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Singular measures with densities on an unknown data
manifold

[ Pope et al 2021 ]

measure continuous on unstable
manifold – 1D roughly horizontal
curves. [ C and Wang, 2022 ]

2 / 35



Singular measures with densities on an unknown data
manifold

[ Pope et al 2021 ]

measure continuous on unstable
manifold – 1D roughly horizontal
curves. [ C and Wang, 2022 ]

2 / 35



Downstream task: Bayesian computation (inverse
problems/data assimilation)

Hidden orbit: x ,F (x),F 2(x), · · · ,

Target: Xt or parameters of F
given observations
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Three ways to sample

Generative modeling: when are generative models ro-
bust to learning errors?

C and de Clercq, 2025

Learning dynamics: learning statistically accurate
chaotic timeseries from data

Park, Yang and C, NeuRIPS 2024

Learning scores + sampling: any dynamical measure
transport

C, Schäfer and Marzouk, AISTATS 2024
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Robustness of the support: generating from the data
manifold

▶ Formalize sampling from the data manifold?
▶ Distinguish GMs based on robustness of the predicted

support?

5 / 35



Robustness of the support: generating from the data
manifold

▶ Formalize sampling from the data manifold?

▶ Distinguish GMs based on robustness of the predicted
support?

5 / 35



Robustness of the support: generating from the data
manifold

▶ Formalize sampling from the data manifold?
▶ Distinguish GMs based on robustness of the predicted

support?

5 / 35



Dynamical formulation of generative models

▶ Given samples x1, · · · , xm ∼ pdata, xi ∈ RD, generate more
samples from pdata.

▶ Learned vector field: x → vt(x) ∈ TxRD

▶ In score-based diffusion [ Anderson 1982; De Bortoli et al,
Song and Ermon 2019, Song et al 2020, Sohl-Dickstein et al
2015 ], vt(x) ≡ s(x , t), scores of densities of a noising
process initialized with xi ∼ pdata.

▶ In conditional flow matching variants, stochastic interpolant
variants [ Liu 2022, Lipman et al 2023, Tong et al 2023, Albergo
et al 2023 ], flow of vt(x) transports probability densities from
p0 (easy) to pdata (target)

▶ ℓ(θ) = Et,Xt∼pt∥vθ,t(Xt) − vt(Xt)∥2,

▶ ∂pt/∂t = −div(vt pt), with pτ ≡ pdata.
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Errors in dynamical generative models

Score based generative model [ Song and Ermon, 2021 ]

How do regression errors (ℓ(θ)) propagate along vt?

Are some generative models more robust to errors?
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Non-autonomous dynamics of score generative models

▶ Reverse process, more generally, any coupling between p0

with density ρ0 and pdata (target) with (approximate) density
ρτ.

▶ F t,W = F W
t−1 ◦ · · · ◦ F W

0 is a random dynamical system, where
at each time t , we choose F W

t ∼ πt .

▶ Discrete-time RDS: W = {Wt } iid standard normal RVs.
▶ For SGM: F W

t (x) = x + (δt)s(x , τ− t) +
√
δt Wt ,

Wt ∼ N(0, Id).
▶ Markov chain with time-dependent transition kernel:

κt(x ,A) = P(W : F W
t (x) ∈ A) = πt(f : f (x) ∈ A)

▶ ρt+1(x) = Ltρt(x) =
∫

pt(x , y) ρt(y) dy
▶ Lyapunov exponents (finite time): perturbation evolutions

through dF T ,W [ Kifer, Young, Ledrappier, Pesin, Arnold, ... ]
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Infinitesimal perturbations to nonautonomous systems
Sample Space

Ft , a diffeomorphism at time t .

dFt , a linear map on tangent
space that evolves infinitesi-
mal perturbations

x → x + ϵut(x), then,

ut+1(Ft(x)) := lim
ϵ→0

Ft(x + ϵut(x)) − Ft(x)
ϵ

= dFt(x) ut(x)

Probability space

Evolution/pushforward opera-
tor: pt+1 := Ft♯pt

When pt has density ρt ,

ρt+1 = Lt ρt

:= ρt ◦ F−1
t /|detdFt | ◦ F−1

t
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Finite-time perturbation theory

Sample Space

Ft,ϵ(x) = Ft(x) + ϵ χt(x),
map at time t with learning
errors.

Perturbed dynamics:
F t
ϵ(x) := Ft,ϵ◦· · ·◦F0,ϵ(x)

Error evolution in tangent space,

ut+1(Ft(x)) := lim
ϵ→0

Ft,ϵ(x) − Ft(x)
ϵ

= dFt(x) ut(x) + χt(x)

Probability space

Perturbed evolution/-
pushforward operator:
pt+1,ϵ := Ft,ϵ♯pt,ϵ

When pt,ϵ has density ρt ,

ρt+1,ϵ = Lt,ϵ ρt,ϵ

:= ρt,ϵ ◦ F−1
t,ϵ /|detdFt,ϵ| ◦ F−1

t,ϵ
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Response theory of diffusion models

▶ Errors in learning vt : when vt → vt + ϵχt , Ft → Ft,ϵ, Lt →
Lt,ϵ

▶ What is the change in ρτ ≡ pdata?
▶ Robustness of support to errors?

⟨f ,∂ϵ|ϵ=0EW Lτ,W
ϵ ρ0⟩ = ⟨f ,EW ∂ϵL

τ,W
ϵ |ϵ=0ρ0⟩

∂ϵρτ,ϵ(xτ) = −ρτ(xτ)
T−1∑
t=0

(
div(χt)(xt+1)

+ χt(xt+1) · st+1(xt+1)
)

▶ Can distinguish generative models based on robustness
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When do inexact generative models still sample the
support?

SGM/Diffusion:

Left: unperturbed; Right:
perturbed

Conditional flow matching:

unperturbed

perturbed

What dynamics leads to robustness of support?
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Sensitive subspaces

Dynamical GM: F t(x) := Ft ◦ · · · ◦
F0(x)

Tangent dynamics

Et+1(Ft(x)) := lim
ϵ→0

Ft(x + ϵEt(x)) − Ft(x)
ϵ

= dFt(x) Et(x)

Construction:
▶ E0: d <= D random

vector fields, normalized
▶ dFt Et := Et+1 Rt+1,

t ⩽ τ (QR
decomposition)

▶ Et(x) ∈ RD×d : orthonormal basis of most sensitive subspace at x .
▶ Asymptotic convergence to Oseledets subspaces of backward

Lyapunov vectors [ Arnold, Random Dynamical Systems; Oseledets,
Pesin, Kifer... ]

▶ In finite time, Et related to top d eigenvectors of dF t (dF t)⊤

(Cauchy-Green tensor)
▶ Mean (over time) Log-diagonal of Rt : top d Lyapunov exponents.
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Most sensitive subspaces of diffusion models

Left to right: Unperturbed; Perturbed; Top Lyapunov vector aligns with
tangent bundle of target support.

Does reverse process learn data manifold? [ Pidstrigach 2022;
Stanczuk et al 2024; Kadkhodaie et al 2024; Chen, Huang, Zhao, and
Wang 2023; Lee Lu Tan 2023; Mimikos-Stamatopoulos, Zhang,
Katsoulakis 2024 ]

14 / 35



Most sensitive subspaces of diffusion models

Left to right: Unperturbed; Perturbed; Top Lyapunov vector aligns with
tangent bundle of target support.
Does reverse process learn data manifold? [ Pidstrigach 2022;
Stanczuk et al 2024; Kadkhodaie et al 2024; Chen, Huang, Zhao, and
Wang 2023; Lee Lu Tan 2023; Mimikos-Stamatopoulos, Zhang,
Katsoulakis 2024 ]

14 / 35



Alignment of least stable Lyapunov vectors implies
robustness of support

Let supp(pdata) = M, a d-dimensional subset of RD.

Alignment: Et(x) spans TxM (most sensitive subspace is
tangent to the data manifold)

Proposition (informal): a convergent and aligned generative
model learns the support of the target.

Proof sketch:
▶ x1, · · · , xm ∼ pdata can be mapped to y1, · · · , ym ∼ pτ,ϵ s.t.

∥xi − yi∥ ∼ O(ϵc) whp. (From convergence)
▶ xi − yi parallel to Et(xi)

▶ Margin of one-class classifier learned on xi does not change
on yi
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Aligned generative models can learn the support

Source sample

Predicted
+ most sensitive
LV

+ 100th LV

Index

Lyapunov
exponents
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When can we expect alignment?

Theorem (informal): If Fτ is compressive overall, vt is uni-
formly compressive for t close to τ, and vt has small cross-
derivatives, alignment holds.

Evolution of score components, st := d log pt , along most sensitive
subspaces:

(st+1 Et+1) ◦ Ft = st Et R−1
t − tr((dF−1

t d2Ft) EtR−1
t .

▶ sτ ∈ (TM)⊥ for singular targets
▶ Compression =⇒ |detRt | < 1.
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The dynamics of alignment: the vector field is a uniform
attractive force at the end

18 / 35



The dynamics of alignment: the vector field is a uniform
attractive force at the end

19 / 35



The dynamics of alignment: the vector field is a uniform
attractive force at the end

19 / 35



Less alignment leads to less robustness

Histograms of angles b/w top LV (most sensitive subspace) and
target score for OT-CFM (left), CFM (center) and Stochastic
Interpolants (right).
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Robustness of non-aligned models
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The dynamics of robust generative models

▶ Alignment of most sensitive LVs with tangent spaces of the
data manifold leads to robustness

▶ Some compressive dynamics can lead to alignment
▶ Aligned and convergent GMs are manifold learners

Lemma: Alignment property is regular.

▶ An aligned GM retains alignment under perturbations.
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Generative models for chaotic systems: setup

▶ Given m samples, {(xt ,F (xt))}t⩽m, can we learn
Fnn(xt) ≈ xt+1 = F (xt)?

▶ ... while also ensuring Fnn is physical?
▶ That is, does Fnn sample from µ?
▶ Optimize over neural representations Fnn

ℓ(x ,Fnn) = ∥F (x) − Fnn(x)∥2

▶ Training loss: RS(Fnn) = (1/m)
∑

x∈S ℓ(x ,Fnn), S ∼ µm.

▶ Neural ODE [ Chen et al 2018 ]:

d
dt
φt

nn(x) = vnn(φt
nn(x)), x ∈ Rd . (1)

▶ Fix some δt and set F ≡ φδt , where dφt(x)/dt = v(φt(x))
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Physical neural parameterization via minimizing MSE

Good “generalization” performance.

Several different architectures and hyperparameter choices
produce acceptable generalization error = Ex∼µℓ(x ,Fnn).
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Generalization =⇒ learning dynamics?

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]
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Jacobian-matching loss

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]
+Jacobian info [0.9022,−0.0024,−14.4803]

▶ Modified loss:
ℓ(x ,Fnn) = ∥Fnn(x) − F (x)∥2 + λ∥dFnn(x) − dF (x)∥2

▶ With modified loss, statistical moments (correlations, LEs) are
accurate

▶ Physical measure: Unif(x0, x1, · · · , xt) t → ∞−−−−→ µ for Leb a.e.
x0.

▶ (1/T )
∑

t⩽T J(xt) t → ∞−−−−→ Ex∼µ J(x), for Leb a.e. x0.
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▶ Modified loss:
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▶ With modified loss, statistical moments (correlations, LEs) are
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▶ Physical measure: Unif(x0, x1, · · · , xt) t → ∞−−−−→ µ for Leb a.e.
x0.

▶ (1/T )
∑

t⩽T J(xt) t → ∞−−−−→ Ex∼µ J(x), for Leb a.e. x0.

26 / 35



Jacobian-matching loss

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]
+Jacobian info [0.9022,−0.0024,−14.4803]

▶ Modified loss:
ℓ(x ,Fnn) = ∥Fnn(x) − F (x)∥2 + λ∥dFnn(x) − dF (x)∥2

▶ With modified loss, statistical moments (correlations, LEs) are
accurate

▶ Physical measure: Unif(x0, x1, · · · , xt) t → ∞−−−−→ µ for Leb a.e.
x0.

▶ (1/T )
∑

t⩽T J(xt) t → ∞−−−−→ Ex∼µ J(x), for Leb a.e. x0.

26 / 35



Jacobian-matching loss

Lyapunov Exponent
True LE ≈ [0.9, 0, -14.5]

Neural ODE [0.8926,−0.0336,−6.0616]
+Jacobian info [0.9022,−0.0024,−14.4803]

▶ Modified loss:
ℓ(x ,Fnn) = ∥Fnn(x) − F (x)∥2 + λ∥dFnn(x) − dF (x)∥2

▶ With modified loss, statistical moments (correlations, LEs) are
accurate

▶ Physical measure: Unif(x0, x1, · · · , xt) t → ∞−−−−→ µ for Leb a.e.
x0.

▶ (1/T )
∑

t⩽T J(xt) t → ∞−−−−→ Ex∼µ J(x), for Leb a.e. x0.

26 / 35



C1 matching of vector field leads to learning physical
measure

▶ is Jacobian-matching always enough to learn physical
dynamics?

▶ comparison against generative modeling of the physical
measure?
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Generalization and shadowing

▶ Good generalization with Jacobian loss (Ex∼µℓ(x ,Fnn)) =⇒
shadowing holds w.h.p.

▶ Jacobian-matching leads to learning shadowing orbits w.h.p.
▶ No shadowing guarantee for MSE loss.
▶ µsh

m (x) = Unif(x ,F (x), · · · ,F m(x)).
▶ µm(x) = Unif(x ,Fnn(x), · · · ,F m

nn(x)).

Let Fnn be a model of F that satisfies i)C1 strong gen-
eralization and ii) limm→∞ W 1(µsh

m (x),µ) ⩽ ϵ2 w.h.p.
Then, w.h.p., limm→∞ W 1(µnn

m ,µ) ≈ 0.
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Left: KS solutions; Center: NN network based on MSE loss; Right:
Jacobian-matching loss

Only 2 out of first 64 LEs predicted with < 10% error
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Score learning to sample from chaotic systems?

Generative modeling: want samples from ν given
x1, · · · , xm ∼ ν

Goal: exploit dynamical systems theory for dimension reduction

Sampling: want samples from a target measure ν given
score, ∇ log ρν

C, Schäfer and Marzouk, AISTATS 2024; C and Wang SIAM J.
Appl. Dyn. Sys 2022
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Sampling via measure transport

▶ Target measure: µ with density ρµ.
▶ Tractable source measure ν with density ρν.
▶ supp(ν) = X and supp(µ) = Y.

A transport map T : X → Y is an invertible transformation
such that T♯ν = µ.

The score of a probability measure µ with density ρµ is
∇ log ρµ.

Known prior score =⇒ known target score

ν︸︷︷︸
target

= ℓ(y , ·)︸ ︷︷ ︸
likelihood

× F♯µ︸︷︷︸
prior

/Z
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The score operator

Change of variables/pushforward operation:

ρµ =
ρν ◦ T−1

|det∇T | ◦ T−1

Pushforward operation on scores:

G(s,U) =
(
s(∇U)−1 −∇ log |det∇U |(∇U)−1) ◦ U−1

=
(
s (∇U)−1 − tr

(
(∇U)−1∇2U

)
(∇U)−1) ◦ U−1,

33 / 35



Score operator conditioned on unstable manifolds

G(sµ,F ) = sµ (∇uF )−1 − tr((∇uF )−1∇u2
F )(∇uF )−1) ◦ F−1

▶ If F♯µ = µ, and F is chaotic, U(·,F ) is a contraction with sµ as
fixed point [ C and Wang SIAM Appl. Dyn. Sys 2022, Ni 2022 ]

▶ Fixed point iteration produces target score sµ anywhere with
exponential precision.

▶ With target score, can use any score-based sampling
algorithm in reduced dimension.
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A dynamical view of sampling and generative modeling

Dimension reduction in sampling/GM via projections on un-
stable manifolds

Jacobian-matching leads to statistical accuracy in chaotic
systems

For robust GMs, finite time Lyapunov vectors of the generat-
ing process span the tangent bundle of the data manifold

References: C and de Clercq, 2025 (submitted); Park, Yang and C,
NeuRIPS 2024; C, Schafer, Marzouk AISTATS 2024.
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Operator approximation to replace score learning for the
reverse process

▶ Approximate {TWi } for different noise paths Wi using only
forward process

▶

Solve for a map TW for a new W using operator-valued
kernel regression

1 / 9



Score Operator Newton construction: can be used for
sampling, generative modeling, Bayesian inference and
filtering in chaotic systems

▶ Given samples x1, · · · , xm ∼ ν, generate more samples from
ν.

▶ A deterministic nonparametric transport method derived with
an operator root-finding principle.

▶ Newton-like features: unstable, converges fast
▶ Global nature of elliptic PDE helps i) avoid mode collapse and

ii) capture tails
▶ Next steps: nonparametric PDE solves e.g. particle vortex

methods, smooth particle hydrodynamics, PINNs etc.
▶ Low-rank approximations of elliptic PDE solution?
▶ Projected Bayesian filtering in chaotic systems

C, Schäfer, Marzouk AISTATS 2024
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Bayesian data assimilation

▶ Dynamical system: Xt+1 = φ(Xt)

▶ Hidden orbit: x ,φ(x),φ2(x), · · · ,
▶ Observation: Yt = h(Xt) + ϵt , Likelihood: x → ℓ(y , x)
▶ At observation time t , want to sample

νt ≡ P(Xt |Y1, · · · ,Yt) ∝ ℓ(yt , ·) φ♯νt−1, filtering distribution
▶ Pushforward: π = φ♯µ = µ ◦φ−1 or if x ∼ µ, φ(x) ∼ π.
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Absolutely continuous conditional structure

▶ Empirical density of a perturbed Baker’s map

▶ Unstable manifold – 1D roughly horizontal curves.
▶ SRB measure may be singular
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Operator approximation to replace score learning for the
reverse process

▶ Need st(x) = ∇ρ1−t(x) to simulate reverse process

▶ Approximate {TWi } for different noise paths Wi using only
forward process (using Koopman operator methods)

▶

Solve for a map TW for a new W using operator-valued
kernel regression
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Projected SCONE

▶ Similar derivation for operator U

▶ v ∈ (Eu)∗ solutions of projected SCONE iteration
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Generative modeling of physical measure

▶ Latent SDE/ODE approach [ Kidger et al 2022 ]:
Fls := fθ ◦Φt

ϕ ◦ gϕ,

▶ gϕ : Rd → Rdl , an embedding from the data to latent space
(Rdl ), with gϕ♯µ = qϕ,0.

▶ Latent dynamics: Φt
ϕ : Rdl → Rdl ; pushforward distributions

Φt
ϕ♯qϕ,0 = qϕ,t .

▶ Decoder: fθ : Rdl → Rd fθ♯qϕ,t = pθ(·|Zt).

▶

ℓls(X1:m, (ϕ, θ)) :=
T∑

t=1

Ezt∼qϕ,t(·|X1:T )[− log pθ(xt |zt)]

+KL(qϕ,0(·|X1:T )∥pZ0),
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An efficient algorithm to sample from a high-dimensional tar-
get distribution (e.g., a Bayesian posterior) when partially
specified

ν︸︷︷︸
target

= L(y , ·)︸ ︷︷ ︸
likelihood

× F♯µ︸︷︷︸
prior

/Z

Goal: to sample efficiently from ν

A statistically consistent sampler =⇒ reliable estimates of
state given past observations
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Motivating problem: Bayesian data assimilation/Bayesian
inference

▶ Dynamical system: xt+1 = φ(xt)

▶ Hidden orbit: x ,φ(x),φ2(x), · · · ,
▶ Observation: Yt = h(Xt) + ϵt , Likelihood: x → ℓ(y , x)
▶ At observation time t , νt ∝ ℓ(yt , ·) φ♯νt−1, filtering

distribution
▶ Physical measure: Unif(x0, x1, · · · , xt) t → ∞−−−−→ µ = ν0 for

Leb a.e. x0.
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