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PD: Stochastic systems and sample trajectories

Stochastic process X (t;µ) over domain X ⊆ Rd

• Time t ∈ T ⊂ R

• Parameter µ ∈ D ⊆ Rd′

Realization of sample trajectory for µ ∈ D

Xi (t1;µ),Xi (t2;µ), . . . ,Xi (tnt ;µ) ⊂ X

Data in form of sample trajectories

X = {Xi (tk ;µj) | i = 1, . . . , nx , k = 1, . . . , nt , j = 1, . . . , nµ} ⊂ X

Goal is rapidly predicting behavior of stochastic process at new parameters µ
5 / 38



PD: Learning DEs from data
Fit right-hand side b of differential equations to data from process X

d
dt

x(t;µ) = b(t, x(t;µ);µ)

Example: Particle moving in potential with friction and stochastic forcing
• Potential

ϕ(x) =
1
2
x2 − µ

4
x4

• Collect sample trajectories and fit
bθ : X → X via mean-squared loss as is
common in, e.g., dynamic mode
decomposition, operator inference, operator
learning [Rowley et al., 2009], [Schmid, 2010], [Tu et al., 2014],

[Williams et al., 2015], [P., Willcox, 2016], [Qian et al., 2020], [Lu et

al., 2021], [Kovachki et al., 2023]

• Training with mean-squared loss collapses
learned models to conditional expectation
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PD: Learning SDEs from data

Describe dynamics of X via stochastic differential equations

dX (t;µ) = b(t,X (t;µ);µ)dt + σ(t;µ)dWt

Learn drift b to match the sample trajectories
• Neural ordinary differential equations (NODEs)

and other methods for stochastic systems [Chen et

al., 2018], [Dupont et al., 2019], [Li et al., 2020], [Kidger et al., 2021], [Salvi

et al., 2022], [Chen, Xiu, 2024], ...

• Model reduction when drift term is known [Benner,

Redmann, 2015], [Redmann, Freitag, 2018], [Freitag, Nicolaus, Redmann,

2024] ...

• Parametric inference [Kloeden, Platen, 1992], [Sorensen, 2009],

... and (discrete) Markov process inference [Murphy,

2012], ...

7 / 38



PD: Population dynamics

Samples of X (t;µ) follow law ρ(t, ·;µ) : X → R≥0 over
time t and parameter µ

• X (t, µ) are samples from ρ(t, ·;µ)

• Dynamics of ρ(t, ·;µ) over time t are the
population dynamics

Sample versus population dynamics
• Sufficient for generating samples from ρ

• Fluid with constant density: Samples
complicated, population dynamics constant

• Chaotic/turbulent systems with smooth
population dynamics

• Have population dynamics for deterministic and
stochastic systems
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PD: Generative modeling with conditioning on time

ρ(0, ·;µ)

ρ(T , ·;µ)

ρ(t, ·; ·)

denoising
diffusion

N0,Id

flow-based
modeling

Standard generative modeling learns population dynamics via conditioning
• Denoising diffusion modeling: learn dynamics from Gaussian to target [Sohl-Dickstein et al., 2015], [Song et

al, 2021], ...

• Flow-based modeling: learn dynamics between reference and target distribution [Albergo et al., 2023],

[Lipman et al., 2023], ...

⇝ requires one costly inference step per physical time step

Other works often require parametrizing density or simulations [Tong et al., 2020], [Bunne et al., 2022]
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PD: Inferring population dynamics from sample trajectories

population
dynamics (ours)

ρ(0, ·;µ)

ρ(T , ·;µ)

We aim to learn an approximation of the dynamics of ρ over time t

• Avoids conditioning on t for faster inference; one inference step gives one trajectory

• No need to learn the density function ρ, just its dynamics

• Builds on known loss functions but their empirical estimation has been challenging
[Berman, Blickhan, P., NeurIPS, 2024.], [Blickhan, Berman, Stuart, P., upcoming]
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Cont: Continuity equation describes population dynamics

Consider the (unknown) governing SDE of X (t) as

dX (t) = b(t,X (t))dt + σ(t)dWt

Continuity equation gives (population) dynamics of law X (t) ∼ ρ(t, ·)

∂tρ(t, x) = −∇ · (ρ(t, x)v(t, x)) , for all x ∈ X , t ∈ [0,T ]

Vector field v of continuity equation can be derived from SDE as

v(t, x) = b(t, x)− σ(t)2

2
∇ log ρ(t, x)

But there are many vector fields v that lead to the same population dynamics
• E.g., adding divergence-free field w/ρ with ∇ · w = 0 leaves dynamics of ρ unchanged

• Different to the SDE, where changing the drift/diffusion lead to other sample dynamics
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Cont: Vector field for sample generation
Given a vector field v̂ that is compatible so that the population dynamics are given by

∂tρ(t, x) = −∇ · (ρ(t, x)v̂(t, x))

Generate new samples X̂ (t, x) ∼ ρ(t, ·) using
ODE/SDE formulation

dX̂ (t) = v̂(t, X̂ (t))dt

+ σ(t)dWt

• New samples X̂ (t) follow the same law
ρ(t, ·)

• But sample trajectories can be starkly
different to sample trajectories of original
SDE with drift b
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Cont: Vector fields with minimal kinetic energy
Aim to find the vector field that minimizes the kinetic energy

Et(v) = Ex∼ρ(t,·)

[
1
2
|v(t, x)|2

]
Minimizes the average energy (“movement”) of samples

minimal kinetic energy other vector field
14 / 38



Cont: Dynamic transport
Optimization problem [Benamou, Brenier, 2000]

min
v

∫ T

0
Ex∼ρ(t,·)

[
1
2
|v |2

]
dt such that ∂tρ+∇ · (ρv) = 0

Formulation with Lagrange multiplier shows that optimum has to be gradient field

v = ∇s

Sufficient to seek gradient field s : T × X → R with v = ∇s that solves

min
s

∫ T

0
Ex∼ρ(t,·)

[
1
2
|∇s|2

]
−
∫
X
∂tρ s dx dt

• Not a loss because depends on ∂tρ, which is unavailable if only sample trajectories given

• Trying to directly turn this objective into a loss (action matching [Neklyudov et al., 2023]) can lead to
unstable loss functions [Blickhan, Berman, P., 2024]
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Cont: Deriving loss via integration by parts
Recall: Sufficient to seek gradient field s : T × X → R with v = ∇s that solves

min
s

∫ T

0
Ex∼ρ(t,·)

[
1
2
|∇s|2

]
−
∫
X
∂tρ s dx dt

Integration by parts leads to the action-matching loss [Neklyudov et al., 2023]

LAM(ŝ) =

∫ T

0
Ex∼ρ(t,·)

[
1
2
|∇ŝ(t, x)|2 + ∂ts(t, x)

]
dt − Ex∼ρ(t,·)[ŝ(t, x)]

∣∣∣∣t=T

t=0

• Moved time derivative from ρ to s

• This is a loss function because all terms can be estimated from samples

Controls the error ∫ T

0

1
2
∥∇ŝ(t, ·)−∇s(t, ·)∥L2(ρ(t))dt = LAM(ŝ) + c(s)

Various loss functions of this type have been derived in the literature [Neklyudov et al., 2023], [Lavenant et al.,

2024], [Berman, Blickhan, P., 2024]; also [Otto, Villani, 2000], [Reich, 2010]
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Cont: Discretization matters
Discretize in time (naively):

L̂AM(ŝ) =
nt∑
i=1

wiEx∼ρ(ti ,·)

[
1
2
|∇ŝ(ti , x)|2 + ∂t ŝ(ti , x)

]
− Ex∼ρ(t,·) [ŝ(t, x)]

∣∣∣∣t=T

t=0

• Quadrature rule given by weights wi and time points ti for i = 1, . . . , nt

• Typically, just Monte Carlo with wi = T/nt and ti uniform in [0,T ] used [Neklyudov et al., 2023]

Discrete empirical AM loss violates key invariance to space-constant functions f : [0,T ] → R

L̂AM(ŝ + f ) = L̂AM(ŝ) +
T

nt

∑
i

∂t f (ti )− f (T ) + f (0)︸ ︷︷ ︸
residual term due to time discretization

Unstable training: The residual term can grow and change during training so that
(t, x) 7→ ŝ(t, x) + f (t) becomes arbitrarily rough, which amplifies the residual term again

[Berman, Blickhan, P., Parametric model reduction of mean-field and stochastic systems via higher-order action matching, NeurIPS 2024.]
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Cont: Experiment on toy example

1 5000 10000 15000 20000

optimizer iteration

10−5

10−3

10−1

101

103

A
M

lo
ss

(a
b
so
lu
te

va
lu
e)

1Set X (t) ∼ N (0, 10−2) so that ρ(t) remains constant over time t

• At about 5000 iterations, the action matching loss starts to explode

• Optimizer found an f with sharp kink in t 7→ E[∂t(s + f )] ⇝ large time integration error
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DICE: Discretize time first: Weak form in discrete time

We only have data at discrete time points 0 = t0 < t1 < · · · < tK = T

Xi (t0) ∼ ρ(t0), . . . ,Xi (tK ) ∼ ρ(tK ) , i = 1, . . . , nx

Consider the weak form of the continuity equation at the discrete time points

d
dt

Ex∼ρ(tj )[φ(x)] = Ex∼ρ(tj )[∇s(tj , x) · ∇φ(x)] , ∀φ , j = 0, . . . ,K

Formulate discrete-time weak form with central finite-difference approximations δ̂j

E[φ(x)δ̂jρ(tj)] = Ex∼ρ(tj )[∇ŝ(tj , x) · ∇φ(x)] , ∀φ , j = 0, . . . ,K

Goal is now finding a loss that has discrete-time weak form as Euler-Lagrange equations

[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]
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E[φ(x)δ̂jρ(tj)] = Ex∼ρ(tj )[∇ŝ(tj , x) · ∇φ(x)] , ∀φ , j = 0, . . . ,K

Goal is now finding a loss that has discrete-time weak form as Euler-Lagrange equations

[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]

20 / 38



DICE: Discretize time first: Weak form in discrete time

We only have data at discrete time points 0 = t0 < t1 < · · · < tK = T

Xi (t0) ∼ ρ(t0), . . . ,Xi (tK ) ∼ ρ(tK ) , i = 1, . . . , nx

Consider the weak form of the continuity equation at the discrete time points

d
dt

Ex∼ρ(tj )[φ(x)] = Ex∼ρ(tj )[∇s(tj , x) · ∇φ(x)] , ∀φ , j = 0, . . . ,K

Formulate discrete-time weak form with central finite-difference approximations δ̂j
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DICE: Loss with minimizers satisfying discrete weak form
Define sequence of problems that are coupled via source term

min
ŝj∈Sj

∥∇ŝj∥L2(ρ(tj )) − ⟨δ̂jρ(tj), ŝj⟩L2(dx) , j = 0, . . . ,K

over spaces Sj = {s ∈ L2(ρ(tj)) | ∇s ∈ L2(ρ(tj))}

Lead to loss EK : S0 × · · · × SK → R with

EK (s̄) = ∥∇s̄∥L2(ρ(t0)···ρ(tK )) − ⟨ρ̄, s̄⟩L2(dx···dx)

• Vector of functions s̄ = [ŝ0, . . . , ŝK ] ∈ S0 × · · · × SK

• Inner product

⟨s̄, w̄⟩L2(ρ(t0)···ρ(tK )) =
K∑
j=0

∫
X

tj+1 − tj−1

2
ŝj(x)ŵj(x)ρ(tj)dx

Minimizers s̄∗ of EK solve the time-discrete weak form of the continuity equation
[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]
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DICE: The DICE loss function
Consider extension of S0 × · · · × SK over time interval [0,T ] as

S = {s : [0,T ]×X → R | s(tj , ·) ∈ Sj for j = 0, . . . ,K}

A function ŝ∗ ∈ S that minimizes the discrete inverse continuity equation (DICE) loss

LDICE(ŝ) =
K∑
j=1

(
tj − tj−1

2

(
Ex∼ρ(tj )

[
1
2
|∇ŝ(tj , x)|2

]
+ Ex∼ρ(tj−1)

[
1
2
|∇ŝ(tj−1, x)|2

])

−1
2
(
Ex∼ρ(tj ) [ŝ(tj , x) + ŝ(tj−1, x)]− Ex∼ρ(tj−1) [ŝ(tj , x) + ŝ(tj−1, x)]

))
is also a solution of the time-discrete weak form of the continuity equation

• The function LDICE is a loss because all terms can be estimated from data (sample traj.)

Xi (t0) ∼ ρ(t0), · · · ,Xi (tK ) ∼ ρ(tK ) , i = 1, . . . , nx

• No need to evaluate ρ(t0), . . . , ρ(tK ); only require samples Xi (tj) ∼ ρ(tj) for j = 0, . . . ,K
[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]
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DICE: Properties of the DICE loss
There exists a unique minimizer of LDICE in S in the sense that for two minimizers ŝ∗, ŝ∗∗ have

∥∇ŝ∗(tj , ·)−∇ŝ∗∗(tj , ·)∥L2(ρ(tj )) = 0 , j = 0, . . . ,K

• with key assumptions that ρ(t, ·) exists and is absolutely continuous w.r.t. Lebesgue measure,
• the spaces L2(ρ(t)) admit a Poincaré inequality

Under the same assumptions as above, the DICE loss is lower bounded

LDICE(s) ≥ C > −∞ , s ∈ S

The DICE loss is invariant with respect to functions f : [0,T ] → R that are constant in space

LDICE(s + f ) = LDICE(s) , s ∈ S

[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]
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DICE: Experiment on toy example (cont’d)

1 5000 10000 15000 20000

optimizer iteration

10−6

10−4

10−2

100

102

lo
ss

(a
b
so
lu
te

va
lu
e)

AM

DICE

1

t

τ

Ex∼ρ(τ)[s(t, x)]

t 7→ Ex∼ρ(τ)[s(t, x)]

τ 7→ Ex∼ρ(τ)[s(t, x)]

Set X (t) ∼ N (0, 10−2) so that ρ(t) remains constant over time t

• DICE loss is invariant to spurious constants
• Training with DICE loss remains stable over many iterations

24 / 38



DICE: Continuous time limit
Assume abs. cont. densities ρ(t, ·) and boundedness of ρ(0, ·)

0 < ρ
0
≤ ρ(0, x) ≤ ρ0 , x ∈ X

If (ρ,∇s) are compatible and ŝ is a minimizer of LDICE with respect to {ρ(tj)}Kj=0, then

∥∇s(t, ·)−∇ŝ(t, ·)∥L2(ρ(t)) ≤ C max
i=1,...,K

|ti−1 − ti |

• Constant C depends on time derivatives of ρ and the Lipschitzness of ŝ

• Can take limit K → ∞ so that maxi |ti−1 − ti | → 0 and thus

∥∇s(t, ·)−∇ŝ(t, ·)∥L2(ρ(t)) → 0 , t ∈ [0,T ]

We control the error with respect to ∇s via a time-discrete (empirical) loss

[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]

25 / 38



DICE: Generalizing over parameters µ

Recall that the stochastic process X (t;µ) was depending on µ ∈ D with

∂tρ(t, x ;µ) = −∇ · (ρ(t, x ;µ)v(t, x ;µ))

Correspondingly have data samples

X = {Xi (tk ;µj) | i = 1, . . . , nx , k = 1, . . . , nt , j = 1, . . . , nµ} ⊂ X

Optimize for ŝ : T × X ×D → R with the loss

min
ŝ

1
nµ

nµ∑
i=1

LDICE(ŝ(·, ·;µi ))

[Blickhan, Berman, Stuart, P., DICE: Inference with the discrete inverse continuity equation, upcoming]
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DICE: Predictions with learned gradient field

Offline phase: Learning gradient field ŝ and obtaining approximate population dynamics

∂t ρ̂(t, x ;µ) = −∇ · (ρ̂(t, x ;µ)∇ŝ(t, x ;µ))

Online/Inference phase: Sampling from corresponding process X̂ (t;µ) ∼ ρ̂(t, ·;µ) via (S)DE

d
dt

X̂ (t;µ) = ∇ŝ(t, X̂ (t;µ);µ)

• Initial condition X̂ (0;µ) ∼ ρ(0, ·;µ)

• Sampling time and physical time of process X̂ are the same

• Obtain SDE if we use energy with entropy term

27 / 38



DICE: Rapid predictions (inference step)

ρ(·, 0, µ)

ρ(·,T , µ)

ρ(·, t; ·)

In the inference step of our approach, the sampling time is the physical time

d
dt

X̂ (t;µ) = ∇ŝ(X̂ (t;µ), t;µ) , X̂ (0;µ) ∼ ρ(0;µ)

• One inference step provides a whole time trajectory

• In stark contrast, conditional diffusion- and flow-based modeling require one inference step per
time step

28 / 38
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X̂ (t;µ) = ∇ŝ(X̂ (t;µ), t;µ) , X̂ (0;µ) ∼ ρ(0;µ)

• One inference step provides a whole time trajectory

• In stark contrast, conditional diffusion- and flow-based modeling require one inference step per
time step

28 / 38



DICE: Rapid predictions (inference step)

ρ(·, 0, µ)

ρ(·,T , µ)

ρ(·, t; ·)
denoising
diffusion

N0,Id

In the inference step of our approach, the sampling time is the physical time

d
dt
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Outline 1. Population dynamics
and generative modeling

2. From continuous to discrete
loss functions

3. DICE: Inferring vector fields for
learning stochastic systems

4. Numerical experiments
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Experiments: Oscillator example
Particle in potential ϕ with stochastic forcing

• Potential function with µ = 1/5 fixed

ϕ(x) =
1
2
x2 − µ

4
x4

• Stochastic forcing term

σ(t;µ) =
[
0 1

]T
• Collect nx = 1400 samples over t ∈ [0, 14]

• Initial condition

X (0) ∼ N
([

0
−10

]
,

[
0.5 0
0 0.5

])
We match population dynamics rather than just
mean behavior as deterministic methods
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Experiments: Estimation of loss during optimization

0 10000
Adam Iteration

0

−4

−8

Lo
ss

Monte Carlo in time
DICE

• Instabilities introduced in training when estimating AM loss with Monte Carlo in time

• Proper time discretization as in the DICE loss stabilizes training behavior
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Experiments: Extended chaotic Lorenz system in 9D

2,
7

True DICE AM NCSM CFM

3,
9

• Sample trajectories from extended Lorenz system in 9 dimensions [Reiterer et al., 1998]

• Learn gradient field ŝ and generate new samples for reduced Rayleigh number

• Our approach captures fine details well

CFM: [Albergo et al., 2023] [Lipman et al., 2023], NCSM: [Song et al., 2019], AM: [Neklyudov et al., 2023]
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Experiments: Particle instabilities

True DICE AM NCSM CFM

• Instabilities governed by Vlasov-Poisson equation [Tyranowsk, 2021]

• Data generated with particle-in-cell methods

• Parameter µ controls wave length
33 / 38



Experiments: Our gradient fields minimize kinetic energy

full (numerical) model ours

• Population induced by learned field matches well the population from full model

• Learned field minimizes kinetic energy and so particles move less in learned dynamics
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Experiments: Electric energy

10−3

10−2

10−1
DICE AM NCSM CFM

0 40

10−2

10−1

100

0 40 0 40 0 40

Time

E
le

ct
ri

c
E

ne
rg

y

• Quantity of interest is electric energy over time at wave lengths µ

• Predictions with our approach capture transient regime well
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Experiments: Inference time

example: two-stream bump-on-tail strong Landau 9D chaos

metric: error r.t. [s] error r.t. [s] error r.t. [s] sinkhorn r.t. [s]

CFM 5.52 141 1.44 139 0.629 161 0.259 36
NCSM 0.626 1133 0.245 1142 4.06 4531 0.869 1109
AM 0.892 6 0.275 6 NaN - 80.1 7
DICE (ours) 0.283 6 0.070 6 0.463 7 0.200 7

Our approach achieves orders of magnitude lower inference times compared to diffusion- (NCSM)
and flow-based (CFM) modeling

• Sampling time is physical time: One sample trajectory is obtained in one inference step

• DICE’s proper time discretization is key for generalization over µ as AM fails to be predictive

CFM: [Albergo et al., 2023] [Lipman et al., 2023], NCSM: [Song et al., 2019], AM: [Neklyudov et al., 2023]
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Experiments: Speedups over particle-in-cell methods

1e+00

1e+01

1e+02

1e+03

1e+04

two stream bump on tail strong Landau (6D)

ours
CFM
NCSM

particle-in-cell method
Max Planck’s Struphy

ru
nt
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e

[s
]

Speedups over numerical models

• Critically, we learn reduced model from data; no need to re-implement codes

• Speedups of more than one order of magnitude for 6D Vlasov-Poisson (Landau damping)
problem compared to Max Planck Society’s Struphy MPI particle-in-cell code [Possanner et al., 2023]

MPS IPP’s
particle-in-cell
code
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Conclusions
population dynamics

• Population dynamics vs. sample dynamics: Enables learning reduced models of systems that
are meaningful in statistical sense such as chaotic and stochastic systems.

• Careful discretization of loss functions is crucial for stable training: Bringing tools from
numerical analysis such as finite differences can be helpful.

• Inference step of models of population dynamics is fast: Speedups over traditional generative
modeling and classical numerical solvers.

References:

• Berman, Blickhan, P., Parametric model reduction of mean-field and stochastic systems via higher-order action matching,
NeurIPS, 2024.

• Blickhan, Berman, Stuart, P., DICE: Discrete inverse continuity equation for learning population dynamics, upcoming.
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