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Singular measures with densities on an unknown data
manifold

[ Pope et al 2021 ]
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Singular measures with densities on an unknown data
manifold

measure continuous on unstable

manifold — 1D roughly horizontal
[ Pope et al 2021 ] curves. [ C and Wang, 2022 |
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Three ways to sample

Generative modeling: when are generative models ro-
bust to learning errors?

C and de Clercq, 2025

Learning dynamics: learning statistically accurate
chaotic timeseries from data

Park, Yang and C, NeuRIPS 2024
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Robustness of the support: generating from the data
manifold

—1 0 1 1 0 1

» Formalize sampling from the data manifold?
> Distinguish GMs based on robustness of the predicted
support?
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Dynamical formulation of generative models
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samples from pyata.
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2015 ], v¢(x) = s(x, t), scores of densities of a noising
process initialized with X; ~ pgata-

> In conditional flow matching variants, stochastic interpolant
variants [ Liu 2022, Lipman et al 2023, Tong et al 2023, Albergo
et al 2023 ], flow of v;(x) transports probability densities from
Po (easy) 10 Pdata (target)

> £(0) = Eq xp,l|Vo,i(Xt) — vi(X3)||%,

> 0p;/0t = —div(v; pt), With pr = Pyata-
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Errors in dynamical generative models

Score based generative model [ Song and Ermon, 2021 ]

How do regression errors (£(6)) propagate along v;?

Are some generative models more robust to errors?
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Non-autonomous dynamics of score generative models

P> Reverse process, more generally, any coupling between pg
with density pg and pqata (target) with (approximate) density
Pr.
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Non-autonomous dynamics of score generative models

P> Reverse process, more generally, any coupling between pg
with density pg and pqata (target) with (approximate) density
Pr.

> FtW =FW o...0Fis arandom dynamical system, where
at each time t, we choose FV ~ ;.

» Discrete-time RDS: W = {W;} iid standard normal RVs.

> For SGM: FV(x) = x + (8t)s(x, T — t) + /5t W,

W; ~ N(0, 1d).

» Markov chain with time-dependent transition kernel:
ki(x, A) =P(W : FW( ) € A) =my(f: f(x) € A)

> pri1(X) = Lipe(x) = [ pe(x,y) pe(y) dy

> Lyapunov exponents (finite time): perturbation evolutions
through dF "W [ Kifer, Young, Ledrappier, Pesin, Arnold, ... ]
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Infinitesimal perturbations to nonautonomous systems
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Infinitesimal perturbations to nonautonomous systems

Sample Space

F:, a diffeomorphism at time t. Probability space

Evolution/pushforward opera-

dF;, a linear map on tangent
! > s tor: pri1 == Fpr

space that evolves infinitesi-
mal perturbations

When p; has density p;,

X — X + eut(x), then, or1 = Ly pt

o Fi(x+ ew(x)) — Fi(x) = pto Fy ' /ldetdF| o F;
Utr1(Fi(x)) :== lim
+ €e—0 €

= dFi(x) ur(x)
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Error evolution in tangent space,

urr1(Fe(x)) := e”ipo -

= dF(x) ur(x) +x¢(x)

Fi,e(x) — Fi(x)

Probability space

Perturbed evolution/-
pushforward operator:

Pt+1,e ‘= Ft,eﬁpt,e

When p; ¢ has density py,

Pt+1,e = Lt,e Pt e
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Response theory of diffusion models

> Errorsin learning v;: when v; — v; + €xt, Ft = Fre, Lt —
Lt,e

» What is the change in pr = pgata?

» Robustness of support to errors?

(f,0cle—oBw L2 po) = (,Ew 9 LT |c—opo)

T—1
aepT,e(X’r :_p'r XT Z le Xt Xt+1
t=0

+ Xt (Xt1) - St41 (Xe1))

» Can distinguish generative models based on robustness
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When do inexact generative models still sample the
support?

SGM/Diffusion:

Left: unperturbed; Right:
perturbed
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When do inexact generative models still sample the
support?
Conditional flow matching:

SGM/Diffusion:

unperturbed

CFM. eps = 1.0

Left: unperturbed; Right: | @ N e

perturbed '
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When do inexact generative models still sample the
support?
Conditional flow matching:

SGM/Diffusion:

unperturbed

CFM. eps = 1.0

0.1958
01740

2 ' 01523
\ o303

o o088
0.0870

]

nnnnn

Left: unperturbed; Right:
perturbed

-2

-50 -25 00 25 50

perturbed

What dynamics leads to robustness of support? o)
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Sensitive subspaces
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Dynamical GM: Fi(x) = Fo---o0

Construction:
Fo(x)

» Ey: d <= Drandom
vector fields, normalized
» dFt Et:= Et1 Ry,
t<T(QR
Eiiq(Fi(x)) = Iim0 Fe(x + €E¢(€X)) — A(x) decomposition)
€—

= dFi(x) Ei(x)

> E;(x) € RP*9: orthonormal basis of most sensitive subspace at x.

» Asymptotic convergence to Oseledets subspaces of backward
Lyapunov vectors [ Arnold, Random Dynamical Systems; Oseledets,
Pesin, Kifer... ]

> In finite time, E; related to top d eigenvectors of dF’ (dF!)T
(Cauchy-Green tensor)

» Mean (over time) Log-diagonal of R;: top d Lyapunov exponents.

Tangent dynamics
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Most sensitive subspaces of diffusion models

3,

Left to right: Unperturbed; Perturbed; Top Lyapunov vector aligns with
tangent bundle of target support.
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Most sensitive subspaces of diffusion models

Left to right: Unperturbed; Perturbed; Top Lyapunov vector aligns with
tangent bundle of target support.

Does reverse process learn data manifold? [ Pidstrigach 2022;
Stanczuk et al 2024; Kadkhodaie et al 2024; Chen, Huang, Zhao, and
Wang 2023; Lee Lu Tan 2023; Mimikos-Stamatopoulos, Zhang,
Katsoulakis 2024 ]
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Alignment of least stable Lyapunov vectors implies
robustness of support

Let supp(Paata) = M, a d-dimensional subset of RP.

Alignment: E;(x) spans TyM (most sensitive subspace is
tangent to the data manifold)

Proposition (informal): a convergent and aligned generative
model learns the support of the target.

Proof sketch:
> X1, , Xm~ Ddata Ca@n be mapped to yy, -, ¥m ~ pr,e St
||xi — yi|l ~ O(e®) whp. (From convergence)
> x; — y; parallel to E¢(x;)
» Margin of one-class classifier learned on x; does not change
on y;
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Aligned generative models can learn the support

- ] .:.:. |-|:I_-I--_--:7-1
- X
-
fo

::]-':-F :
I |
| .H 1
IH..-

Source sample

16/35



Aligned generative models can learn the support

.,. ___.:_ b e
i " L

.'Fé_",.;

Source sample Predicted

16/35



Aligned generative models can learn the support

0 e b e
P !

+ most sensitive

Source sample Predicted LV

16/35



Aligned generative models can learn the support

ol e R
B 18 s
'.H =y

Source sample  Predicted ;:VmOSt sensitive 4 ooth LV

16/35



Aligned generative models can learn the support

0 e b e
P !

Source sample  Predicted ;:VmOSt sensitive 4 ooth LV

“] Lyapunov
| exponents

0 200 400 600 800

Index 16/35



When can we expect alignment?

Theorem (informal): If F* is compressive overall, v; is uni-
formly compressive for t close to T, and v; has small cross-
derivatives, alignment holds.

17/35



When can we expect alignment?

Theorem (informal): If F* is compressive overall, v; is uni-
formly compressive for t close to T, and v; has small cross-
derivatives, alignment holds.

Evolution of score components, s; := d log p;, along most sensitive
subspaces:

(St11 Eti1) o Fr=s Bt Ry —tr((dF; 0P Fy) ER;.

17/35



When can we expect alignment?

Theorem (informal): If F* is compressive overall, v; is uni-
formly compressive for t close to T, and v; has small cross-
derivatives, alignment holds.

Evolution of score components, s; := d log p;, along most sensitive
subspaces:

(St11 Eti1) o Fr=s Bt Ry —tr((dF; 0P Fy) ER;.

» s. € (TM)* for singular targets

17/35



When can we expect alignment?

Theorem (informal): If F* is compressive overall, v; is uni-
formly compressive for t close to T, and v; has small cross-
derivatives, alignment holds.

Evolution of score components, s; := d log p;, along most sensitive
subspaces:

(St11 Eti1) o Fr=s Bt Ry —tr((dF; 0P Fy) ER;.

» s. € (TM)* for singular targets
» Compression = |detRy| < 1.
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The dynamics of alignment: the vector field is a uniform

attractive force at the end
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Less alignment leads to less robustness
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Robustness of non-aligned models
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Robustness of non-aligned models
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The dynamics of robust generative models

» Alignment of most sensitive LVs with tangent spaces of the
data manifold leads to robustness
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The dynamics of robust generative models

» Alignment of most sensitive LVs with tangent spaces of the
data manifold leads to robustness

» Some compressive dynamics can lead to alignment
> Aligned and convergent GMs are manifold learners

Lemma: Alignment property is regular. ]

> An aligned GM retains alignment under perturbations.
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Generative models for chaotic systems: setup

» Given m samples, {(x;, F(xt))}t<m, can we learn
Fan(Xt) = X1 = F(xt)?
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Generative models for chaotic systems: setup

» Given m samples, {(x;, F(xt))}t<m, can we learn
Fan(Xt) = X1 = F(xt)?

> ... while also ensuring F,, is physical?

» That is, does F,, sample from u?

» Optimize over neural representations Fon
€(x, Fon) = ||F(Xx) — Fan Hz

» Training loss: Rs(Fy (1/m) > est(x, Fun), S~ u™.
» Neural ODE [Chen etal 2018 ]:
d t d
dt(pnn( ) - VHH((pnn(X))v X E R . (1)

> Fix some 5t and set F = ¢°, where do!(x)/dt = v(p!(x))
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Physical neural parameterization via minimizing MSE

0.0041 /| —— Train 010 . —— Train
Test 0.08 w Test
0.002 0.06
i 0.04
0.000
4000 6000 8000 10000 4000 6000 8000 10000
Epochs Epochs

Good “generalization” performance.

Several different architectures and hyperparameter choices
produce acceptable generalization error = Ey £(X, Fun).
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Generalization —- learning dynamics?

Lyapunov Exponent
True LE ~ [0.9, 0, -14.5]
Neural ODE | [0.8926, —0.0336, —6.0616]
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Lyapunov Exponent

~[0.9, 0, -14.5]

[0.8926, —0.0336, —6.0616]

True LE
Neural ODE
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Jacobian-matching loss

| Lyapunov Exponent

True LE

| ~[0.9,0,-14.5]

Neural ODE
+Jacobian info

[0.8926, —0.0336, —6.0616]
[0.9022, —0.0024, —14.4803]

» Modified loss:

0(x, Fon) = || Fan(X) — F(X)||2 + A||dFun(x) — dF (x)|2
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> Modified loss:
U(x, Fan) = [[Fan(x) — F(x)[[Z 4+ Al[dFan (x) — dF (x)|]?

» With modified loss, statistical moments (correlations, LEs) are
accurate

» Physical measure: Unif(xg, X1, , X) t — o0 u for Leb a.e.
X0-

> (1/T) ZKTJ(X[) t— o0 Ex~u J(x), for Leb a.e. xp.
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C' matching of vector field leads to learning physical

measure
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C' matching of vector field leads to learning physical
measure

MSE Res JAC Res
1 True
0.04 [ Model |0.04
0.02 0.02 [ True
[ Model
0.00 5160 200 300 °-00=30 0 30

> is Jacobian-matching always enough to learn physical
dynamics?

» comparison against generative modeling of the physical
measure?
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Generalization and shadowing

» Good generalization with Jacobian loss (Ex- . £(x, Fun)) =
shadowing holds w.h.p.
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Generalization and shadowing

v

Good generalization with Jacobian loss (Ex-, {(x, Fnn)) =
shadowing holds w.h.p.

Jacobian-matching leads to learning shadowing orbits w.h.p.
No shadowing guarantee for MSE loss.

W (x) = Unif(x, F(x),---, F™(x)).

wm(x) = Unif(x, Fan(Xx), -+, F(x)).

vvyyypy

Let F,, be a model of F that satisfies i)C' strong gen-
eralization and i) limy 0o W' (12 (x), u) < ez w.h.p.
Then, w.h.p., limp oo W (U, 1) =~ 0.
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MSE Res JAC Res
[ True
0.04 1 Model |0.04
0.02 0.02 1 True
[ Model
00065100 200 300°%%9-30 0 20
Norm Difference

Model  Loss  W*(fis00, inn,500)  ||A — Axn||  [[{2)500 — (@)500,n5% ]|
MLP MSE 18.9711 9.6950 15.2220
MLP JAC 0.6800 0.0118 0.6524
ResNet MSE 1.3567 10.8516 0.7760
ResNet JAC 0.1433 0.0106 0.0559
FNO MSE 10.5409 22.1600 9.4270
FNO JAC 1.3076 0.0505 0.9748
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Left: KS solutions; Center: NN network based on MSE loss; Right:
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[0.0665, -0.0004 [0.0008,-0.0285 [0.0609, -0.0004

Réssler -5.4112] -1.4108] -5.3808]

Hvoerch [4.0039, 0.0082 [4.1393, 0.0955 [4.3789, -0.1617
yperchaos -19.9972, -48.0205]  -15.2120, -29.9480]  -19.9974, -48.0205]

[0.3036, 0.2733, [0.1652, 0.1647, [0.2904, 0.2622,
0.2592, 0.2257, 0.1540, 0.1524, 0.2293, 0.1990,
0.2050, 0.1888, 0.1443,0.1411, 0.1701, 0.1584,
Kuramoto- 0.1649, 0.1496, 0.1336, 0.1262, 0.1320, 0.1071,
Sivashinsky 0.1288, 0.1128, 0.1236, 0.1143, 0.0912, 0.0724,
0.0992, 0.0776, 0.1141,0.1091, 0.0591, 0.0442,
0.0646, 0.0492, 0.1045, 0.0971, 0.0306, 0.0157,

0.0342 ] 0.0985 ] 0.0023, ]

Only 2 out of first 64 LEs predicted with < 10% error
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Score learning to sample from chaotic systems?

Generative modeling: want samples from v given
X, Xm~ VY
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Generative modeling: want samples from v given
X1, Xm~ YV

Goal: exploit dynamical systems theory for dimension reduction

Sampling: want samples from a target measure v given
score, V log pY

C, Schifer and Marzouk, AISTATS 2024; C and Wang SIAM J.
Appl. Dyn. Sys 2022
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Sampling via measure transport

> Target measure: 1 with density p*.
» Tractable source measure v with density p"“.
» supp(v) = X and supp(pn) =Y.
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Sampling via measure transport

> Target measure: 1 with density p*.
» Tractable source measure v with density p"“.
» supp(v) = X and supp(pn) =Y.

A transport map T : X — Y is an invertible transformation
such that Tyv = p.

The score of a probability measure p with density p* is
V log p*.

Known prior score =—> known target score

v =Ly,) x Fu/Z
=) \u/li/

target jikelihood  prior

32/35



The score operator

Change of variables/pushforward operation:

pv o T—1

¥ = oo
|detV T|o T—1

Pushforward operation on scores:

S(s,U) = (s(VU) ' = VlogldetVU|(VU) ") o U"
= (s(VU) " —tr (VU)'VAU) (VU) ") o U,
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Score operator conditioned on unstable manifolds

G(s*, F) = s (VYF)! — tr((VYF) V¥ F)(VYF) 1) o F'

» If Fyu = w, and F is chaotic, U(-, F) is a contraction with s* as
fixed point [ C and Wang SIAM Appl. Dyn. Sys 2022, Ni 2022 ]
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Score operator conditioned on unstable manifolds

G(s*, F) = s (VYF)! — tr((VYF) V¥ F)(VYF) 1) o F'

» If Fyu =, and F is chaotic, U(-, F) is a contraction with s* as
fixed point [ C and Wang SIAM Appl. Dyn. Sys 2022, Ni 2022 ]

» Fixed point iteration produces target score s* anywhere with
exponential precision.

> With target score, can use any score-based sampling
algorithm in reduced dimension.

34/35



A dynamical view of sampling and generative modeling

Dimension reduction in sampling/GM via projections on un-
stable manifolds
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A dynamical view of sampling and generative modeling

Dimension reduction in sampling/GM via projections on un-
stable manifolds

Jacobian-matching leads to statistical accuracy in chaotic
systems

.

For robust GMs, finite time Lyapunov vectors of the generat-
ing process span the tangent bundle of the data manifold

J

References: C and de Clercq, 2025 (submitted); Park, Yang and C,
NeuRIPS 2024; C, Schafer, Marzouk AISTATS 2024.
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Operator approximation to replace score learning for the
reverse process

» Approximate { T} for different noise paths W; using only
forward process

Solve for a map Ty for a new W using operator-valued
kernel regression

1/9



Score Operator Newton construction: can be used for
sampling, generative modeling, Bayesian inference and
filtering in chaotic systems
» Given samples x1, - -+, Xm ~ v, generate more samples from
V.

> A deterministic nonparametric transport method derived with
an operator root-finding principle.
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Score Operator Newton construction: can be used for

sampl

>

ing, generative modeling, Bayesian inference and
filtering in chaotic systems

Given samples xq, - - - , Xm ~ Vv, generate more samples from

V.

A deterministic nonparametric transport method derived with
an operator root-finding principle.

Newton-like features: unstable, converges fast

Global nature of elliptic PDE helps i) avoid mode collapse and
i) capture tails

Next steps: nonparametric PDE solves e.g. particle vortex
methods, smooth particle hydrodynamics, PINNs etc.
Low-rank approximations of elliptic PDE solution?

Projected Bayesian filtering in chaotic systems

C, Schafer, Marzouk AISTATS 2024
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Absolutely continuous conditional structure

» Empirical density of a perturbed Baker’s map
> Unstable manifold — 1D roughly horizontal curves.
> SRB measure may be singular
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Projected SCONE

» Similar derivation for operator U
> v e (EY)* solutions of projected SCONE iteration

Score Operator Newton Transport

Input: po(src score), q(tar score) =L (p— q)i
Output: Target samples /1 Solve PDE___}
Maps Scores

v srcscore, py v on
tar score, g
! :  tarscore, ¢

Glpotd+v)

o 7T e T
/ Id+ v
—— source, py Densities =X
\ target \ /, \ target
L (Id + v)y / \ WA
S S B H |
¥/ O J ‘\\

~

)
L

6/9



Generative modeling of physical measure

> Latent SDE/ODE approach [ Kidger et al 2022 ]:
Fe:="y od)fb ° go,
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Generative modeling of physical measure

> Latent SDE/ODE approach [ Kidger et al 2022 ]:
Fe:="y od)fb ° go,

> g4 : RY — RY, an embedding from the data to latent space
(R%), with gzt = Ggp 0-

» Latent dynamics: (Dib : R% — RY; pushforward distributions
DY4de.0 = Qo -

> Decoder: fg : R — R foyqq,.+ = po(1Z;).

T

Us(Xrm, (6,0)) = Y Ez gy ,(-1xr) [— 108 Po (x1]22)]
t=1

+ KL(qg,0(-1X1:7)[|pz,).

719
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get distribution (e.g., a Bayesian posterior) when partially
specified

8/9



An efficient algorithm to sample from a high-dimensional tar-
get distribution (e.g., a Bayesian posterior) when partially
specified

Q= Ly ) x Ay /Z

~——
target jikglihood  prior

8/9



An efficient algorithm to sample from a high-dimensional tar-
get distribution (e.g., a Bayesian posterior) when partially
specified

Q= Ly ) x Ay /Z

~——
target jikglihood  prior

Goal: to sample efficiently from v

8/9



An efficient algorithm to sample from a high-dimensional tar-
get distribution (e.g., a Bayesian posterior) when partially
specified

Q= Ly ) x Ay /Z

~——
target jikglihood  prior

Goal: to sample efficiently from v

A statistically consistent sampler = reliable estimates of
state given past observations

8/9
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