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The era of scientific machine learning

Machine learning algorithms have reshaped how we approach statistical inference.
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Hurricane Milton's Path Predicted With
'Unbelievable Accuracy' —Here's Why

Updated Oct 14,2024 at 12:41 PM EDT
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By Marie Boran
Technology Reporter

weather model driven by artificial intelligence has stunned meteorologists by predicting Hurricane Milton's
landfall within 7 miles on average—outperforming traditional models by almost 100 miles.




Big data and even bigger models

nature > news feature > article

NEWS FEATURE ‘ 11 December 2024

The Al revolution is running out of
data. What canresearchers do?

Al developers are rapidly picking the Internet clean to train large language models such
as those behind ChatGPT. Here’s how they are trying to get around the problem.

By Nicola Jones

BENZINGA [ Research Y] My Stocks ’ Tools

OpenAl Co-Founder llya Sutskever Rings Alarm Bells:
Al's 'Fossil Fuel' Is Running Out As World Reaches
'Peak Data’

RUNNING OUT OF DATA

The amount of text data used to train large language models (LLMs) is rapidly
approaching a crisis point. An estimate suggests that, by 2028, developers will
be using data sets that match the amount of text that is available on the Internet.
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Scientific machine learning is data bottlenecked

Experimental or numerical data are extremely scarce in scientific applications!!!

The prevailing wisdom is to increase data efficiency by incorporating physical
priors, e.g., by leveraging symmetries, invariances, and equivariances, or applying
data augmention.
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Derivatives are the language of science and engineering

What happens if we also provide information about derivatives?

Given training data {x;, yi, y; }ic[s) minimize the empirical risk

1<
min {(y,-—fNN(x,-))2+||y,-'—wNN(x,-)||2}+A-reg(fNN).

fun:RI—=R N 4
=1
e emulators for molecular dynamics [Behler 2016]
e derivative informed neural operators [O'Leary-Roseberry et al 2024]
e predicting summary statistics for chaotic dynamical systems [Park et al 2025]

e teacher student knowledge distillation [Czarnecki et al 2017]

Behler, Jorg. “Perspective: Machine Learning Potentials for Atomistic Simulations.” The Journal of Chemical Physics.
O’Leary-Roseberry, Thomas, Peng Chen, Umberto Villa, and Omar Ghattas. “Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning.” Journal of Computational Physics.
Park, Jeongjin, Nicole Yang, and Nisha Chandramoorthy. “When Are Dynamical Systems Learned from Time Series Data Statistically Accurate?”



Sobolev Training

Dataset 20 training samples 100 training samples

Styblinski-Tang function Regular Network Sobolev Network Regular Network Sobolev Network
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Sobolev training for neural networks

WM Czarnecki, S Osindero... - Advances in neural ..., 2017 - proceedings.neurips.cc

.. In our method, we show that by using the additional knowledge of derivatives with Sobolev
Training we are able to train better models — models which achieve lower approximation ...
¢ Save DY Cite Cited by 284 Related articles All 6 versions 9

But see also “"Hermite interpolation” in numerical analysis, “Hermite learning” with RKHS, etc...



But do derivative data actually help or hurt neural networks?

Question. Should we always incorporate derivative data if you have it?
Should we always expect to get better neural networks?
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Gradients are Not All You Need Gradient is All You Need?

Luke Metz® C. Daniel Freeman® Samuel S. Schoenholz

Google Research, Brain Team Konstantin Riedl"> Timo Klock® Carina Geldhauser'® Massimo Fornasier'**
{1metz, cdfreeman, schsam}@google.com Technical University of Munich, Munich, Germany
2Munich Center for Machine Learning, Munich, Germany
Tal Kachman SDeeptech Consulting, Oslo, Norway
Radboud University “Munich Data Science Institute, Munich, Germany
Donders Institute for Brain, Cognition and Behaviour {konstantin.riedl,carina.geldhauser,massimo.fornasier}@ma.tum.de
tal.kachman@donders.ru.nl timo@deeptechconsulting.no

FYI these papers have nothing to do with Sobolev training.

Perhaps papers claiming gradients are or aren't all you need ...aren't all you need?



What is the role of over-parametrization?

In my opinion, machine learning is distinguished by the fact that

degrees of freedom(big models) > # of big data.

We are able to interpolate data, yet still achieve good generalization.
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What is the role of over-parametrization?

In my opinion, machine learning is distinguished by the fact that

degrees of freedom(big models) > # of big data.

We are able to interpolate data, yet still achieve good generalization.

Does the implicit bias underlying double descent work in concert with
derivative data?
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Setting #1: Surrogate Modeling and Double Descent

When the data come from noiseless numerical simulations—e.g., data
yi = fppe(Xx;)—why is double descent surprising?

Partial answer, from discussions with Jakob Zech: perhaps because classi-
cal we know Lebesgue constant of polynomial interpolants is high?
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Figure 15.4 from P. Petersen and J. Zech, “Mathematical theory of deep learning,” Jul. 25, 2024 http://arxiv.org/abs/2407.18384
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Setting #2: Statistical Learning and Double Descent

When data are noisy, double descent is surprising since it suggests mod-
els which interpolate noisy data—i.e., memorize the noise—achieve better
generalization.

Intuitively, the models must look like “spike4+smooth” interpolants.
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M. Haas, D. Holzmiiller, U. von Luxburg, and |. Steinwart, “Mind the spikes: Benign overfitting of kernels and neural networks in fixed
dimension,” Nov. 06, 2024, arXiv: arXiv:2305.14077. doi: 10.48550/arXiv.2305.14077.
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Setting #2: Statistical Learning and Double Descent

But if we train networks to interpolate noisy function evaluations and
also noisy derivatives, what will they look like?
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M. Haas, D. Holzmiiller, U. von Luxburg, and |. Steinwart, “Mind the spikes: Benign overfitting of kernels and neural networks in fixed
dimension,” Nov. 06, 2024, arXiv: arXiv:2305.14077. doi: 10.48550/arXiv.2305.14077.
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Interlude: Sobolev training with polynomial features

f(x) (degree=3, df/dx (degree=3,
50 observations of y) 50 observations of y)

(W) = [po(x) @1(x) o 9p(x)

Let <
W) = b)) el 0]

e.g., import numpy.polynomial.legendre,
and find the minimum norm interpolant
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wERP y V'(x)

Note: figures are similar even with noise-
less data.
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features
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50 observations of y)
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features
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Polynomials are difficult to study!

Recall if {pk(x)} are orthogonal poly-
nomials wrt i, and if f(x) = >, wkpk(x),
then

wig =3 wé = [ FGPduta)

Heuristically, with finite amount of data,
the minimum norm interpolant will con-
verge to the zero function with spikes as

p — 00.

The Legendre polynomials in previous
slides were not normalized!



Single hidden-layer random feature models

A non-trivial parametric class is single hidden-layer neural networks
f(x) = (w, J(%@TX”,
with input x ~ N(0, /) and random features © € R9¥P, where ©.; ~ N(0, Iy).

We take the proportional asymptotics limit d,n,p — oo with @« = n/p and
v = d/p fixed. (These limits do not commute!).

RP

Architecture

d = input dim

n = training pts
p = num features

c(®" )
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A massive simplification of neural networks in practice

The pre-activation features © are fixed during training. Random feature [RR08]
and neural tangent kernels [JGH18]| fall in the “lazy-learning regime” since

0 T
s ful) = o(=07%)  ~0(1)
Vofy,(x) = iXJ’(QTX) ~ O(d_l/z),

Vd

21



A massive simplification of neural networks in practice

The pre-activation features © are fixed during training. Random feature [RR08]
and neural tangent kernels [JGH18]| fall in the “lazy-learning regime” since

a T
87f w(Xx) = 0(79 X) ~ 0(1),
vt = L7 006

so gradient descent with step size n ~ O(1/v/d)
W = W =0 fu(x)
oU+D) = 9t) — 9y, (x)
does not meaningfully change |©|r (although ||©||o, can change! [BES22]).
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Non-rigorous theoretical predictions

The assumption of proportional asymptotics—big models, big data, and big inputs—is what
makes theory possible (22, cirt20, Hi20).

With linear asymptotics a = n/p and v = d/p, everything becomes essentially Gaussian:
this builds on the work of El Karoui, and Pennington and Worah.

* N. E. Karoui, “The spectrum of kernel random matrices,”

* J. Pennington and P. Worah, “Nonlinear random matrix theory for deep learning”

* S. Mei and A. Montanari, “The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve”

* S. Goldt, B. Loureiro, G. Reeves, F. Krzakala, M. Mézard, and L. Zdeborova, “The Gaussian equivalence of generative models for learning with shallow neural networks".

* H. Huand Y. M. Lu, “Universality Laws for High-Dimensional Learning with Random Features.”
23
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Non-rigorous theoretical predictions

The assumption of proportional asymptotics—big models, big data, and big inputs—is what
makes theory possible (22, cirt20 i,

With linear asymptotics & = n/p and v = d/p, everything becomes essentially Gaussian:
this builds on the work of El Karoui, and Pennington and Worah.

Further assuming the manifold hypothesis—here, data drawn a single-index teacher y =
©({0o, x)) with 6y ~ N(0, & /)—then replica method from statistical physics yields non-

rigorous theoretical error predictions.

To obtain a fully asymptotic description, the calculations require relatively modern tools
from RMT, e.g., operator valued free probability and Stiejes transforms zs. These asymp-
totics kick in remarkably quickly.

* N. E. Karoui, “The spectrum of kernel random matrices,”

* J. Pennington and P. Worah, “Nonlinear random matrix theory for deep learning”

* S. Mei and A. Montanari, “The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve”

* S. Goldt, B. Loureiro, G. Reeves, F. Krzakala, M. Mézard, and L. Zdeborova, “The Gaussian equivalence of generative models for learning with shallow neural networks".

* H. Huand Y. M. Lu, “Universality Laws for High-Dimensional Learning with Random Features.”
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Theoretical predictions for standard L2 training

A=1.0,A =00, F =10, a/y =n/d = 2.345, 0 = ReLU,

A=0.01, A =00, Ff = 1.0, a/y = n/d = 2.345, ¢ = ReLU,

A=0.0001, A =00, F? = 1.0, a/v = n/d = 2.345, & = ReLU,

0.200 O = iid_gauss, ¢ = reci-cosh, Additive Normal Noise 0.200 B = iid_gauss, ¢ = reci-cosh, Additive Normal Noise 0.8 6 = iid_ganss, ¢ = reci-cosh, Additive Normal Noise
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a” =p/n al=p/n 1
a~t=p/n

(a) Regularization A = 10°, iid Gaussian features (c) Regularization A = 1072, iid Gaussian features

(e) Regularization A = 10™*, iid Gaussian features
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Theoretical predictions

for standard L2 training

A=1.0, A=02, Ff = 1.0, a/y = n/d = 2.315, o = sign,
B = ortho, ¢ = arctan, Additive Normal Noise

A=001, A=02 F =10, afy = n/d = 2.345, o = sign,

B = ortho, ¢ = arctan, Additive Normal Noise

A=0.0001, A=10.2, Ff = 1.0, afy =n/d = 2.345, ¢ = sign,

B = ortho. ¢ = arctan. Additive Normal Noise

1.0
Etrain (theory) Etrain (theory) = Eirain (theory)
Egen {th[.‘(]r}’) Egen {th(_\()r}r) Egen {th(!()l’y)
Strain {B(I(l d = 50) Etrain {I\IC:. d —_ 50) 08 7 Etrain (B‘I(j' d = 50)
fgen (MC, d = 50) cgen (MC, d = 50) Egen (MC, d = 50)
056 Etrain {Mfl d = 100) 056 Eirain (MC, d = 100) 06 Errain (MC, d = 50)
gen (MC, d = 100) cgen (MC, d = 100) : £gen (MC. d = 50)
[ e} Wy
0.4 1 0.4 1 0.4 1
0.2 -\ 0.2 1 0.2-
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(a) Regularization A = 10°, activation o = sgn (c) Regularization A = 10~ 2, activation o = sgn

(e) Regularization A = 107%, activation o = sgn

Mei and Montanari showed that there are instances where it is preferable to
over-parametrized and over-fit the noise to get better generalization.
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Sobolev training with random feature models

In order to apply the replica method to study Sobolev training, we must must
project gradient data onto low-dimensional subspaces.

This was already described in Czarnecki et al., and commonly done in contem-
porary Sobolev training, see e.g. derivative informed neural operators (DINO).

A potential concern is that this optimisation might be expensive when either the output dimensionality
of f or the order K are high, however one can reduce this cost through stochastic approximations.
Specifically, if f is a multivariate function, instead of a vector gradient, one ends up with a full
Jacobian matrix which can be large. To avoid adding computational complexity to the training
process, one can use an efficient, stochastic version of Sobolev Training: instead of computing a full
Jacobian/Hessian, one just computes its projection onto a random vector (a direct application of a
known estimation trick [19]). In practice, this means that during training we have a random variable
v sampled uniformly from the unit sphere, and we match these random projections instead:

N

Z L(m(x;]0), f(x;) —|—ZIEUJ  ((Dim(z;]0),v7 ), (DL f(z:),v"))]| - (2)

=1

28



Sobolev training with random feature models

Taking Vi € R9 with unit columns V) ~ N(0, £1/4) and minimizing

n

HY . 1
L~ fim mln—Z{(yf—fw(x,->)2+ZHvJ (y,-'—vxfw(x,-))uz}+A||w||2
k

d,n,p—oo0 weRP N

=1

results in a mismatch in scales. Note kK € N s fixed.
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Sobolev training with random feature models

Taking Vi € RY with unit columns V, ~ N(0, %ld) and minimizing

HY . 1
L~ fim mm—Z{(y;—fw(x,-»%ZHvJ (y,-'—vxfw(x,-))uz}+Auw||2
k

d,n,p—oco welRP N

=1

results in a mismatch in scales. Note kK € N is fixed.
If g ~ N(0, $14) and x ~ N(0, I4), then

y = @((0o,x)) = Oq4(1) ,

whereas
Vil vl = Vil 0o - ¢ ({80, x)) ~ O4(d*/?),

meaning asymptotically you “never see the gradients.”
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Trivial universality with wrong gradient scaling

—==- non-sobo theoretical

A=1e—07, A=00, F{ =1.0,n/d=0.75,k =1 A=1e—07, A=00, F2 =10, n/d =075k =1
8 g=cerf. O = iid,gzlnllss, ¢ = arctan, Additive Normal Noise, Grad Aligned False o = erf, © = iid_gauss, ¢ = arctan, Additive Normal Noise, Grad Aligned False
|
I -
_ I
7 i egenr2 (d = 500)
I
6 : : ¢ Egen L2 (d = 1000)
|
: : —— ggen,LQ (d = 2000)
1
1
1

5
4 w

3]

9 -

14

0+ : : I ik i — !

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.0 4.0

p/n
(a) k =1, Lo generalization (b) k=1, Hy generalization
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Gradient projection model

Instead, we must consider Vj ~ A(0, /) so that |Vi| = O(v/d) and

n

HX . 1
S~ lim mm—z{(yf—fw(x,-))%vaJ (y,-'—vxfw(x,-))uz}ww||2.
k

d,n,p—oco welRP N

=1

(Aside: can also consider informed gradient projection.)
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Gradient projection model

Instead, we must consider Vj ~ A(0, /) so that |Vi| = O(v/d) and

n

HX . 1
S~ lim mm—Z{(yf—fw(x,-))%vaJ (y;—vxfw(x,-))uz}ww||2.
k

d,n,p—oco welRP N

=1

(Aside: can also consider informed gradient projection.)

However, unlike Ly training, the generalization and training error do not
converge, but are random variables depending the alighment between the
teacher vector and the gradient projection

Wi - — VkTQ() ~ N(O, 1).
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k=1 dimensional subspace projections

A=1le— 07, A=00, F? = 1.0, n/d = 2.345, k = 1 A=le—07, A=00,FF =10, n/d =235 k=1
o = erf, © = iid_gauss, ¢ = arctan, Additive Normal Noise o = erf, © = iid-gauss, ‘?3 = arctan, :Addltwe Normal Noise
0.6 Vi ~ Gaussian GradmAlig;ned False 5 V). ~ Gaussian, Grad Aligned False
. . 1

-—-- non-sobo theoretical
€gen,L2 (d = 100)
d = 500)

(a) k =1, L2 generalization (b) k = 1, Hy generalization

The phase transition shifts when you add derivative data!
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k=2 dimensional subspace projections

A=1e—07, A=00, F£=1.0,n/d=2345 k=2
o = erf, © = iid_gauss, ¢ = arctan, Additive Normal Noise
V3. ~ Gaussian, Grad Aligned False

0.6

0.5

041 %

w (0.3 1

0.2 1

0.1 1

1Til
—==- non-sobo theoretical

i

1

1

E —#— cyen12 (d =100)
ll Egen,L2 (d = 500)
': —¥— cgenr2 (d = 1000)
: + Egen,L2 (d = 2000)

T
——
T ——
e ——— —

0.0
0.0

The phase transition shifts to p/n=k+1 when you add more derivative data...

(c) k = 2, Ly generalization

A=1e—07, A=00, Ff =1.0,n/d =2.345, k=2
o = erf, © = iid_gauss, ¢ = arctan, Additive Normal Noise
V), ~ Gaussian, Grad Aligned False

5 I gen ¥ (d 100 )
gen ¥ (d =20 ) ‘
_*_ gen Hk (d = 100 ) f
11— ey (d=2000) "
3- : |
\
l"l l
i - "4
I i
sl A I
11 vy ol S [\ \
" gt e
Y : T ol
sy o I
0 T T T T T T I T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(d) k£ =2, Hy generalization
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Error distribution with respect to alighnment ©

A=1le—06, A =00 k=1 at fixed ratio p/n = 0.5

0.8

0.275 x d= 1000 4
x
x
= y g theo
£ 0.250 o 2061,
o o
R=| * = %
Ik 0.22 E " %
£ 0225 £ 04 ' S
3 o %
= 0.200 2 J
= 0.2 o *
B |
0.175
x
0.5 ]
"
X
0.12 1 0.4
& Z 034 % o
+ K x :—. ) "4
=~ 0.10 ’85“*’;5( S 3 P
s - TR
: e “[e
. o g
o ﬁ“."'--———4"'a""’
0.08 4 Ry
—3 —2 ~1 0 1 2 3 —3 —2 —1 0 1 2 3

g

The errors behave quadratically with respect to w, i.e., the distribution is X2'
distributed = more alignment is worse?

Although this is non-standard, we can compute this with the replica method.

36



Normalizing by computational cost

A=le—06,A =00 n/d=2345 L =1 A=1le—06,A =00 n/d=2345 k=1
o= erf, B = nd_gauss, ¢ = arctan, Additive Normal Noise o = erf, B = nd_gauss, ¢ = arctan, Additive Normal Noise
1.0 Vi ~ Gaussian, 1.0 Vi ~ Ganssian,
. : | | |
Sobo (k=1) sSobo (B =1)
Lo with 2n data Lo with 2n data (d = 500)
0.5 0.8
0.6 1 0.6 1
0.4 1 0.4 1
0.2 1 0.2 1 -
0.0 T T T T T T T 0.0 T T T T T T T
0.0 0.5 1.0 L5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 L5 2.0 2.5 3.0 3.5 4.0
p/n pin

Perhaps a fairer comparison is the normalize by model cost.
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Effect of noise on function and gradient data

k -
¢°, ¢ = arctan, A = le~S H{, ¢ = arctan, A = le~®
20 r -

15

05

0'0 1 1 1 1 1 1 1 0

3
p/n

In spite of noisy data, it can be beneficial to memorize the noise.

Our analysis also shows that correlation in noise doesn’'t matter.
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The main technical tools

The key technical idea is the Gaussian Equivalence Theorem, building on
the seminal works of El Karoui (2010) and Pennington and Worah (2017).

Morally speaking, in the proportional asymptotics limit, single hidden-layer
networks “look jointly Gaussian” with

( <90,X> )i( (90,X> )
w*o (0 x) ko(w*, 1,) + k1(w*, @ x) + k.1 |

where ;7 ~ N(0,1), ko = E,lc(n)], k1 = En[a’(n)], and Ky = En[02(77)] —

K — K1
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Formal Sketch of Calculations

Defining w = (fp, x), we can then write

Sgen = Exympuna (Y = fio= (X))°] = Eu punr((0.006) 7 5) [(0(w) = §)°],
evaluated at the optimal readout weights
w* = (k2X'OTOX + 2Ny .

The generalization error has a closed form asymptotic formulae related to the
Stieljes/Cauchy transform describing the limiting eigenvalue distribution of
the random matrix © ' © [DW18,MM?20].
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Replica setup for Sobolev training

Define the Hermite coefficients of the activation function o and its derivative o’

=E[0(¢)], i =E[o(¢)], 2 =E[o(&)?] - rd— r}
=E[0'(©)] =r, s =E[E©O], ()’ =E|(@"©)] - xo) - (x1)*.

After applying the Gaussian equivalence theorem and replica symmetry, the remaining statistical degrees
of freedom are

S = Ko (W*, 1p)
Sh = Ii’o V,(T@w*
fa = K1 (0o, OW™)
f = k] V, ©diag(w*)0 ",
) Yot qa = (w", Moow™)
da = (w* Moo (w*)")
Yo+ qp =V, Odiag(w*)Moiw*
@ =V, Odiag(w)Mo (w")
Y.+ g =V, Odiag(w*)Mdiag(w*)O ' Vi
qc = V! ©diag(w* )My diag((w*))O T Vi
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The replica symmetric fixed saddle point system

For simplicity take kK = 1. The core fixed point equation one needs to solve is

—1
V,= lim tr( a)\l +V,0Te+V, DCGT@DC) eTe)

d,n,p—oo P
—1
Ve = lim —tr( aX + V,070 + V.D:6 @DC) DC@T@DC)
d,n,p—oco P
with \73 — 1fVa and V. = 1+V , and where © and D, are Gaussian random matri-

CesS.

The RHS are rational functions of Gaussian matrices — should have asymptotic for-
mula using tools from operator-valued free probability! [FOBS06, AP20] Please
talk to me later if you have expertise in this!
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Conclusions

Main Takeaway: It's unclear how massively over-parametrization neural net-
works benefit from incorporating physical priors—here, derivative data.
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Conclusions

Main Takeaway: It's unclear how massively over-parametrization neural net-
works benefit from incorporating physical priors—here, derivative data.

e the replica method provides one approach to systematically analyze the be-
haviour of Sobolev training for random feature models.

e providing gradient data does not necessarily improve generalization for RFM!
e In general, the higher the alignment =, the worse the errors are.

e perhaps surprisingly, there are still regimes in which it is preferable to mem-
orize both function and gradient noise to generalize better.
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Next steps to investigate

Question: Do | actually believe that gradients help or hurt in practice?

Answer: | think it honestly really depends on the problem!

e random features cannot beat the best /inear approximation [MMM21,GMMM21]

e deep Gaussian equivalence theorem exists, but | don't believe this meaningfully
changes any conclusions [CTBB25]

e neurals are useful because they achieve feature learning

e recent work studies the models with (multiple) “large gradient steps” [BES™ 22,
CPD*24, DPC*24]

Thanks for your attention, enjoy the summer! 7= 7 7
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Inserting saddle point equations just to advertise ideas

b= lim K [( ]].p>] which can be found by solving the following 5-dimensional system of saddle-point equations, instead
d,n,p—o0 limits directly:
1 (V.= -L[1-— —
¢gs = — lim E “]@wH ] ) msu[q o (=) 2 g 2
Y d,n,p—roo %= [1 =229, (=2) + %9, (=2)] — oxfeye; (7290 (2) + 2%, (=2)]
{m=g[1=zgu(=2)],
= lim K { w ]
qu =, lim B[] Vom oo [E - 1420 (-2)]
1 0 =ty [~ 120 (9] -l oo (00 + 20 (2]
m=— lim EJ[{6y,Ow)],
ﬁ d,n,p— oo
s, where the auxiliary variables with hats are defined as
~ — \2
ak? ~ _ . ~ —m
(V, = v e Jz ZIP) (y;ma,0%) - (1= Om, 05 (y3m2,03)) dy] | m (y; mg,ag) — arg min {E(y —7) + g 2022) }
yeR 2

ds = f;{;lz]Eg UR Z[P (ya m1701) (?j (yam270-2) mQ) dy] )

m = O"“]Eg URale P] (y;ml, ) ( (y;mg,ag) — mg) dy] |

Vw - %Ef [IR (yumlya%) ’ (]- - angg (y7m270-2)) dy}
(

Guw = ]Eg URZ[P ( ath%) Uy (Z/;mQ,U%) —?712) dy] -

Z[P] (y;ma,07) = Epn(myo?) [Py @]

1

N

\
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Interlude: Sobolev training with polynomial features

f(x) (degree=10,
10 observations of y)

1
-1.0

1 1 1 1
-0.5 0.0 0.5 1.0

f(x) (degree=10,
10 observations of y and y')

1
-1.0

1 1 1 1
-0.5 0.0 0.5 1.0

df/dx (degree=10,
10 observations of y)

1 1 1 1
-0.5 0.0 0.5 1.0

df/dx (degree=10,
10 observations of y and y')

-1.0 -0.5 0.0 0.5 1.0

SOP(X)]
w,’o(X)}

(W(x) = [po(x) @1(x)

Let <
W) = [eh() ei(x)

and find the minimum norm interpolant
Y\ _ [V(x)
o (1) = () w

Note: figures are similar even with noise-
less data.

min ||w||
weRP
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Interlude: Sobolev training with polynomial features

f(x) (degree=20, df/dx (degree=20,
10 observations of y) 10 observations of y) (
. . , U(x) = [¢o(x) e1(x) - ep(x)]
Let {
| /\/41 | \w,(X) - [%(X) P1x) cp;,(x)}

! and find the minimum norm interpolant

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 \Ij
f(x) (degree=20, df/dx (degree=20, min H WH 2 S.L. 3 \U’( ) w
10 observations of y and y') 10 observations of y and y') wERP y X

/\/ Note: figures are similar even with noise-
ol ol less data.

1 1 1 1 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
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Interlude: Sobolev training with polynomial features

f(x) (degree=300,
10 observations of y)

1
-1.0

1
-0.5

f(x) (degree=300,
10 observations of y and y')

1
0.0

1
0.5

1
1.0

1
-1.0

1
-0.5

1
0.0

1
0.5

1
1.0

df/dx (degree=300,
10 observations of y)

*h

r M_ M‘W

- -0.5

\

df/dx (degree=300,

10 observations of y and y')

w
¥ n_ NHM‘W

F

J
\

(W) = [po(x) @1(x) o pp(x)
W) = [eh() @) (o)

Let {

and find the minimum norm interpolant
y (x)
I‘Télﬂlgp HWH2 s.t. (y/) (\U (X))

Note: figures are similar even with noise-
less data.
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Interlude: Sobolev training with polynomial features

f(x) (degree=300,
10 observations of y)

1
-1.0

1
-0.5

f(x) (degree=300,
10 observations of y and y')

1
0.0

1
0.5

1
1.0

1
-1.0

1
-0.5

1
0.0

1
0.5

1
1.0

df/dx (degree=300,
10 observations of y)

*h

r M_ M‘W

- -0.5

\

df/dx (degree=300,

10 observations of y and y')

w
¥ n_ NHM‘W

F

J
\

(W) = [po(x) @1(x) o pp(x)
W) = [eh() @) (o)

Let {

and find the minimum norm interpolant
y (x)
I‘Télﬂlgp HWH2 s.t. (y/) (\U (X))

Note: figures are similar even with noise-
less data.
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