; Freeman et al. 23]

Structure preservation

- Unlike a projection $\Pi_L \nu$ of a classical probability density, a projected quantum state $\Pi_L \rho \Pi_L$ is a positive operator.
- Embedding into the infinite-dimensional quantum system on *H*, and *then* projecting to finite dimensions, allows us to construct positivity-preserving approximation schemes in ways which are not possible in (commutative) function spaces.

Quantum mechanical closure

Original system

$$x_{n+1} = \Phi(x_n, \xi(y_n))$$

$$y_{n+1} = \Psi(x_n, y_n)$$

Parameterized system

$$\begin{aligned} x_{n+1} &= \tilde{\Phi}(x_n, \tilde{\xi}(\rho_n))\\ \rho_{n+1} &= \tilde{\Psi}(x_n, \rho_n) \end{aligned}$$

- Resolved variables: $x_n \in \mathcal{X}$.
- Unresolved variables: $y_n \in \mathcal{Y}$.
- Full state space $X = \mathcal{X} \times \mathcal{Y}$.
- Fluxes from unresolved variables: $\xi \colon Y \to \mathbb{R}^d$, $\xi = (\xi_1, \dots, \xi_d)$.
- Surrogate unresolved variables (quantum states): $\rho_n \in \mathcal{Q}(H_L)$.
- Parameterized fluxes: $ilde{\xi}: \, \mathcal{Q}(H_L) o \mathbb{R}^d$, $ilde{\xi} = (ilde{\xi}_1, \dots, ilde{\xi}_d)$,

$$\tilde{\xi}_k(\rho_n) = \operatorname{tr}(\rho_n(\pi\xi_k)).$$

• Evolution map for quantum states: $\tilde{\Psi}$: $\mathcal{X} \times \mathcal{Q}(H_L) \rightarrow \mathcal{Q}(H_L)$.

Quantum mechanical closure

Original system	Parameterized system
$x_{n+1} = \Phi(x_n, \xi(y_n))$	$x_{n+1} = \tilde{\Phi}(x_n, \tilde{\xi}(\rho_n))$
$y_{n+1} = \Psi(x_n, y_n)$	$ \rho_{n+1} = \tilde{\Psi}(x_n, \rho_n) $

Given: Samples $x_0, \ldots, x_{N-1} \in \mathcal{X}$, $z_0, \ldots, z_{N-1} \in \mathbb{R}^d$ with $z_n = \xi(y_n)$, along dynamical trajectory of the original system.

- Build data-driven basis $\{\phi_0, \ldots, \phi_{L-1}\}$ of H_L .
- Compute $L \times L$ transfer operator matrix $\boldsymbol{P} = [P_{ij}]$,

$$P_{ij} = \langle \phi_i, P\phi_j \rangle.$$

• Compute $L \times L$ multiplication operator matrices Ξ_1, \ldots, Ξ_d ,

$$\mathbf{\Xi}_{k} = [\Xi_{k,ij}], \quad \Xi_{k,ij} = \langle \phi_{i}, (\pi \xi_{k}) \phi_{j} \rangle.$$

• Construct matrix-valued feature map, $F: X \to \mathbb{R}^{L \times L}$,

$$F(x) = [F_{ij}(x)], \quad F_{ij}(x) = \langle \phi_i, \mathcal{F}_L(x)\phi_j \rangle.$$

Quantum mechanical closure

Closure algorithm

- **1** Compute parameterized fluxes: $\tilde{z}_n = (\tilde{z}_{n,1}, \dots, \tilde{z}_{n,d}), z_{n,k} = tr(\rho_n \Xi_k).$
- 2 Update resolved variables: $x_{n+1} = \tilde{\phi}(x_n, z_n)$.
- 3 Compute prior quantum state: $ilde{
 ho}_{n+1} = oldsymbol{P} ilde{
 ho}_n.$
- 4 Compute conditional state: $ho_{n+1} = ilde
 ho_{n+1}|_{F(x_{n+1})}.$

Lorenz 63

[after Palmer 01]

$$\dot{a_1} = 2.3 a_1 - 6.2 a_3 - 0.49 a_1 a_2 - 0.57 a_2 a_3$$
$$\dot{a_2} = -62 - 2.7 a_2 + 0.49 a_1^2 - 0.49 a_3^2 + 0.14 a_1 a_3$$
$$\dot{a_3} = -0.63 a_1 - 13 a_3 + 0.43 a_1 a_2 + 0.49 a_2 a_3$$

- (*a*₁, *a*₂, *a*₃): PCA coordinates.
- Resolved variables: $(a_1, a_2) = x \in X \equiv \mathbb{R}^2$.
- Unresolved variables: $a_3 = y \in Y \equiv \mathbb{R}$.
- Flux terms: $\xi: Y \to \mathbb{R}, \xi(a_3) = a_3$.

Lorenz 63

 $\begin{aligned} \dot{a_1} &= 2.3 \, a_1 - 6.2 \, a_3 - 0.49 \, a_1 a_2 - 0.57 \, a_2 a_3 \\ \dot{a_2} &= -62 - 2.7 \, a_2 + 0.49 \, a_1^2 - 0.49 \, a_3^2 + 0.14 \, a_1 a_3 \\ \dot{a_3} &= -0.63 \, a_1 - 13 \, a_3 + 0.43 \, a_1 a_2 + 0.49 \, a_2 a_3 \end{aligned}$

Gaussian closure

Lorenz 63

 $\begin{aligned} \dot{a_1} &= 2.3 \, a_1 - 6.2 \, a_3 - 0.49 \, a_1 a_2 - 0.57 \, a_2 a_3 \\ \dot{a_2} &= -62 - 2.7 \, a_2 + 0.49 \, a_1^2 - 0.49 \, a_3^2 + 0.14 \, a_1 a_3 \\ \dot{a_3} &= -0.63 \, a_1 - 13 \, a_3 + 0.43 \, a_1 a_2 + 0.49 \, a_2 a_3 \end{aligned}$

Quantum mechanical closure of PDE systems

Original system	Parameterized system
$x_{n+1} = \Phi(x_n, \xi(y_n))$	$x_{n+1} = \tilde{\Phi}(x_n, \tilde{\xi}(\rho_n))$
$y_{n+1} = \Psi(x_n, y_n)$	$ ho_{n+1} = \tilde{\Psi}(x_n, ho_n)$

- Spatial domain S equipped with measure ν .
- Full state space $X \equiv \mathcal{X} \times \mathcal{Y}$ is a function space, $X \subseteq L^2(S, \nu)$.
- Resolved state space \mathcal{X} is a finite-dimensional subspace $\mathcal{X} \subset \mathcal{X}$.
- Flux map $\xi \colon \mathcal{Y} \to L^2(S, \nu; \mathbb{R}^d)$.

Quantum mechanical closure of PDE systems

Original system	Parameterized system
$x_{n+1} = \Phi(x_n, \xi(y_n))$	$x_{n+1} = \tilde{\Phi}(x_n, \tilde{\xi}(\rho_n))$
$y_{n+1} = \Psi(x_n, y_n)$	$\rho_{n+1} = \tilde{\Psi}(x_n, \rho_n)$

- Product state space $\Omega = X \times S$, $\sigma = \mu \times \nu$.
- Quantum mechanical Hilbert space

$$\mathcal{H}_{\Omega} = L^2(\Omega, \sigma) \cong L^2(X, \mu) \otimes L^2(S, \nu) \cong L^2(X, \mu; L^2(S, \nu)).$$

- Field of quantum states: $ho \in \tilde{\mathcal{Y}} \equiv L^2(S, \nu; \mathcal{Q}(H_\Omega)).$
- Fluxes represented by multiplication operators Ξ₁,..., Ξ_d: ∈ B(H_Ω)

$$\Xi_k f(x, y, s) = \xi_k(y)(s) \cdot f(x, y, s).$$

Predicted flux components:

$$\widetilde{\xi}_k(
ho)(s) = {
m tr}(
ho(s) \Xi_k).$$

Factoring out dynamical symmetries [G. et al. 19]

- Spatial domain S with action Γ^g_S: S → S, g ∈ G, of a symmetry group G.
- There is a (right) action $\Gamma_X^g \colon X \to X$ on $X \subset L^2(S, \nu)$,

$$\Gamma_X^g(x) = x \circ \Gamma_Y^{-g}.$$

• Γ_X^g is a dynamical symmetry if:

$$\Gamma^g_X \circ T = T \circ \Gamma^g_X, \quad \forall g \in G.$$

Factoring out dynamical symmetries [G. et al. 19]

• Define delay-coordinate map $F_{\ell} \colon \Omega \to \mathbb{R}^{m\ell}$, $m = \dim \mathcal{X}$, as

$$F_\ell(x,y,s) = ig(x(s),T(x)(s),\ldots,T^{\ell-1}(x)(s)ig)$$
 .

• Then $f \circ F_{\ell} \in H_{\Omega}$ is invariant under the symmetry group action $\Gamma_{\Omega}^{g} = \Gamma_{X}^{g} \times \Gamma_{Y}^{g}$.

Factoring out dynamical symmetries [G. et al. 19]

Fix a kernel k_ℓ: ℝ^{mℓ} × ℝ^{mℓ} → ℝ with corresponding integral operator K_ℓ: H_Ω → H_Ω,

$$\mathcal{K}_{\ell}f = \int_{\Omega} k_{\ell}(\mathcal{F}_{\ell}(\cdot), \mathcal{F}_{\ell}(x, y, s))f(x, y, s) \, d\sigma(x, y, s).$$

 Compute eigendecomposition of K_ℓ to obtain equivariant basis functions φ_j ∈ L²(Ω, σ),

$$\mathcal{K}_{\ell}\phi_j = \lambda_j\phi_j, \quad \mathcal{U}^{g} \circ \phi_j = \phi_j \circ \Gamma_{\mathcal{X}}^{g},$$

where $\mathcal{U}^g \colon L^2(S,\nu) \to L^2(S,\nu)$ is the composition operator

$$T_S^g f = f \circ \Gamma_S^g.$$

QM closure of the shallow-water equations

[Vales et al. 25; after Timofeyev et al. 24]

$$\partial_t h + \partial_x q = 0, \quad \partial_t q + \partial_x \left(\frac{q^2}{h} + \frac{h^2}{2 \operatorname{Fr}^2} \right) = 0$$

- Fine mesh finite volume discretization: x̂_j.
- Local spatial averaging (resolved variables): $x_j = \frac{1}{K} \sum_k \hat{x}_k$.
- 1920 fine cells, 96 coarse cells, 300 time samples on 3 trajectories.
- Basis size L = 6144.

Summary and outlook

- Koopman/transfer operator techniques combined with quantum theory lead to closure schemes with useful structure-preservation properties.
 - Positivity of observables.
 - Dynamical symmetries
- Methods are amenable to data-driven approximation with convergence guarantees.

Future directions

- Use kernel learning to optimize quantum Bayesian update.
- Explore quantum circuit implementations.

References

- D. C. Freeman, D. Giannakis, B. Mintz, A. Ourmazd, and J. Slawinska, "Data assimilation in operator algebras," *Proc. Natl. Acad. Sci.*, vol. 120, no. 8, e2211115120, 2023. DOI: 10.1073/pnas.2211115120.
- [2] D. C. Freeman, D. Giannakis, and J. Slawinska, "Quantum mechanics for closure of dynamical systems," *Multiscale Model. Simul.*, vol. 22, no. 1, pp. 283–333, 2024. DOI: 10.1137/22M1514246.
- [3] D. Giannakis, "Quantum mechanics and data assimilation," *Phys. Rev. E*, vol. 100, 032207, 2019. DOI: 10.1103/PhysRevE.100.032207.
- [4] D. Giannakis, A. Ourmazd, J. Slawinska, and Z. Zhao, "Spatiotemporal pattern extraction by spectral analysis of vector-valued observables," *J. Nonlinear Sci.*, vol. 29, no. 5, pp. 2385–2445, 2019. DOI: 10.1007/s00332-019-09548-1.

References

[5] T. N. Palmer, "A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models," *Quart. J. Roy. Meteorol. Soc.*, vol. 127, pp. 279–304, 2001. DOI: 10.1002/qj.49712757202.