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Deep Learning has Become Ubiquitous

L Y

Commerce Advertisements Customer Service
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Interpretability Crisis

- As deep learning is widely used in safety critical applications, there is
a need for developing trustworthy and interpretable models.

|deally we desire... “Since there is atrophy

K in this region...~
rvw — m —p Patient has Alzheimer’s
MRI Scan

disease with 98.6%
probability

White-Box

A ; Patient has Alzheimer’s
a'd — —p  (isease with 98.6%

9 probability
MRI Scan

@Penn
UNIVI’.RS['[’\' (}f P]ZNNS\'[.VANIA

« But in reality



Accuracy vs Interpretability Tradeoff

Highly Accurate Models

@ Neural Networks -Non-linear relationship
-Non-smooth relationship
-Long computation time

@ Random Forest

Highly Interpretable Models
-Linear and smooth
@ Support Vector Machine relationships

-Easy to compute

@ Graphical Models
@ K-Nearest Neighbors
@ Decision Trees

Accuracy

@ Linear Regression

@ Classification Rules

>
Interpretability @ PGI]D

UNIVERSITY (If PENNSYLVANIA




Current Trend: Post-hoc Explanations

« Current trend is to interpret black-box models post-hoc using importance
scores based on the sensitivity of the model output to input features:

~ LIME [1] Patient has Alzheimer’
atient nas Aizneimers

— Grad-CAM [2] (¢ > disease with 98.6%

— SHAP [3] ¢ ‘'Y — probability

- The Good: MRI Scan Black-Box

— No need to retrain model, accuracy maintained.

- The Bad:

— Explanations are unreliable; not faithful to the model it tries to explain [4].
— Feature importance scores might not be interpretable to end-users [3].

[1] Ribeiro, Singh, Guestrin. "Why Should | Trust You?” Explaining the Predictions of Any Classifier. KDD, 2016.
[2] Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. ICCV 2017.
[3] Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NIPS, pp 4765-4774, 2017. e I l I l
[4] Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, |., Hardt, M., & Kim, B. Sanity checks for saliency maps. NeurlPS, 2018

[5] Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 2019. UNIVERSITY of PENNSYLVANIA



What's Wrong with Explainable Al?

NEWSLETTERS - EYE ON A.I.

What’s wrong with “explainable A.1.”

BY JEREMY KAHN
March 22, 2022 12:56 PM EDT

“Everyone who is serious in the field knows that most of today’s explainable
A.L is nonsense,” Zachary Lipton, a computer science professor at Carnegie
Mellon University, recently told me. Lipton says he has had many

'™ Zachary Lipton & ©@zacharylipton - Feb 1
" The precarious state of “interpretable deep learning” is that we should be
far more scared upon hearing that a hospital or government deploys any
such technique than upon hearing that they haven’t.

?i UNIVERSITY (}f PENNSYLVANIA



Need for Interpretable-by-Design Models

« Explanations are user/task/domain dependent and best described in
terms of words/attributes/facts that support the decision’s reasoning.

« We can capture this via a user/task/domain dependent query set Q.

(a) Task: bird classification (b) Task: scene interpretation (c) Task: medical diagnosis
Queries: parts, attributes Queries: objects, relationships Queries: symptoms
0. Ear pain
1. Sore throat
2. Fever
3. Cough
4. Nasal congestion
5. Allergic reaction
6. Shortness of breath

7. Painful sinuses

?i UNIVERSITY Of PENNSYLVANIA




Concept Bottleneck Models (CMBs)

Has Horns? Yes
Has Fur? Yes

Deep Has Wings? No Linear > D
Network Is Four-legged? Yes Network Bison
o Concept - -
Input Predictor Classifier Prediction

« Concept Bottleneck Models (CBMs) [1].

— Specify a query set: define a set of task-relevant concepts Q.
— Answer queries: train deep network to predict concepts from Q in image x.
— Make prediction: train linear classifier on predicted concepts.

« Explain prediction via weights of linear layer for different concepts.

?i UNIVERSITY 0f PENNSYLVANIA

[1] Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020.



Are Concept Bottleneck Models Enough?

Has Horns? Yes
Has Fur? Yes

Deep Has Wings? No Linear > D
Network Is Four-legged? Yes Network Bison
kl.nput Congept Classifier Prediction
Predictor

 Limited expressivity: linear classification layer limits expressivity of
CBMs when “concept answers — class prediction” map is non-linear.

« Limited interpretability: explanations in terms of coefficients of linear
weights not always desirable to end-users, especially non-Al experts.

« Limited flexibility: same explanations for all inputs in the same class.

?% UNIVERSITY (}f PENNSYLVANIA



Information Pursuit Framework

« Information Pursuit: interpretable-by-design framework based on:

— Selecting the smallest number of queries that are sufficient for prediction.

— Making a prediction based only on the chain of query-answer pairs.

)

(@
Input image 5 0bs Ask a sequence of interpretable queries about x°P*
q1- Has shape perching-like? Yes
q». Has bill shape all-purpose? Yes
q3. Has belly color yellow? Yes
q4. Has upperparts color yellow? No
qs. Has throat color yellow? No
qe- Has breast color black? Yes
q7. Has belly color olive? Yes
& p

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

Predicted bird species

—— Green Jay with
99% probability

?i UNIVERSITY ()f PENNSYLVANIA



Ingredients Needed to Implement this Framework

« Q1: How do we define the set of queries?
« Q2: Given an input and a query, how do we answer the query?

- Q3: How do we select queries that form the explanation?

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions, ICLR 2023.

[3] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023.
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024.
[5] Chattopadhyay, Haeffele, Vidal, Geman. Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024.

Penn

UNIVERSITY (ﬁf PENNSYLVANIA



Q1: How to define the set of queries?

?i UNIVERSITY (}f PENNSYLVANIA



Q1: How do we Define the Set of Queries?

« Defined by domain experts [1,2]

— Assume queries have similar semantic resolution.

— CUB dataset (a) Task: bird classification (c) Task: medical diagnosis
« 200+ bird classes Queries: parts, attributes Queries: symptoms

« 300+ bird attributes
— SymCAT-200 dataset
« 200 disease diagnosis

0. Ear pain

1. Sore throat

2. Fever

3. Cough

4. Nasal congestion

- 326 patient Symptoms 5. Allergic reaction
— Challenge

6. Shortness of breath

7. Painful sinuses

« Annotating queries is very costly

[2] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.
[3] Oikarinen, T., Das, S., Nguyen, L. M., & Weng, T. W. (2023). Label-free concept bottleneck models. ICLR 2023
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024.

Penn

UNIVERSITY Of PENNSYLVANIA

[1] Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020. @



Q1: How do we Define the Set of Queries?

- Defined by large language models [3,4].

— E.g., ask LLM for list of attributes of all relevant categories.

For every {class}:

Convert to queries:
g1 = blue color
g2 = black color
gz = medium size
g4 = spotted pattern

PROMPT to GPT-3: List the useful visual
attributes (and their values) of the bird
image category ‘{class = Blue Jay}'.

A J

RESPONSE:
1. Color: Blue, White, Black
2. Size: Medium
3. Shape: Long Tail, Crested Head |
4. Pattern: Spotted, Striped

9. = value <attr>

Union over all classes

N.<attr>: <value> l’
Query Set () -
[1] Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020.
[2] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.
[3] Oikarinen, T., Das, S., Nguyen, L. M., & Weng, T. W. (2023). Label-free concept bottleneck models. ICLR 2023 ‘ I l I l
[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. UNIVERSITY 0f PENNSYLVANIA



Q2: Given an input and a query,
how do we answer the query?

?i UNIVERSITY 0f PENNSYLVANIA



Q2: How do we Answer a Query for a given Input?

« Train classifiers on data annotated with query answers [1].

Has Horns? Yes
D Has Fur? Yes
eep Has Wings? No
Network Is Four-legged? Yes

Concept
Predictor

‘In-put
— Challenge 1: need tons of data annotated with all concepts/attributes, and
few datasets have such detailed annotations.

— Challenge 2: cannot handle new queries that have not been annotated.

[1] Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. Concept bottleneck models. ICML, 2020.

[2] Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry et al. "Learning transferable visual models from natural language supervision." ICML 2021

[3] Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models." ICML 2023.

[4] Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Roziere et al. "Llama: Open and efficient foundation language models." arXiv preprint arXiv:2302.13971, 2023. el l I l
[5] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. UNIVERSITY 0f PENNSYLVANIA



Q2: Can we use VLMs for Answering Queries?

- Challenge 1: State-of-the-art VLMs (Vision Language Models) like
Llama [1] and BLIP [2] are too slow to be used in an online manner.

« Challenge 2: CLIP [3] is relatively light-weight, but CLIP dot products
between query and image are inadequate: they are not interpretable.

Desired distribution of CLIP dot products Observed distribution of CLIP dot products

1.0
I Threshold Input Image x©Ps 4 Threshold?
Py I by
20.5 | 22
8 No<-|—>Yes 3
0.0 L/\ o
00 02 04 06 08 1.0 00 02 04 06 08 1.0

CLIP dot product value CLIP dot product value

[1] Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Roziére et al. "Llama: Open and efficient foundation language models." arXiv preprint arXiv:2302.13971, 2023. @ Pe

[2] Li, Junnan, et al. "Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models." ICML 2023.
[3] Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry et al. "Learning transferable visual models from natural language supervision." ICML 2021 UNIVERSITY Of PENNSYLVANIA



Q2: Can we Improve CLIP without Annotations?

 In image classification, most query answers are known to be false
based on the class alone.

— Example: Know class is dog — “does the subject have fins?” is false —
no need to see the image.
Input image x°Ps

Yes! Use
LLMs

« We need to look at the image only for queries relevant to the class.

— Example: “Does the subject have a leash?”. Need to see image since not

all dogs have a leash.
& Penn



Concept Question Answering System [1]

- Pseudo-labeling: Use GPT to determine class-relevant queries and
use CLIP to determine probability of being true based on image.

Image [ ]
CLIP True
Query with probability
equalto CLIPs | Pseudo-answers
Yes dot product
GPT
Class No False

Is query relevant for class?

« Concept-QA: Train a lightweight visual question answering system
using pseudo-answers as we don’'t know class at test time.

Image

Concept-QA —P(True)

Query

?i UNIVERSITY (}f PENNSYLVANIA

[1] Chattopadhyay, Chan, Vidal. "Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification." ICLR 2024



Interpretability of Concept-QA answers

« Concept-QA is more interpretable than CLIP!

_ Input image x°bs |
4 /5 Threshold? P , g 731 | Threshold
a /”F’ \\\ _ . \\ § -.;- i -'?5.0 \‘\ :
25 " _ R " 2 | No———Yes
] \ @ | |
O ; Y ‘-\‘ 0 2 . 5 ‘.l |
A \'\ |
y . ~
0 — — 0.0 b : S —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Concept-QA P2(True) for x°bs

CLIP dot product value

?i UNIVERSITY (}f PENNSYLVANIA



Accuracy of Concept-QA answers

« Concept-QA is more accurate than CLIP!

Model ImageNet Places365 CUB-200 CIFAR-10 | CIFAR-100

Acc. F Acc. F; | Acc. F Acc. F Acc. F;
CLIP-Bingy 055 039|058 042 | 056 048 | 0.58 047 | 0.51 0.21
CLIP-Binporm 050 027 | 049 026 | 0.56 045 066 053 | 054 0.24
BLIP2 ViT-g OPT,7 | 0.55 031 | 0.76 0.18 | 0.53 035 | 0.73 0.13 | 0.86 0.07
BLIP2 ViT-g FlanT5x;. | 0.86 0.56 | 0.87 0.62 | 0.70 040 | 0.83 0.59 | 0.87 041

Concept-QA (Ours) | 0.87 0.56 | 0.83 0.45 | 0.80 0.54 | 0.80 0.62 | 0.80 0.38

Manually annotated 2.5K randomly sampled image-query pairs for each dataset.

« Computational efficiency: Concept-QA takes 0.04s per query vs
1.52s per query for BLIP2 FlanT5 model!
& Penn



Q3: How do we select the queries
that form an explanation?

?i UNIVERSITY 0f PENNSYLVANIA



Information Pursuit (IP)

- Q3: How do we select queries that form the explanation?

— Shorter chains are easier to interpret.
— Select smallest number of queries that are sufficient for prediction.

Generative-IP (G-IP) [1] Variational-IP (V-IP) [2]

Learn deep generative model and use Train deep network to select the next
it to select most informative queries. optimal query given answers thus far.

Use orthogonal matching pursuit and large vision and language models.

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions, ICLR 2023.

[3] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023.

[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. ‘ I l I l
UNIVERSITY 0,

[5] Chattopadhyay, Haeffele, Vidal, Geman. Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024. f PENNSYLVANIA



Information Pursuit: Problem Formulation

- Notation

— X € X : input variable (data).
— Y €Y : prediction variable (label).

— Q ={q: X - A}: query set. X —> q — a

« Querier mr : a function that selects the next question given history.

(ql:k:al:k)_> T = ({k+1

» Codeg (X) : chain of query-answers selected by the querier for input X.

?i UNIVERSITY (}f PENNSYLVANIA

(Ql:k; al:k)



Information Pursuit: Optimal Querier

« What properties should an ideal querier have?

— Minimality: shorter explanations are easier to interpret and thus
preferred.

— Sufficiency: explanations (query-answer chains) should be a
sufficient statistic for Y.

- Balance minimality of explanation with sufficiency via the objective:

mnin E [|Code’5(X)|] (Minimality)
s.t. P(Y|CodeF (X)) =P(Y|X) (Sufficiency)

« Above problem is NP-Hard to solve [1], thus need for approximations.

?i UNIVERSITY (}f PENNSYLVANIA

[1] H. Laurent and R. L. Rivest, "Constructing optimal binary decision trees is np-complete”, Inf. Process. Lett., vol. 5, no. 1, pp. 15-17, 1976.



Generative Information Pursuit (G-IP)

« Given query set Q, Information Pursuit (IP) selects queries
sequentially and adaptively in order of information gain [1].

Information Pursurit Allg@]riilt]hunm
Queries are chosen according to observed x.

 First query and prediction:

q1 = argmax I(q(X);Y) y1 = argmaxP(y | ¢1(x))
CIGQ yEY

« Next query and prediction:

gr+1 = argmax I(q(X);Y | q1.x(x)) Yr+1 = argmax P(y | qrr41(x))
qeQ yey
« Termination and prediction:
qr+1 = qstop if maxI(q(X);Y |qur(z)) =0 Yr+1 = argmaxP(y | q1..(v))
qeqQ yeyY

¢1:1() is the event that contains all realizations of X that agree on the first k query-answers for x. P
@ UNIVIZRS['IQHWLVQ

[1] Geman and Jedynak, An active testing model for tracking roads from satellite images, TPAMI, 1996.



Generative Information Pursuit (G-IP)

Selecting the first query requires computing

argmax I(q(X);Y)

qeQ
_ _ History
Later queries need computing /

argmax [(q(X); Y | q1.x(x))
qeqQ

Generative IP: learn deep generative model for P(q(X);Y) and use it
to compute mutual information (via sampling) and select best query.

Challenge: estimating mutual information in high dimensions is hard.

?i UNIVERSITY (}f PENNSYLVANIA

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. (2022). Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.



Variational Information Pursuit (V-IP)

- Train querier g, to select the most informative query for
min Exs[Die, (PCY 1 X)]| Po(Y | 4, (X),5 )]
S.t. qn= gn(s)’ IPG(Y | Qn(X)rS) — f@({qn: Qn(X)} U S)

« Thm: Selecting the most informative query given history = Finding
query that, when added to the history, gives the best prediction.

obs
Given: s
_ _ Query Set
Classifier Q
f:5-Y
t
|
History | Querier Query | Query Answer
S = (g5, q:(x**)}1 g:S—q Q+1 € Q Qier1(x°7)}

A . P
____________________________________________ Bl e R e e eI H 1
UNIVERSITY (}f PENNSYLVANIA

A
[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interprggglré Predictions, ICLR 2023.



IP vs Orthogonal Matching Pursuit (OMP)

« IP: Given queries selected

thus far, IP selects query that

is most informative for Y
Qr+1 = argrréax 1(q(X); Y1q1.(x))
q€

« OMP: given atoms selected
thus far, OMP selects atom
that is most correlated with x

mﬁin 1Bllos-t. DB =x

ig+1 = argmax [{(d, x — DBy)|
deD

[1] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023.

« CLIP-IP-OMP [1]: decompose image as sparse
linear combination of semantic dictionary

EI
[ ' B
.-
o _ noise
ol *
. . 7’ .
d &
e&é “00\9 #\Q ‘°
& ¢ ¢ =
O image embedding . J
3 text embedding ;'_l
[

Image credit: https://en.wiktionary.org/wiki/cat#/media/File:Cat03.jpg

?% UNIVERSITY (}f PENNSYLVANIA



https://en.wiktionary.org/wiki/cat#/media/File:Cat03.jpg

CLIP-IP-OMP: Details

Input image Text concepts

CLIP Image Encoder CLIP Text Encoder

Image
embedding
(signal x)

Text
embeddings for
each concept
(dictionary D)

Sparse code £ for image in

terms of concepts _
Explanation

Classifier for § provided
by sparse code
and classifier

Prediction § weights

Learned classifier weights

[1] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023. @ UNIVERSITY Of PENNSYLVANIA



Summary of the Information Pursuit Framework

« Q1: How do we define the set of queries?

— Defined by domain experts [1].
— Defined by large language models [4].

« Q2: Given an input and a query, how do we answer the query?

— Train classifiers on data annotated with query answers by task experts [1].
— Use domain-specific pre-trained large vision language models [4].

- Q3: How do we select queries that form the explanation?

— Information Pursuit: Select smallest number of queries that are sufficient
for prediction using Generative IP [1], Variational IP [2], and OMP [3].

[1] Chattopadhyay, Slocum, Haeffele, Vidal, Geman. Interpretable by design: Learning predictors by composing interpretable queries. TPAMI 2022.

[2] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions, ICLR 2023.

[3] Chattopadhyay, Pilgrim, Vidal. Information Maximization Perspective of Orthogonal Matching Pursuit with Applications to Explainable Al. NeurlPS 2023.

[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. ‘ I l I l
UNIVERSITY (}f PENNSYLVANIA

[5] Chattopadhyay, Haeffele, Vidal, Geman. Performance Bounds for Active Binary Testing with Information Maximization. ICML 2024.



Applications

?% UNIVERSITY (}f PENNSYLVANIA



Interpretable Image Classification by V-IP

- Task: Image
classification.

- Query set: Queries
about presence or
absence of different
semantic concepts.

- Dataset: ImageNet

— 1000 classes

1.0
O.SI

0.6

0. Init

1. Mammal

2. black and brown markings
3. a small to medium sized dog
4. a Monkey

5. a tail that hangs down

6. long, shaggy hair

7. A collar

8. artiodactyl

9. short, front legs

10. long head with curved horns
11. a long head and muzzle

12. a prey animal

%, o By, G s G %, O 4y 4
RO NS S W)
7 Gy o N AN '?‘sés
s Qo
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Interpretable Medical Diagnosis by VI-P

0. Ear pain

- Task: Disease diagnosis.

1. Sore throat

2. Fever
« Query set: Queries about presence or 3. Cough
absence Of d|fferent Symptoms 4. Nasal congestion

5. Allergic reaction

6. Shortness of breath

- Dataset: SymCAT-200

— 1.1M doctor-patient dialogues about 326 e
symptoms indicative of 200 diseases. 10. Skin rash

— Each dialogue: 2-3 Symptoms per patient. 11. Itchiness of eye

12. Hoarse voice

7. Painful sinuses

8. Diminished hearing

— 326 binary queries, one per symptom. &

() Y O W@
N C\{\q \Q (‘" ro\\ 'é"G,QQ ‘\6



Accuracy Versus Number of Queries

1.00;

0.75]

Test Accuracy
o
w
o

o
N
[

0.00
0.60

Test Accuracy

o
A
wu

0.00

(a) CIFAR-10

| —— Variational-IP (Ours)
—=— Probabilistic HardAttn

—— Random

—— RAM+

(b) CIFAR-100

1 2 3

4
# of queries

5

1.00

0.75

Test Accuracy
=}
u
o

0.25

0.00

(c) SymCAT-200

Variational-IP top 1
—e— Variational-IP top 3
—=— Variational-IP top 5
+— BSODAtop 1
+— BSODA top 3
—+— BSODA top 5
—+— REFUEL top 1
—e— REFUEL top 3
—— REFUEL top 5

0 5 10 15 20
# of queries

Penn
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Accuracy-Explainability Tradeoff

Explainability is a constraint on learning. How far are we from black-

box model performance?
CIFAR-100 Accuracy Gap ImageNet . ~

ecuracy-Gap
0.8 % 0.8
r [

0.6 0.6
© ©
> >
(@} (@)
(@] Q
<0.4 <0.4
e 2
i @

0.2 0.2

— P —_ P
0.0 —— CLIP ViT-B/16 0.0 —— CLIP ViT-B/16
0 100 200 300 400 0 100 200 300

Avg. # of Queries Avg. # of Queries @ P



Interpretable Radiological Report Classification

- Task: Predict disease label in a
radiological report.

« Query set: Queries about presence or
absence of facts in a radiology report.
- Dataset: MIMIC-CXR

— Data: 227,827 reports.

— Queries are binary questions, one for
each possible fact.

— The task is to predict the disease label.
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Interpretable Radiological Report Classification

« Q1: How do we define the set of queries?

— Leverage LLMs and medical knowledge to extract 591,920 facts from
227,827 reports in the MIMIC-CXR dataset [1].

« Q2: How do we answer a query for a given input?

— Leverage LLMs and medical knowledge to verify if a fact is present in a
radiology report [2].

- Q3: How do we select the best queries to form an explanation?

— Select smallest number of facts that are sufficient for disease prediction [2]
using Variational IP [3,4].

[1] Messina, Vidal, Parra, Soto, Araujo. Extracting and Encoding: Leveraging LLMs and Medical Knowledge to Enhance Radiological Text Representation. ACL 2024.
[2] Ge, Chan, Messina, Vidal. Information Pursuit for Interpretable Classification of Chest Radiology Reports. ArXiv 2025. enn
[3] Chattopadhyay, Chan, Haeffele, Geman, Vidal. Variational Information Pursuit for Interpretable Predictions. ICLR 2023.

[4] Chattopadhyay, Chan, Vidal. Bootstrapping Variational Information Pursuit with Foundation Models for Interpretable Image Classification. ICLR 2024. UNIVERSITY of PENNSYLVANIA



Interpretable Radiological Report Classification

« Average precision (AP) and F1 score of IP-CRR on six binary

prediction tasks:

— Lung Opacity (LO), Calcification of the Aorta (CA), Support Devices(SD),
— Cardiomegaly(CM), Pleural Effusion(PE), and Pneumonia(PN).

Methods

| AP

F1

]LO CA SD CM PE PN’LO CA SD CM PE PN

CXR-BERT (FT-Last)
CXR-BERT (FT-All)
Flan-T5-large

0.900 0.361 0.969 0.864 0.945 0.449
0.984 0.992 0.970 0.964 0.962 0.641
0.527 0.073 0.445 0.380 0.616 0.190

0.829 0.223 0.912 0.789 0.887 0.449
0.987 0.991 0.978 0.982 0.953 0.541
0.663 0.139 0.321 0.543 0.754 0.299

CBM
IP-CRR

0.947 0.345 0.934 0.791 0.874 0.432

0.972 0.578 0.959 0.892 0.925 0.468

0.884 0.241 0.853 0.738 0.801 0.431
0.918 0.350 0.889 0.811 0.860 0.451
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Summary

 Information Pursuit: an interpretable-by-design prediction framework.

« Generative model: use LLMs to define queries, VLMs to answer
queries, and G-IP, V-IP, OMP to select queries and make predictions.

)

©
Input image xobs Ask a sequence of interpretable queries about x°PS
q1- Has shape perching-like? Yes
q»- Has bill shape all-purpose? Yes
q3. Has belly color yellow? Yes
q4. Has upperparts color yellow? No
qs. Has throat color yellow? No
qe- Has breast color black? Yes
q7. Has belly color olive? Yes
&

Predicted bird species

———— Green Jay with
99% probability
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Open Questions

« How to learn the queries?
— Augment VIP with dictionary learning technique to learn queries.
« How to extend framework beyond classification?

— Integrate VIP with diffusion models for explainable generations
[ICLR'25].

« How to extend sparse representation theory for interpretable Al?

— New notions of incoherence, RIP based on mutual information?

— Is uniqueness of sparse codes related to uniqueness of
explanations?

— Extensions of sparse coding to semantic dictionaries via LLMs?
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Thank you
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