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The era of scientific machine learning
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Big data and even bigger models
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Scientific machine learning is data bottlenecked
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Derivatives are the language of science and engineering
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Behler, Jörg. “Perspective: Machine Learning Potentials for Atomistic Simulations.” The Journal of Chemical Physics.
O’Leary-Roseberry, Thomas, Peng Chen, Umberto Villa, and Omar Ghattas. “Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning.” Journal of Computational Physics.
Park, Jeongjin, Nicole Yang, and Nisha Chandramoorthy. “When Are Dynamical Systems Learned from Time Series Data Statistically Accurate?”



Sobolev Training
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But see also “Hermite interpolation” in numerical analysis, “Hermite learning” with RKHS, etc…



But do derivative data actually help or hurt neural networks?
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But do derivative data actually help or hurt neural networks?
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What is the role of over-parametrization?
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What is the role of over-parametrization?
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Setting #1: Surrogate Modeling and Double Descent
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Figure 15.4 from P. Petersen and J. Zech, “Mathematical theory of deep learning,” Jul. 25, 2024 http://arxiv.org/abs/2407.18384

http://arxiv.org/abs/2407.18384


Setting #2: Statistical Learning and Double Descent
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M. Haas, D. Holzmüller, U. von Luxburg, and I. Steinwart, “Mind the spikes: Benign overfitting of kernels and neural networks in fixed 
dimension,” Nov. 06, 2024, arXiv: arXiv:2305.14077. doi: 10.48550/arXiv.2305.14077.
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features
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Single hidden-layer random feature models
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A massive simplification of neural networks in practice
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Non-rigorous theoretical predictions
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• N. E. Karoui, “The spectrum of kernel random matrices,” 
• J. Pennington and P. Worah, “Nonlinear random matrix theory for deep learning”
• S. Mei and A. Montanari, “The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve”
• S. Goldt, B. Loureiro, G. Reeves, F. Krzakala, M. Mézard, and L. Zdeborová, “The Gaussian equivalence of generative models for learning with shallow neural networks”.
• H. Hu and Y. M. Lu, “Universality Laws for High-Dimensional Learning with Random Features.”
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Theoretical predictions for standard L2 training
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Theoretical predictions for standard L2 training
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Mei and Montanari showed that there are instances where it is preferable to 
over-parametrized and over-fit the noise to get better generalization.



Sobolev training with random feature models
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Sobolev training with random feature models
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Sobolev training with random feature models
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Trivial universality with wrong gradient scaling
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Gradient projection model
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Gradient projection model
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k=1 dimensional subspace projections
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The phase transition shifts when you add derivative data!



k=2 dimensional subspace projections
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The phase transition shifts to p/n=k+1 when you add more derivative data...



Error distribution with respect to alignment ϖ
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Normalizing by computational cost
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Effect of noise on function and gradient data
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The main technical tools
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Formal Sketch of Calculations
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Replica setup for Sobolev training
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The replica symmetric fixed saddle point system
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Conclusions
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Conclusions
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Next steps to investigate
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Thanks for your attention, enjoy the summer!  



End

46



Inserting saddle point equations just to advertise ideas
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Interlude: Sobolev training with polynomial features
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Interlude: Sobolev training with polynomial features

51


	Default Section
	Slide 1: Over-Parametrized Neural Networks and Sobolev Training
	Slide 2
	Slide 3: The era of scientific machine learning
	Slide 4: Big data and even bigger models
	Slide 5: Scientific machine learning is data bottlenecked
	Slide 6: Derivatives are the language of science and engineering
	Slide 7: Sobolev Training
	Slide 8: But do derivative data actually help or hurt neural networks?
	Slide 9: But do derivative data actually help or hurt neural networks?
	Slide 10: What is the role of over-parametrization?
	Slide 11: What is the role of over-parametrization?
	Slide 12: Setting #1: Surrogate Modeling and Double Descent
	Slide 13: Setting #2: Statistical Learning and Double Descent
	Slide 14: Setting #2: Statistical Learning and Double Descent
	Slide 15: Interlude: Sobolev training with polynomial features
	Slide 16: Interlude: Sobolev training with polynomial features
	Slide 17: Interlude: Sobolev training with polynomial features
	Slide 18: Interlude: Sobolev training with polynomial features
	Slide 19: Interlude: Sobolev training with polynomial features
	Slide 20: Single hidden-layer random feature models
	Slide 21: A massive simplification of neural networks in practice
	Slide 22: A massive simplification of neural networks in practice
	Slide 23: Non-rigorous theoretical predictions
	Slide 24: Non-rigorous theoretical predictions
	Slide 25: Non-rigorous theoretical predictions
	Slide 26: Theoretical predictions for standard L2 training
	Slide 27: Theoretical predictions for standard L2 training
	Slide 28: Sobolev training with random feature models
	Slide 29: Sobolev training with random feature models
	Slide 30: Sobolev training with random feature models
	Slide 31: Trivial universality with wrong gradient scaling
	Slide 32: Gradient projection model
	Slide 33: Gradient projection model
	Slide 34: k=1 dimensional subspace projections
	Slide 35: k=2 dimensional subspace projections
	Slide 36: Error distribution with respect to alignment ϖ
	Slide 37: Normalizing by computational cost
	Slide 38: Effect of noise on function and gradient data
	Slide 39: The main technical tools
	Slide 40: Formal Sketch of Calculations
	Slide 41: Replica setup for Sobolev training
	Slide 42: The replica symmetric fixed saddle point system
	Slide 43: Conclusions
	Slide 44: Conclusions
	Slide 45: Next steps to investigate
	Slide 46: End
	Slide 47: Inserting saddle point equations just to advertise ideas
	Slide 48: Interlude: Sobolev training with polynomial features
	Slide 49: Interlude: Sobolev training with polynomial features
	Slide 50: Interlude: Sobolev training with polynomial features
	Slide 51: Interlude: Sobolev training with polynomial features


