Toward **Physical** Generative Models

Nisha Chandramoorthy

U Chicago Collaborators: Jeongjin Park (Georgia Tech), Nicole Yang (Emory), Adriaan de Clercq (U Chicago)

June 12, 2025

Singular measures with densities on an unknown data manifold

 $\bar{d} = 16$

 $\bar{d} = 32$

 $\bar{d} = 64$

 $\bar{d} = 128$

[Pope et al 2021]

Singular measures with densities on an unknown data manifold

d = 16

 $\bar{d} = 32$

d = 128

 $\bar{d} = 64$

[Pope et al 2021]

measure continuous on unstable manifold – 1D roughly horizontal curves. [C and Wang, 2022]

Downstream task: Bayesian computation (inverse problems/data assimilation)

Hidden orbit: $x, F(x), F^2(x), \cdots$,

Downstream task: Bayesian computation (inverse problems/data assimilation)

Hidden orbit: $x, F(x), F^2(x), \cdots$,

Target: X_t or parameters of F given observations

Generative modeling: when are generative models robust to learning errors?

C and de Clercq, 2025

Learning dynamics: learning statistically accurate chaotic timeseries from data

Park, Yang and C, NeuRIPS 2024

Generative modeling: when are generative models robust to learning errors?

C and de Clercq, 2025

Learning dynamics: learning statistically accurate chaotic timeseries from data

Park, Yang and C, NeuRIPS 2024

Learning scores + sampling: any dynamical measure transport

C, Schäfer and Marzouk, AISTATS 2024

Robustness of the support: generating from the *data manifold*

Robustness of the support: generating from the *data manifold*

Formalize sampling from the data manifold?

Robustness of the support: generating from the *data manifold*

- Formalize sampling from the data manifold?
- Distinguish GMs based on robustness of the predicted support?

► Given samples x₁, · · · , x_m ~ p_{data}, x_i ∈ ℝ^D, generate more samples from p_{data}.

- ► Given samples x₁, · · · , x_m ~ p_{data}, x_i ∈ ℝ^D, generate more samples from p_{data}.
- Learned vector field: $x \to v_t(x) \in T_x \mathbb{R}^D$

- ► Given samples x₁, · · · , x_m ~ p_{data}, x_i ∈ ℝ^D, generate more samples from p_{data}.
- Learned vector field: $x \to v_t(x) \in T_x \mathbb{R}^D$
- In score-based diffusion [Anderson 1982; De Bortoli et al, Song and Ermon 2019, Song et al 2020, Sohl-Dickstein et al 2015], v_t(x) ≡ s(x, t), scores of densities of a noising process initialized with x_i ~ p_{data}.

- ► Given samples x₁, · · · , x_m ~ p_{data}, x_i ∈ ℝ^D, generate more samples from p_{data}.
- Learned vector field: $x \to v_t(x) \in T_x \mathbb{R}^D$
- In score-based diffusion [Anderson 1982; De Bortoli et al, Song and Ermon 2019, Song et al 2020, Sohl-Dickstein et al 2015], v_t(x) ≡ s(x, t), scores of densities of a noising process initialized with x_i ~ p_{data}.
- In conditional flow matching variants, stochastic interpolant variants [Liu 2022, Lipman et al 2023, Tong et al 2023, Albergo et al 2023], flow of v_t(x) transports probability densities from p₀ (easy) to p_{data} (target)

- ► Given samples x₁, · · · , x_m ~ p_{data}, x_i ∈ ℝ^D, generate more samples from p_{data}.
- Learned vector field: $x \to v_t(x) \in T_x \mathbb{R}^D$
- In score-based diffusion [Anderson 1982; De Bortoli et al, Song and Ermon 2019, Song et al 2020, Sohl-Dickstein et al 2015], v_t(x) ≡ s(x, t), scores of densities of a noising process initialized with x_i ~ p_{data}.
- In conditional flow matching variants, stochastic interpolant variants [Liu 2022, Lipman et al 2023, Tong et al 2023, Albergo et al 2023], flow of v_t(x) transports probability densities from p₀ (easy) to p_{data} (target)

- ► Given samples x₁, · · · , x_m ~ p_{data}, x_i ∈ ℝ^D, generate more samples from p_{data}.
- Learned vector field: $x \to v_t(x) \in T_x \mathbb{R}^D$
- In score-based diffusion [Anderson 1982; De Bortoli et al, Song and Ermon 2019, Song et al 2020, Sohl-Dickstein et al 2015], v_t(x) ≡ s(x, t), scores of densities of a noising process initialized with x_i ~ p_{data}.
- In conditional flow matching variants, stochastic interpolant variants [Liu 2022, Lipman et al 2023, Tong et al 2023, Albergo et al 2023], flow of v_t(x) transports probability densities from p₀ (easy) to p_{data} (target)

 $\exists p_t/\partial t = -\operatorname{div}(v_t \, p_t), \text{ with } p_\tau \equiv p_{\text{data.}}$

Errors in dynamical generative models

Score based generative model [Song and Ermon, 2021]

Errors in dynamical generative models

Score based generative model [Song and Ermon, 2021]

How do regression errors $(\ell(\theta))$ propagate along v_t ?

Errors in dynamical generative models

Score based generative model [Song and Ermon, 2021]

How do regression errors $(\ell(\theta))$ propagate along v_t ?

Are some generative models more robust to errors?

Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.

- Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.
- ► $F_{t-1}^{t,W} = F_{t-1}^{W} \circ \cdots \circ F_0^{W}$ is a random dynamical system, where at each time *t*, we choose $F_t^{W} \sim \pi_t$.

- Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.
- ► $F_{t-1}^{t,W} = F_{t-1}^{W} \circ \cdots \circ F_0^{W}$ is a random dynamical system, where at each time *t*, we choose $F_t^{W} \sim \pi_t$.
- ▶ Discrete-time RDS: $W = \{W_t\}$ iid standard normal RVs.

- Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.
- ► $F_{t-1}^{t,W} = F_{t-1}^{W} \circ \cdots \circ F_0^{W}$ is a random dynamical system, where at each time *t*, we choose $F_t^{W} \sim \pi_t$.
- ▶ Discrete-time RDS: $W = \{W_t\}$ iid standard normal RVs.
- For SGM: $F_t^W(x) = x + (\delta t)s(x, \tau t) + \sqrt{\delta t} W_t$, $W_t \sim \mathcal{N}(0, \mathrm{Id}).$

- Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.
- ► $F_{t-1}^{t,W} = F_{t-1}^{W} \circ \cdots \circ F_0^{W}$ is a random dynamical system, where at each time *t*, we choose $F_t^{W} \sim \pi_t$.
- ▶ Discrete-time RDS: $W = \{W_t\}$ iid standard normal RVs.
- For SGM: $F_t^W(x) = x + (\delta t)s(x, \tau t) + \sqrt{\delta t} W_t$, $W_t \sim \mathcal{N}(0, \mathrm{Id}).$
- ► Markov chain with time-dependent transition kernel: $\kappa_t(x, A) = \mathbb{P}(W : F_t^W(x) \in A) = \pi_t(f : f(x) \in A)$

- Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.
- ► $F_{t-1}^{t,W} = F_{t-1}^{W} \circ \cdots \circ F_0^{W}$ is a random dynamical system, where at each time *t*, we choose $F_t^{W} \sim \pi_t$.
- ▶ Discrete-time RDS: $W = \{W_t\}$ iid standard normal RVs.
- For SGM: $F_t^W(x) = x + (\delta t)s(x, \tau t) + \sqrt{\delta t} W_t$, $W_t \sim \mathcal{N}(0, \mathrm{Id}).$
- ► Markov chain with time-dependent transition kernel: $\kappa_t(x, A) = \mathbb{P}(W : F_t^W(x) \in A) = \pi_t(f : f(x) \in A)$
- $\rho_{t+1}(x) = \mathcal{L}_t \rho_t(x) = \int \rho_t(x, y) \rho_t(y) dy$

- Reverse process, more generally, any coupling between p₀ with density ρ₀ and p_{data} (target) with (approximate) density ρ_τ.
- ► $F_{t-1}^{t,W} = F_{t-1}^{W} \circ \cdots \circ F_0^{W}$ is a random dynamical system, where at each time *t*, we choose $F_t^{W} \sim \pi_t$.
- ▶ Discrete-time RDS: $W = \{W_t\}$ iid standard normal RVs.
- For SGM: $F_t^W(x) = x + (\delta t)s(x, \tau t) + \sqrt{\delta t} W_t$, $W_t \sim \mathcal{N}(0, \mathrm{Id}).$
- ► Markov chain with time-dependent transition kernel: $\kappa_t(x, A) = \mathbb{P}(W : F_t^W(x) \in A) = \pi_t(f : f(x) \in A)$
- $\rho_{t+1}(x) = \mathcal{L}_t \rho_t(x) = \int \rho_t(x, y) \rho_t(y) dy$
- Lyapunov exponents (finite time): perturbation evolutions through dF^{T,W} [Kifer, Young, Ledrappier, Pesin, Arnold, ...]

Sample Space

Sample Space

 F_t , a diffeomorphism at time t.

Sample Space

 F_t , a diffeomorphism at time t.

 dF_t , a linear map on tangent space that evolves infinitesimal perturbations

 $x \rightarrow x + \varepsilon u_t(x)$, then,

$$u_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon u_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) u_t(x)$$

Probability space

Sample Space

 F_t , a diffeomorphism at time t.

 dF_t , a linear map on tangent space that evolves infinitesimal perturbations

 $x \rightarrow x + \epsilon u_t(x)$, then,

$$u_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon u_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) u_t(x)$$

Probability space

Evolution/pushforward operator: $p_{t+1} := F_{t \sharp} p_t$

Sample Space

 F_t , a diffeomorphism at time t.

 dF_t , a linear map on tangent space that evolves infinitesimal perturbations

 $x \rightarrow x + \epsilon u_t(x)$, then,

$$u_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon u_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) u_t(x)$$

Probability space

Evolution/pushforward operator: $p_{t+1} := F_{t \ddagger} p_t$

When p_t has density ρ_t ,

$$\begin{split} \rho_{t+1} &= \mathcal{L}_t \, \rho_t \\ &:= \rho_t \circ F_t^{-1} / |\text{det} \textit{d} F_t| \circ F_t^{-1} \end{split}$$

Sample Space

Sample Space

 $F_{t,\epsilon}(x) = F_t(x) + \epsilon \chi_t(x)$, map at time *t* with learning errors.

Sample Space

 $F_{t,\epsilon}(x) = F_t(x) + \epsilon \chi_t(x)$, map at time *t* with learning errors.

Perturbed dynamics: $F_{\epsilon}^{t}(x) := F_{t,\epsilon} \circ \cdots \circ F_{0,\epsilon}(x)$

Sample Space

 $F_{t,\epsilon}(x) = F_t(x) + \epsilon \chi_t(x)$, map at time *t* with learning errors.

Perturbed dynamics: $F_{\epsilon}^{t}(x) := F_{t,\epsilon} \circ \cdots \circ F_{0,\epsilon}(x)$

Error evolution in tangent space,

$$u_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_{t,\epsilon}(x) - F_t(x)}{\epsilon}$$
$$= dF_t(x) u_t(x) + \chi_t(x)$$

Probability space

Sample Space

 $F_{t,\epsilon}(x) = F_t(x) + \epsilon \chi_t(x)$, map at time *t* with learning errors.

Perturbed dynamics: $F_{\epsilon}^{t}(x) := F_{t,\epsilon} \circ \cdots \circ F_{0,\epsilon}(x)$

Error evolution in tangent space,

$$u_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_{t,\epsilon}(x) - F_t(x)}{\epsilon}$$
$$= dF_t(x) u_t(x) + \chi_t(x)$$

Probability space

Perturbed evolution/pushforward operator: $p_{t+1,\epsilon} := F_{t,\epsilon \sharp} p_{t,\epsilon}$
Finite-time perturbation theory

Sample Space

 $F_{t,\epsilon}(x) = F_t(x) + \epsilon \chi_t(x)$, map at time *t* with learning errors.

Perturbed dynamics: $F_{\epsilon}^{t}(x) := F_{t,\epsilon} \circ \cdots \circ F_{0,\epsilon}(x)$

Error evolution in tangent space,

$$u_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_{t,\epsilon}(x) - F_t(x)}{\epsilon}$$
$$= dF_t(x) u_t(x) + \chi_t(x)$$

Probability space

Perturbedevolution/-pushforwardoperator: $p_{t+1,\epsilon} := F_{t,\epsilon \sharp} p_{t,\epsilon}$

When $p_{t,\epsilon}$ has density ρ_t ,

$$\begin{split} \rho_{t+1,\epsilon} &= \mathcal{L}_{t,\epsilon} \; \rho_{t,\epsilon} \\ &:= \rho_{t,\epsilon} \circ F_{t,\epsilon}^{-1} / |\text{det} \textit{dF}_{t,\epsilon}| \circ F_{t,\epsilon}^{-1} \end{split}$$

► Errors in learning v_t : when $v_t \rightarrow v_t + \epsilon \chi_t$, $F_t \rightarrow F_{t,\epsilon}$, $\mathcal{L}_t \rightarrow \mathcal{L}_{t,\epsilon}$

- ► Errors in learning v_t : when $v_t \rightarrow v_t + \epsilon \chi_t$, $F_t \rightarrow F_{t,\epsilon}$, $\mathcal{L}_t \rightarrow \mathcal{L}_{t,\epsilon}$
- What is the change in $\rho_{\tau} \equiv p_{\text{data}}$?

- Errors in learning v_t: when v_t → v_t + εχ_t, F_t → F_{t,ε}, L_t → L_{t,ε}
- What is the change in $\rho_{\tau} \equiv p_{\text{data}}$?
- Robustness of support to errors?

- Errors in learning v_t: when v_t → v_t + εχ_t, F_t → F_{t,ε}, ℒ_t → ℒ_{t,ε}
- What is the change in $\rho_{\tau} \equiv p_{\text{data}}$?
- Robustness of support to errors?

$$\langle f, \vartheta_{\varepsilon}|_{\varepsilon=0} \mathbb{E}_{W} \mathcal{L}_{\varepsilon}^{\tau, W} \rho_{0} \rangle = \langle f, \mathbb{E}_{W} \vartheta_{\varepsilon} \mathcal{L}_{\varepsilon}^{\tau, W}|_{\varepsilon=0} \rho_{0} \rangle$$

- Errors in learning v_t: when v_t → v_t + εχ_t, F_t → F_{t,ε}, ℒ_t → ℒ_{t,ε}
- What is the change in $\rho_{\tau} \equiv p_{\text{data}}$?
- Robustness of support to errors?

$$\langle f, \partial_{\varepsilon}|_{\varepsilon=0} \mathbb{E}_{W} \mathcal{L}_{\varepsilon}^{\tau, W} \rho_{0} \rangle = \langle f, \mathbb{E}_{W} \partial_{\varepsilon} \mathcal{L}_{\varepsilon}^{\tau, W}|_{\varepsilon=0} \rho_{0} \rangle$$

$$\partial_{\epsilon} \rho_{\tau,\epsilon}(x_{\tau}) = -\rho_{\tau}(x_{\tau}) \sum_{t=0}^{T-1} \left(\operatorname{div}(\chi_t)(x_{t+1}) + \chi_t(x_{t+1}) \cdot s_{t+1}(x_{t+1}) \right)$$

Can distinguish generative models based on robustness

When do inexact generative models still sample the support?

SGM/Diffusion:

Left: unperturbed; Right: perturbed

When do inexact generative models still sample the support?

Conditional flow matching:

SGM/Diffusion:

Left: unperturbed; Right: perturbed

unperturbed

perturbed

When do inexact generative models still sample the support?

Conditional flow matching:

SGM/Diffusion:

Left: unperturbed; Right: perturbed

unperturbed

perturbed

What dynamics leads to robustness of support?

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ$$

 $F_0(x)$

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

E₀: d <= D random vector fields, normalized</p>

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

E₀: d <= D random vector fields, normalized
dE E = E = B = A

•
$$dF_t E_t := E_{t+1} R_{t+1},$$

 $t \leq \tau (QR)$
decomposition)

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

E₀: d <= D random vector fields, normalized</p>

•
$$dF_t E_t := E_{t+1} R_{t+1},$$

 $t \leq \tau$ (QR
decomposition)

► $E_t(x) \in \mathbb{R}^{D \times d}$: orthonormal basis of most sensitive subspace at *x*.

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

E₀: d <= D random vector fields, normalized</p>

•
$$dF_t E_t := E_{t+1} R_{t+1}, t \leq \tau$$
 (QR decomposition)

► $E_t(x) \in \mathbb{R}^{D \times d}$: orthonormal basis of most sensitive subspace at *x*.

Asymptotic convergence to Oseledets subspaces of backward Lyapunov vectors [Arnold, Random Dynamical Systems; Oseledets, Pesin, Kifer...]

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

E₀: d <= D random vector fields, normalized</p>

•
$$dF_t E_t := E_{t+1} R_{t+1}, t \leq \tau$$
 (QR decomposition)

- ► $E_t(x) \in \mathbb{R}^{D \times d}$: orthonormal basis of most sensitive subspace at *x*.
- Asymptotic convergence to Oseledets subspaces of backward Lyapunov vectors [Arnold, Random Dynamical Systems; Oseledets, Pesin, Kifer...]
- In finite time, E_t related to top d eigenvectors of dF^t (dF^t)[⊤] (Cauchy-Green tensor)

Dynamical GM:
$$F^t(x) := F_t \circ \cdots \circ F_0(x)$$

Tangent dynamics

$$E_{t+1}(F_t(x)) := \lim_{\epsilon \to 0} \frac{F_t(x + \epsilon E_t(x)) - F_t(x)}{\epsilon}$$
$$= dF_t(x) E_t(x)$$

Construction:

E₀: d <= D random vector fields, normalized</p>

•
$$dF_t E_t := E_{t+1} R_{t+1}, t \leq \tau$$
 (QR decomposition)

- ► $E_t(x) \in \mathbb{R}^{D \times d}$: orthonormal basis of most sensitive subspace at *x*.
- Asymptotic convergence to Oseledets subspaces of backward Lyapunov vectors [Arnold, Random Dynamical Systems; Oseledets, Pesin, Kifer...]
- In finite time, *E_t* related to top *d* eigenvectors of *dF^t* (*dF^t*)[⊤] (Cauchy-Green tensor)
- Mean (over time) Log-diagonal of R_t: top d Lyapunov exponents.

Most sensitive subspaces of diffusion models

Left to right: Unperturbed; Perturbed; Top Lyapunov vector aligns with tangent bundle of target support.

Most sensitive subspaces of diffusion models

Left to right: Unperturbed; Perturbed; Top Lyapunov vector aligns with tangent bundle of target support.

Does reverse process learn data manifold? [Pidstrigach 2022; Stanczuk et al 2024; Kadkhodaie et al 2024; Chen, Huang, Zhao, and Wang 2023; Lee Lu Tan 2023; Mimikos-Stamatopoulos, Zhang, Katsoulakis 2024]

Let $\operatorname{supp}(p_{data}) = M$, a *d*-dimensional subset of \mathbb{R}^{D} .

Let $\operatorname{supp}(p_{\text{data}}) = M$, a *d*-dimensional subset of \mathbb{R}^{D} .

Alignment: $E_t(x)$ spans T_xM (most sensitive subspace is tangent to the data manifold)

Let $\operatorname{supp}(p_{\text{data}}) = M$, a *d*-dimensional subset of \mathbb{R}^{D} .

Alignment: $E_t(x)$ spans T_xM (most sensitive subspace is tangent to the data manifold)

Proposition (informal): a convergent and aligned generative model learns the support of the target.

Let $\operatorname{supp}(p_{\text{data}}) = M$, a *d*-dimensional subset of \mathbb{R}^{D} .

Alignment: $E_t(x)$ spans T_xM (most sensitive subspace is tangent to the data manifold)

Proposition (informal): a convergent and aligned generative model learns the support of the target.

Proof sketch:

►
$$x_1, \dots, x_m \sim p_{data}$$
 can be mapped to $y_1, \dots, y_m \sim p_{\tau, \epsilon}$ s.t. $||x_i - y_i|| \sim O(\epsilon^c)$ whp. (From convergence)

Let $\operatorname{supp}(p_{\text{data}}) = M$, a *d*-dimensional subset of \mathbb{R}^{D} .

Alignment: $E_t(x)$ spans T_xM (most sensitive subspace is tangent to the data manifold)

Proposition (informal): a convergent and aligned generative model learns the support of the target.

Proof sketch:

- ► $x_1, \dots, x_m \sim p_{data}$ can be mapped to $y_1, \dots, y_m \sim p_{\tau, \epsilon}$ s.t. $||x_i y_i|| \sim O(\epsilon^c)$ whp. (From convergence)
- \blacktriangleright $x_i y_i$ parallel to $E_t(x_i)$

Let $\operatorname{supp}(p_{\text{data}}) = M$, a *d*-dimensional subset of \mathbb{R}^{D} .

Alignment: $E_t(x)$ spans T_xM (most sensitive subspace is tangent to the data manifold)

Proposition (informal): a convergent and aligned generative model learns the support of the target.

Proof sketch:

- ► $x_1, \dots, x_m \sim p_{data}$ can be mapped to $y_1, \dots, y_m \sim p_{\tau, \epsilon}$ s.t. $||x_i y_i|| \sim O(\epsilon^c)$ whp. (From convergence)
- \blacktriangleright $x_i y_i$ parallel to $E_t(x_i)$
- Margin of one-class classifier learned on x_i does not change on y_i

Source sample

Source sample Predicted

Source sample Predicted

+ most sensitive LV

Source sample Predicted

+ most sensitive LV + 100th LV

Source sample Predicted

+ most sensitive LV + 100th LV

Lyapunov exponents

Index

Theorem (informal): If F^{τ} is compressive overall, v_t is uniformly compressive for *t* close to τ , and v_t has small cross-derivatives, alignment holds.

Theorem (informal): If F^{τ} is compressive overall, v_t is uniformly compressive for *t* close to τ , and v_t has small cross-derivatives, alignment holds.

Evolution of score components, $s_t := d \log p_t$, along most sensitive subspaces:

$$(s_{t+1} E_{t+1}) \circ F_t = s_t E_t R_t^{-1} - \operatorname{tr}((dF_t^{-1}d^2F_t) E_t R_t^{-1})$$

Theorem (informal): If F^{τ} is compressive overall, v_t is uniformly compressive for *t* close to τ , and v_t has small cross-derivatives, alignment holds.

Evolution of score components, $s_t := d \log p_t$, along most sensitive subspaces:

$$(s_{t+1} E_{t+1}) \circ F_t = s_t E_t R_t^{-1} - \operatorname{tr}((dF_t^{-1}d^2F_t) E_tR_t^{-1})$$

► $s_{\tau} \in (TM)^{\perp}$ for singular targets

Theorem (informal): If F^{τ} is compressive overall, v_t is uniformly compressive for *t* close to τ , and v_t has small cross-derivatives, alignment holds.

Evolution of score components, $s_t := d \log p_t$, along most sensitive subspaces:

$$(s_{t+1} E_{t+1}) \circ F_t = s_t E_t R_t^{-1} - \operatorname{tr}((dF_t^{-1}d^2F_t) E_tR_t^{-1})$$

- ► $s_{\tau} \in (TM)^{\perp}$ for singular targets
- Compression $\implies |\det R_t| < 1$.

The dynamics of alignment: the vector field is a uniform attractive force at the end

The dynamics of alignment: the vector field is a uniform attractive force at the end

The dynamics of alignment: the vector field is a uniform attractive force at the end

Less alignment leads to less robustness

Histograms of angles b/w top LV (most sensitive subspace) and target score for OT-CFM (left), CFM (center) and Stochastic Interpolants (right).

 Alignment of most sensitive LVs with tangent spaces of the data manifold leads to robustness

- Alignment of most sensitive LVs with tangent spaces of the data manifold leads to robustness
- Some compressive dynamics can lead to alignment

- Alignment of most sensitive LVs with tangent spaces of the data manifold leads to robustness
- Some compressive dynamics can lead to alignment
- Aligned and convergent GMs are manifold learners

- Alignment of most sensitive LVs with tangent spaces of the data manifold leads to robustness
- Some compressive dynamics can lead to alignment
- Aligned and convergent GMs are manifold learners

Lemma: Alignment property is regular.

- Alignment of most sensitive LVs with tangent spaces of the data manifold leads to robustness
- Some compressive dynamics can lead to alignment
- Aligned and convergent GMs are manifold learners

Lemma: Alignment property is regular.

An aligned GM retains alignment under perturbations.

• Given *m* samples, $\{(x_t, F(x_t))\}_{t \le m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?

- Given *m* samples, $\{(x_t, F(x_t))\}_{t \le m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?
- ... while also ensuring F_{nn} is *physical*?

- Given *m* samples, $\{(x_t, F(x_t))\}_{t \le m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?
- ... while also ensuring F_{nn} is *physical*?
- That is, does F_{nn} sample from μ ?

- Given *m* samples, $\{(x_t, F(x_t))\}_{t \le m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?
- ... while also ensuring F_{nn} is *physical*?
- That is, does F_{nn} sample from μ ?
- Optimize over neural representations F_{nn} $\ell(x, F_{nn}) = ||F(x) - F_{nn}(x)||^2$

- Given *m* samples, $\{(x_t, F(x_t))\}_{t \leq m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?
- ... while also ensuring F_{nn} is *physical*?
- That is, does F_{nn} sample from μ ?
- Optimize over neural representations F_{nn} $\ell(x, F_{nn}) = ||F(x) - F_{nn}(x)||^2$
- ► Training loss: $R_{\mathcal{S}}(F_{nn}) = (1/m) \sum_{x \in \mathcal{S}} \ell(x, F_{nn}), \ \mathcal{S} \sim \mu^m$.

- Given *m* samples, $\{(x_t, F(x_t))\}_{t \le m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?
- ... while also ensuring F_{nn} is physical?
- That is, does F_{nn} sample from μ ?
- Optimize over neural representations F_{nn} $\ell(x, F_{nn}) = ||F(x) - F_{nn}(x)||^2$
- ► Training loss: $R_{\mathcal{S}}(F_{nn}) = (1/m) \sum_{x \in S} \ell(x, F_{nn}), S \sim \mu^m$.
- Neural ODE [Chen et al 2018]:

$$\frac{d}{dt}\varphi_{\mathrm{nn}}^{t}(x) = v_{\mathrm{nn}}(\varphi_{\mathrm{nn}}^{t}(x)), \quad x \in \mathbb{R}^{d}.$$
 (1)

- Given *m* samples, $\{(x_t, F(x_t))\}_{t \le m}$, can we learn $F_{nn}(x_t) \approx x_{t+1} = F(x_t)$?
- ... while also ensuring F_{nn} is physical?
- That is, does F_{nn} sample from μ ?
- Optimize over neural representations F_{nn} $\ell(x, F_{nn}) = ||F(x) - F_{nn}(x)||^2$
- ► Training loss: $R_{\mathcal{S}}(F_{nn}) = (1/m) \sum_{x \in S} \ell(x, F_{nn}), S \sim \mu^m$.

Neural ODE [Chen et al 2018]:

$$\frac{d}{dt}\varphi_{nn}^{t}(x) = v_{nn}(\varphi_{nn}^{t}(x)), \quad x \in \mathbb{R}^{d}.$$
 (1)

Fix some δt and set $F \equiv \phi^{\delta t}$, where $d\phi^t(x)/dt = v(\phi^t(x))$

Physical neural parameterization via minimizing MSE

Good "generalization" performance.

Several different architectures and hyperparameter choices produce acceptable generalization error = $E_{x \sim \mu} \ell(x, F_{nn})$.

Generalization \implies learning dynamics?

	Lyapunov Exponent		
True LE	pprox [0.9, 0, -14.5]		
Neural ODE	[0.8926, -0.0336, -6.0616]		

Generalization \implies learning dynamics?

	Lyapunov Exponent		
True LE	pprox [0.9, 0, -14.5]		
Neural ODE	[0.8926, -0.0336, -6.0616]		

	Lyapunov Exponent		
True LE	≈ [0.9, 0, -14.5]		
Neural ODE	[0.8926, -0.0336, -6.0616] [0.9022, -0.0024, -14.4803]		
+Jacobian info	[0.9022, -0.0024, -14.4803]		

Modified loss:

 $\ell(x, F_{nn}) = \|F_{nn}(x) - F(x)\|^2 + \lambda \|dF_{nn}(x) - dF(x)\|^2$

	Lyapunov Exponent		
True LE	≈ [0.9, 0, -14.5]		
Neural ODE	[0.8926, -0.0336, -6.0616]		
+Jacobian info	[0.9022, -0.0024, -14.4803]		

Modified loss:

$$\mathcal{R}(\mathbf{x}, \mathbf{F}_{\mathrm{nn}}) = \|\mathbf{F}_{\mathrm{nn}}(\mathbf{x}) - \mathbf{F}(\mathbf{x})\|^2 + \lambda \|\mathbf{dF}_{\mathrm{nn}}(\mathbf{x}) - \mathbf{dF}(\mathbf{x})\|^2$$

 With modified loss, statistical moments (correlations, LEs) are accurate

	Lyapunov Exponent		
True LE	≈ [0.9, 0, -14.5]		
Neural ODE	[0.8926, -0.0336, -6.0616]		
+Jacobian info	[0.9022, -0.0024, -14.4803]		

Modified loss:

$$\ell(x, F_{nn}) = \|F_{nn}(x) - F(x)\|^2 + \lambda \|dF_{nn}(x) - dF(x)\|^2$$

- With modified loss, statistical moments (correlations, LEs) are accurate
- ► Physical measure: $\text{Unif}(x_0, x_1, \cdots, x_t) \xrightarrow{t \to \infty} \mu$ for Leb a.e. x_0 .

	Lyapunov Exponent		
True LE	≈ [0.9, 0, -14.5]		
Neural ODE	[0.8926, -0.0336, -6.0616]		
+Jacobian info	[0.9022, -0.0024, -14.4803]		

Modified loss:

$$\ell(x, F_{nn}) = \|F_{nn}(x) - F(x)\|^2 + \lambda \|dF_{nn}(x) - dF(x)\|^2$$

- With modified loss, statistical moments (correlations, LEs) are accurate
- ► Physical measure: $\text{Unif}(x_0, x_1, \cdots, x_t) \xrightarrow{t \to \infty} \mu$ for Leb a.e. x_0 .
- ► $(1/T) \sum_{t \leqslant T} J(x_t) \xrightarrow{t \to \infty} \mathbb{E}_{x \sim \mu} J(x)$, for Leb a.e. x_0 .

*C*¹ matching of vector field leads to learning physical measure

*C*¹ matching of vector field leads to learning physical measure

is Jacobian-matching always enough to learn physical dynamics?

C^1 matching of vector field leads to learning physical measure

- is Jacobian-matching always enough to learn physical dynamics?
- comparison against generative modeling of the physical measure?

► Good generalization with Jacobian loss (E_{x∼µ}ℓ(x, F_{nn})) ⇒ shadowing holds w.h.p.

- ► Good generalization with Jacobian loss (E_{x∼µ}ℓ(x, F_{nn})) ⇒ shadowing holds w.h.p.
- Jacobian-matching leads to learning shadowing orbits w.h.p.

- ► Good generalization with Jacobian loss (E_{x∼µ}ℓ(x, F_{nn})) ⇒ shadowing holds w.h.p.
- Jacobian-matching leads to learning shadowing orbits w.h.p.
- No shadowing guarantee for MSE loss.

- ► Good generalization with Jacobian loss (E_{x∼µ}ℓ(x, F_{nn})) ⇒ shadowing holds w.h.p.
- Jacobian-matching leads to learning shadowing orbits w.h.p.
- No shadowing guarantee for MSE loss.
- $\mu_m^{\mathrm{sh}}(x) = \mathrm{Unif}(x, F(x), \cdots, F^m(x)).$

- ► Good generalization with Jacobian loss (E_{x∼µ}ℓ(x, F_{nn})) ⇒ shadowing holds w.h.p.
- Jacobian-matching leads to learning shadowing orbits w.h.p.
- No shadowing guarantee for MSE loss.

•
$$\mu_m^{\mathrm{sh}}(x) = \mathrm{Unif}(x, F(x), \cdots, F^m(x)).$$

$$\blacktriangleright \ \mu_m(x) = \mathrm{Unif}(x, F_{\mathrm{nn}}(x), \cdots, F_{\mathrm{nn}}^m(x)).$$

Let F_{nn} be a model of F that satisfies i) C^1 strong generalization and ii) $\lim_{m\to\infty} W^1(\mu_m^{sh}(x),\mu) \leqslant \varepsilon_2$ w.h.p. Then, w.h.p., $\lim_{m\to\infty} W^1(\mu_m^{nn},\mu) \approx 0$.

		Norm Difference			
Model	Loss	$W^1(\hat{\mu}_{500},\mu_{ m NN,500})$	$\left\ \Lambda-\Lambda_{\rm NN}\right\ $	$\ \langle x \rangle_{500} - \langle x \rangle_{500,\mathrm{NN}}\ $	
MLP	MSE	18.9711	9.6950	15.2220	
MLP	JAC	0.6800	0.0118	0.6524	
ResNet	MSE	1.3567	10.8516	0.7760	
ResNet	JAC	0.1433	0.0106	0.0559	
FNO	MSE	10.5409	22.1600	9.4270	
FNO	JAC	1.3076	0.0505	0.9748	

Left: KS solutions; Center: NN network based on MSE loss; Right: Jacobian-matching loss

Left: KS solutions; Center: NN network based on MSE loss; Right: Jacobian-matching loss

Rössler	[0.0665, -0.0004 -5.4112]	[0.0008,-0.0285 -1.4108]	[0.0609, -0.0004 -5.3808]
Hyperchaos	[4.0039, 0.0082	[4.1393, 0.0955	[4.3789, -0.1617
	-19.9972, -48.0205]	-15.2120, -29.9480]	-19.9974, -48.0205]
Kuramoto- Sivashinsky	[0.3036, 0.2733, 0.2592, 0.2257, 0.2257]	[0.1652, 0.1647, 0.1540, 0.1524,	[0.2904, 0.2622, 0.2293, 0.1990,
	0.2050, 0.1888,	0.1443, 0.1411,	0.1701, 0.1584,
	0.1649, 0.1496,	0.1336, 0.1262,	0.1320, 0.1071,
	0.1288, 0.1128,	0.1236, 0.1143,	0.0912, 0.0724,
	0.0992, 0.0776,	0.1141, 0.1091,	0.0591, 0.0442,
	0.0646, 0.0492,	0.1045, 0.0971,	0.0306, 0.0157,
	0.0342]	0.0985]	0.0023,]

Only 2 out of first 64 LEs predicted with < 10% error

Score learning to sample from chaotic systems?

Generative modeling: want samples from ν given $x_1, \dots, x_m \sim \nu$

Score learning to sample from chaotic systems?

Generative modeling: want samples from ν given $x_1, \dots, x_m \sim \nu$

Goal: exploit dynamical systems theory for dimension reduction

Sampling: want samples from a target measure ν given score, $\nabla \log \rho^{\nu}$

C, Schäfer and Marzouk, AISTATS 2024; **C and Wang** SIAM J. Appl. Dyn. Sys 2022

Score learning to sample from chaotic systems?

Generative modeling: want samples from ν given $x_1, \dots, x_m \sim \nu$

Goal: exploit dynamical systems theory for dimension reduction

Sampling: want samples from a target measure ν given score, $\nabla \log \rho^{\nu}$

C, Schäfer and Marzouk, AISTATS 2024; **C and Wang** SIAM J. Appl. Dyn. Sys 2022

Sampling via measure transport

- Target measure: μ with density ρ^{μ} .
- Tractable source measure ν with density ρ^{ν} .
- $\operatorname{supp}(\nu) = \mathbb{X} \text{ and } \operatorname{supp}(\mu) = \mathbb{Y}.$

Sampling via measure transport

- Target measure: μ with density ρ^{μ} .
- Tractable source measure ν with density ρ^{ν} .
- $\operatorname{supp}(\nu) = \mathbb{X} \text{ and } \operatorname{supp}(\mu) = \mathbb{Y}.$

A transport map $T: \mathbb{X} \to \mathbb{Y}$ is an invertible transformation such that $T_{\sharp} \nu = \mu$.

The score of a probability measure μ with density ρ^{μ} is $\nabla \log \rho^{\mu}.$

Sampling via measure transport

- Target measure: μ with density ρ^{μ} .
- Tractable source measure ν with density ρ^{ν} .
- $\operatorname{supp}(\nu) = \mathbb{X} \text{ and } \operatorname{supp}(\mu) = \mathbb{Y}.$

A transport map $\mathcal{T}:\mathbb{X}\to\mathbb{Y}$ is an invertible transformation such that $\mathcal{T}_{\sharp}\nu=\mu.$

The **score** of a probability measure μ with density ρ^{μ} is $\nabla \log \rho^{\mu}.$

The score operator

Change of variables/pushforward operation:

$$\rho^{\mu} = \frac{\rho^{\nu} \circ T^{-1}}{|\text{det} \nabla T| \circ T^{-1}}$$

Pushforward operation on scores:

$$\begin{split} \mathfrak{G}(\boldsymbol{s},\boldsymbol{U}) &= \left(\boldsymbol{s}(\nabla\boldsymbol{U})^{-1} - \nabla \log |\mathrm{det}\nabla\boldsymbol{U}|(\nabla\boldsymbol{U})^{-1}\right) \circ \boldsymbol{U}^{-1} \\ &= \left(\boldsymbol{s}(\nabla\boldsymbol{U})^{-1} - \mathrm{tr}\left((\nabla\boldsymbol{U})^{-1}\nabla^{2}\boldsymbol{U}\right)(\nabla\boldsymbol{U})^{-1}\right) \circ \boldsymbol{U}^{-1}, \end{split}$$

Score operator conditioned on unstable manifolds

$$\mathfrak{G}(\boldsymbol{s}^{\mu},\boldsymbol{F}) = \boldsymbol{s}^{\mu} (\nabla^{\boldsymbol{u}}\boldsymbol{F})^{-1} - \operatorname{tr}((\nabla^{\boldsymbol{u}}\boldsymbol{F})^{-1}\nabla^{\boldsymbol{u}^{2}}\boldsymbol{F})(\nabla^{\boldsymbol{u}}\boldsymbol{F})^{-1}) \circ \boldsymbol{F}^{-1}$$

If F_βμ = μ, and F is chaotic, U(·, F) is a contraction with s^μ as fixed point [C and Wang SIAM Appl. Dyn. Sys 2022, Ni 2022]

Score operator conditioned on unstable manifolds

$$\mathfrak{G}(\boldsymbol{s}^{\mu},\boldsymbol{F}) = \boldsymbol{s}^{\mu} (\nabla^{\boldsymbol{u}} \boldsymbol{F})^{-1} - \operatorname{tr}((\nabla^{\boldsymbol{u}} \boldsymbol{F})^{-1} \nabla^{\boldsymbol{u}^{2}} \boldsymbol{F}) (\nabla^{\boldsymbol{u}} \boldsymbol{F})^{-1}) \circ \boldsymbol{F}^{-1}$$

- If F_#μ = μ, and F is chaotic, U(·, F) is a contraction with s^μ as fixed point [C and Wang SIAM Appl. Dyn. Sys 2022, Ni 2022]
- Fixed point iteration produces target score s^μ anywhere with exponential precision.

Score operator conditioned on unstable manifolds

$$\mathfrak{G}(\boldsymbol{s}^{\mu},\boldsymbol{F}) = \boldsymbol{s}^{\mu} (\nabla^{\boldsymbol{u}}\boldsymbol{F})^{-1} - \operatorname{tr}((\nabla^{\boldsymbol{u}}\boldsymbol{F})^{-1}\nabla^{\boldsymbol{u}^{2}}\boldsymbol{F})(\nabla^{\boldsymbol{u}}\boldsymbol{F})^{-1}) \circ \boldsymbol{F}^{-1}$$

- If F_#μ = μ, and F is chaotic, U(·, F) is a contraction with s^μ as fixed point [C and Wang SIAM Appl. Dyn. Sys 2022, Ni 2022]
- Fixed point iteration produces target score s^μ anywhere with exponential precision.
- With target score, can use any score-based sampling algorithm in reduced dimension.

A dynamical view of sampling and generative modeling

Dimension reduction in sampling/GM via projections on unstable manifolds

A dynamical view of sampling and generative modeling

Dimension reduction in sampling/GM via projections on unstable manifolds

Jacobian-matching leads to statistical accuracy in chaotic systems

A dynamical view of sampling and generative modeling

Dimension reduction in sampling/GM via projections on unstable manifolds

Jacobian-matching leads to statistical accuracy in chaotic systems

For robust GMs, finite time Lyapunov vectors of the generating process span the tangent bundle of the data manifold

References: C and de Clercq, 2025 (submitted); Park, Yang and C, NeuRIPS 2024; C, Schafer, Marzouk AISTATS 2024.

Approximate {*T_{W_i}*} for different noise paths *W_i* using only forward process

Solve for a map T_W for a new W using operator-valued kernel regression

- Given samples x₁, · · · , x_m ~ ν, generate more samples from ν.
- A deterministic nonparametric transport method derived with an operator root-finding principle.

- Given samples x₁, · · · , x_m ~ ν, generate more samples from ν.
- A deterministic nonparametric transport method derived with an operator root-finding principle.
- Newton-like features: unstable, converges fast

- Given samples x₁, · · · , x_m ~ ν, generate more samples from ν.
- A deterministic nonparametric transport method derived with an operator root-finding principle.
- Newton-like features: unstable, converges fast
- Global nature of elliptic PDE helps i) avoid mode collapse and ii) capture tails

- Given samples x₁, · · · , x_m ~ ν, generate more samples from ν.
- A deterministic nonparametric transport method derived with an operator root-finding principle.
- Newton-like features: unstable, converges fast
- Global nature of elliptic PDE helps i) avoid mode collapse and ii) capture tails
- Next steps: nonparametric PDE solves e.g. particle vortex methods, smooth particle hydrodynamics, PINNs etc.

- Given samples x₁, · · · , x_m ~ ν, generate more samples from ν.
- A deterministic nonparametric transport method derived with an operator root-finding principle.
- Newton-like features: unstable, converges fast
- Global nature of elliptic PDE helps i) avoid mode collapse and ii) capture tails
- Next steps: nonparametric PDE solves e.g. particle vortex methods, smooth particle hydrodynamics, PINNs etc.
- Low-rank approximations of elliptic PDE solution?

- Given samples x₁, · · · , x_m ~ ν, generate more samples from ν.
- A deterministic nonparametric transport method derived with an operator root-finding principle.
- Newton-like features: unstable, converges fast
- Global nature of elliptic PDE helps i) avoid mode collapse and ii) capture tails
- Next steps: nonparametric PDE solves e.g. particle vortex methods, smooth particle hydrodynamics, PINNs etc.
- Low-rank approximations of elliptic PDE solution?
- Projected Bayesian filtering in chaotic systems

C, Schäfer, Marzouk AISTATS 2024

• Dynamical system: $X_{t+1} = \varphi(X_t)$

- Dynamical system: $X_{t+1} = \varphi(X_t)$
- Hidden orbit: $x, \varphi(x), \varphi^2(x), \cdots$,

- Dynamical system: $X_{t+1} = \varphi(X_t)$
- Hidden orbit: x, $\varphi(x)$, $\varphi^2(x)$, \cdots ,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$

- Dynamical system: $X_{t+1} = \varphi(X_t)$
- Hidden orbit: $x, \varphi(x), \varphi^2(x), \cdots$,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$
- At observation time *t*, want to sample $v_t \equiv \mathbb{P}(X_t | Y_1, \dots, Y_t) \propto \ell(y_t, \cdot) \ \varphi_{\sharp} v_{t-1}$, filtering distribution

- Dynamical system: $X_{t+1} = \varphi(X_t)$
- Hidden orbit: $x, \varphi(x), \varphi^2(x), \cdots$,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$
- At observation time *t*, want to sample $v_t \equiv \mathbb{P}(X_t | Y_1, \dots, Y_t) \propto \ell(y_t, \cdot) \ \varphi_{\sharp} v_{t-1}$, filtering distribution
- Pushforward: $\pi = \varphi_{\sharp} \mu = \mu \circ \varphi^{-1}$ or if $x \sim \mu$, $\varphi(x) \sim \pi$.

- Dynamical system: $X_{t+1} = \varphi(X_t)$
- Hidden orbit: $x, \varphi(x), \varphi^2(x), \cdots$,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$
- At observation time *t*, want to sample $v_t \equiv \mathbb{P}(X_t | Y_1, \dots, Y_t) \propto \ell(y_t, \cdot) \ \varphi_{\sharp} v_{t-1}$, filtering distribution
- Pushforward: $\pi = \varphi_{\sharp} \mu = \mu \circ \varphi^{-1}$ or if $x \sim \mu$, $\varphi(x) \sim \pi$.

Absolutely continuous conditional structure

Absolutely continuous conditional structure

- Empirical density of a perturbed Baker's map
- Unstable manifold 1D roughly horizontal curves.

Absolutely continuous conditional structure

- Empirical density of a perturbed Baker's map
- Unstable manifold 1D roughly horizontal curves.
- SRB measure may be singular

► Need $s_t(x) = \nabla \rho_{1-t}(x)$ to simulate reverse process

- ► Need $s_t(x) = \nabla \rho_{1-t}(x)$ to simulate reverse process
- Approximate {*T_{Wi}*} for different noise paths *W_i* using only forward process (using Koopman operator methods)

- ► Need $s_t(x) = \nabla \rho_{1-t}(x)$ to simulate reverse process
- Approximate {*T_{Wi}*} for different noise paths *W_i* using only forward process (using Koopman operator methods)

Solve for a map T_W for a new W using operator-valued kernel regression

Projected SCONE

Similar derivation for operator \mathcal{U}

Projected SCONE

Similar derivation for operator U

▶ $v \in (E^u)^*$ solutions of projected SCONE iteration

Score Operator Newton Transport
► Latent SDE/ODE approach [Kidger et al 2022]: $F_{ls} := f_{\theta} \circ \Phi_{\Phi}^{t} \circ g_{\Phi},$

- ► Latent SDE/ODE approach [Kidger et al 2022]: $F_{ls} := f_{\theta} \circ \Phi_{\Phi}^{t} \circ g_{\Phi},$
- $g_{\Phi} : \mathbb{R}^d \to \mathbb{R}^{d_l}$, an embedding from the data to latent space (\mathbb{R}^{d_l}) , with $g_{\Phi \sharp} \mu = q_{\Phi,0}$.

- ► Latent SDE/ODE approach [Kidger et al 2022]: $F_{ls} := f_{\theta} \circ \Phi_{\Phi}^{t} \circ g_{\Phi},$
- $g_{\Phi} : \mathbb{R}^d \to \mathbb{R}^{d_l}$, an embedding from the data to latent space (\mathbb{R}^{d_l}) , with $g_{\Phi \sharp} \mu = q_{\Phi,0}$.
- ► Latent dynamics: $\Phi_{\Phi}^{t} : \mathbb{R}^{d_{l}} \to \mathbb{R}^{d_{l}}$; pushforward distributions $\Phi_{\Phi \sharp}^{t} q_{\Phi,0} = q_{\Phi,t}$.

- ► Latent SDE/ODE approach [Kidger et al 2022]: $F_{ls} := f_{\theta} \circ \Phi_{\Phi}^{t} \circ g_{\Phi},$
- $g_{\Phi} : \mathbb{R}^d \to \mathbb{R}^{d_l}$, an embedding from the data to latent space (\mathbb{R}^{d_l}) , with $g_{\Phi \sharp} \mu = q_{\Phi,0}$.
- ► Latent dynamics: $\Phi_{\Phi}^{t} : \mathbb{R}^{d_{l}} \to \mathbb{R}^{d_{l}}$; pushforward distributions $\Phi_{\Phi \sharp}^{t} q_{\Phi,0} = q_{\Phi,t}$.
- ► Decoder: $f_{\theta} : \mathbb{R}^{d_l} \to \mathbb{R}^d f_{\theta \sharp} q_{\phi,t} = p_{\theta}(\cdot | Z_t).$

$$\ell_{\mathrm{ls}}(X_{1:m}, (\phi, \theta)) := \sum_{t=1}^{T} \mathbb{E}_{z_t \sim q_{\phi,t}(\cdot | X_{1:T})} [-\log p_{\theta}(x_t | z_t)] + \mathrm{KL}(q_{\phi,0}(\cdot | X_{1:T}) \| p_{Z_0}),$$

 $= L(y, \cdot) \times F_{\sharp} \mu / Z$ target likelihood prior

 $= L(y, \cdot) \times F_{\sharp} \mu / Z$ target likelihood prior

Goal: to sample efficiently from ν

Goal: to sample efficiently from $\boldsymbol{\nu}$

A statistically consistent sampler \implies reliable estimates of state given past observations

- Dynamical system: $x_{t+1} = \varphi(x_t)$
- Hidden orbit: x, $\varphi(x)$, $\varphi^2(x)$, \cdots ,

- Dynamical system: $x_{t+1} = \varphi(x_t)$
- Hidden orbit: x, $\varphi(x)$, $\varphi^2(x)$, \cdots ,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$

- Dynamical system: $x_{t+1} = \varphi(x_t)$
- Hidden orbit: $x, \varphi(x), \varphi^2(x), \cdots$,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$
- At observation time t, ν_t ∝ ℓ(y_t, ·) φ_µν_{t-1}, filtering distribution

- Dynamical system: $x_{t+1} = \varphi(x_t)$
- Hidden orbit: x, $\varphi(x)$, $\varphi^2(x)$, \cdots ,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$
- At observation time t, ν_t ∝ ℓ(y_t, ·) φ_µν_{t−1}, filtering distribution
- ▶ Physical measure: $\text{Unif}(x_0, x_1, \cdots, x_t) \xrightarrow{t \to \infty} \mu = \nu_0$ for Leb a.e. x_0 .

- Dynamical system: $x_{t+1} = \varphi(x_t)$
- Hidden orbit: x, $\varphi(x)$, $\varphi^2(x)$, \cdots ,
- ▶ Observation: $Y_t = h(X_t) + \epsilon_t$, Likelihood: $x \rightarrow \ell(y, x)$
- At observation time t, ν_t ∝ ℓ(y_t, ·) φ_µν_{t−1}, filtering distribution
- ▶ Physical measure: $\text{Unif}(x_0, x_1, \cdots, x_t) \xrightarrow{t \to \infty} \mu = \nu_0$ for Leb a.e. x_0 .