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Do you trust your theorem?

Does Optimal results really 
gives me guarantee?

Theorem If you randomly collect (  ) 
data, then you can achieve (  ) 
accuracy with your AI! 
Relu network is optimal for function regression 
PINN is optimal for differential equation solving 
Diffusion Model is optimal for density estimation 
Transformer is optimal for in-context learning 
… 

Big Constant

Global optimization, the structure of target function, 
The smoothness of ReLU, lower bound of …p(x)



Consider How you use ChatGPT…

What is the most efficient route from Times Square 
to Chelsea Market that minimizes walking?

Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the 
Times Sq–42nd Street station.

2. Board the E Train: Catch an E train heading 
downtown (toward World Trade Center).

3. Ride to 8th Avenue–14th Street Station: Get off at 
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk 
east on 14th Street for a few blocks until you reach 
Chelsea Market at 75 9th Avenue.

double-check  
with a map

15-th street

2 stops for A

3 stops for C/E

Port Authortiy

1/2/3+L line is 
best choice

1. At Times Square: Enter the Times Square–42nd Street 
station.

2. Board the 1 Train: Hop on a downtown 1 train (the 
red line).

3. Ride to 14th Street: Stay on until you reach the 14th 
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th 
Avenue—this drop-off point is just a short walk from 
Chelsea Market (located at 75 9th Ave).



Inference Time Scaling Law



How can we perform Inference-Time Scaling for 
Scientific Machine Learning?

With trustworthy garuntee



How can we perform Inference-Time Scaling for 
Scientific Machine Learning?

With trustworthy garuntee

don’t  fine-tune/retrain/add a new surrogate model

“Physics-informed”



Tale 1: Debiasing 
Hybrid Scientific Computing and Machine Learning



Physics-Informed Inference Time Scaling
f

̂f

Evaluate the error
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̂f

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model

This Position Paper: 
 Aggregate step 1 and step 2 

via First-Principle
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Step 1. Train a Surrogate (ML) Model
Step 2. Correct with a Trustworthy Solver

Finite Element

Optimizer

Correction enables
Inference Time Scaling

Simulation



Our Framework
Step 1: Sceintific Computing as Machine Learning

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Scientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))

Example 3  θ = A, Xi = (xi, Axi)
Estimation  via Randomized SVD̂A

Example 2  θ = Δ−1f, Xi = (xi, f(xi))

Function fitting

Solving PDE

Solving Δu = f



Our Framework
Step 2: Consider a Downstream Application

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))

Example 3  θ = A, Xi = (xi, Axi)

Example 2  θ = Δ−1f, Xi = (xi, f(xi))

Φ(θ) = ∫ f(x)dx

Φ(θ) = (Δ−1f )(x)

Φ(θ) = tr(A), eigs(A)



Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

AIM: Compute   during Inference 
time

Φ( ̂θ) − Φ(θ)

Using (stochastic) simulation to calibrate the (scientific) machine learning output !



Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with biased machine learning estimator

How to estimate ?Φ( ̂θ) − Φ(θ)

Why it is easier than directly estimate ?Φ(θ) Variance Reduction

Physics-Informed! (Structure of )Φ



Our Framework

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

AIM: Unbiased prediction even with 
biased machine learning estimator

Eigenvalue Solver

Qudrature Rule

PDE Solver



Debiasing a Machine Learning Solution
f

̂f

Evaluate the error

f

̂f

Step 1: Machine learning model fit rough information Step 2: Evaluating the error of the Machine Learning model

This Position Paper: 
 Aggregate step 1 and step 2 

via First-Principle

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

̂f
“piece-wise polynomial”->Simpson Rule



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

̂f
Estimate 𝔼P f ≈ 𝔼P

̂f
+𝔼 ̂P f − ̂f

An estimate to Φ( ̂θ) − Φ(θ)

Our Approah



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

̂f Estimate 𝔼P f ≈ 𝔼 ̂P f

Monte Carlo?



Debiasing a Machine Learning Solution

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Temperature, overall velocity… 

Regression-adjusted Control Variates Doubly Robust Estimator …

- Investigated the optimality of the SCaSML Framework

- Jose Blanchet, Haoxuan Chen, Yiping Lu, Lexing Ying. When can Regression-Adjusted Control Variates Help? Rare 

Events, Sobolev Embedding and Minimax Optimality Neurips 2023


- Extend to nonlinear functional estimation using iterative methods Later

Multi-fidelity monte carlo
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Lower Bound
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A single spike
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Magnitude of the spike



25

Optimal Algorithms
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Easiest Understanding
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Regression-adjusted Control Variate

finite/infinite 
variance

A different Transition Point
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Easiest Understanding
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Regression-adjusted Control Variate

“no rare event”
xy = x ̂y + x(y − ̂y)
xy = ̂xy + y(x − ̂x)

xy = ̂yx + ̂xy − ̂x ̂y + (y − ̂y)(x − ̂x)

Smaller errorSCaSML  
Debiasing

Convergence rate: n−α

Convergence rate: n−β

Convergence rate: n−(β+α)

Function estimation
Monte Carlo
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Easiest Understanding
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Why…

30

−1/2

Smoothness s

Truncate Monte Carlo

1
p

−
s
d

=
1
2q

Minimax rate

max {( 1
p

−
s
d ) q − 1, −

1
2

−
s
d }

Regression-adjusted Control Variate

“no rare event”“finite variance 
Rare event”

Why there is a transition point
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Analysis of Error propagation
estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq) How does step2 variance 

depend on estimation error?

Hardness = The variance of the debasing step 
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Analysis of Error propagation
estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq)

fq−1( f − ̂f ) + ( f − ̂f )q

Low order term

“influnce function” (gradient) Error propagation

How does step2 variance 
depend on estimation error?
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Analysis of Error propagation
estimate of 𝔼P fq, f ∈ Ws,p

Step 1 Using half of the data to estimate  ̂f
Step 2 𝔼P fq = 𝔼P( ̂fq) + 𝔼P( fq − ̂fq)

fq−1( f − ̂f ) + ( f − ̂f )q

Low order term

“influnce function” (gradient) Error propagation

Embed  and   into “dual” spacef q−1 f − ̂f

How to select the 
Sobolev emebedding?
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Selecting the Sobolev Embedding
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L
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p − 2

Choose an embedding both good for evaluating the 
semi-parametric hardness and function estimation

Regression-adjusted Control Variate

 dominatesf q−1( f − ̂f )

Easiest Sobolev 
embedding for estimation

Select Sobolev embedding
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Selecting the Sobolev Embedding
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Lp

L
2pq − 2p

p − 2

Choose an embedding both good for evaluating the 
semi-parametric hardness and function estimation

Regression-adjusted Control Variate

Select Sobolev embedding

Largest possible 
Sobolev embedding

 dominates( f − ̂f )q
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Take Home Message on the Theory

x

Y

(a)

Y

(b)

Rare and extreme event

a) Statistical optimal regression is the optimal control variate 
b) It helps only if there isn’t a hard to simulate (infinite variance) 
Rare and extreme event

q control the extremeness



Neurips 

2023
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PDE Solver



High Dimensional PDE-Solving

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)
Xi = (xi, Δu(xi))

PDE R.h.s PDE solution
u Mean/Variance/u(x)

PINN/DRM/Neural Galerkin

Let’s consider Δu = f

Δu = f

Δ ̂u = ̂f
Δ(u − ̂u) = f − ̂f

(u − ̂u)(x) = 𝔼∫ ( f − ̂f )(Xt)dt
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PDE R.h.s PDE solution
u Mean/Variance/u(x)
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Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

Can you do simulation 
for nonlinear equation?

 is linear!Δ



Works for Semi-linear PDE
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∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t)  is the error made by NNg(x, t)

NN



Works for Semi-linear PDE

∂U
∂t

(x, t) + ΔU(x, t) + f(U(x, t)) = 0
Keeps  the structure to enable brownian motion simulation

∂Û
∂t

(x, t) + ΔÛ(x, t) + f(Û(x, t)) = g(x, t)  is the error made by NNg(x, t)

NN

Subtract two equations

∂(U − Û)
∂t

(x, t) + Δ(U − Û)(x, t)) + f(t, Û(x, t) + U(x, t) − Û(x, t)) − f(t, Û(x, t))

G(t, (U − Û)(x, t))

= g(x, t) .

Keeps the linear structure



Numerical Results



Inference-Time Scaling
∂
∂t

u + [σ2u −
1
d

−
σ̄2

2 ](∇ ⋅ u) +
σ̄2

2
Δu = 0 have closed-form solution  g(x) =

exp(T + ∑i xi

1 + exp(T + ∑i xi)

Method Convergence Rate

PINN

MLP

ScaSML

O(n−s/d)

O(n−1/4)

O(n−1/4−s/d)



Better Scaling Law



Arxiv

https://2prime.github.io/files/scasml_techreport.pdf
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No Simulation cost is needed
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When Neural Network is bad

Provide pure Simulation solution 
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Today 
Using Simulation to 

Calibrate ML



A multiscale view

Capture via surrogate model

Capture via Monte-Carlo



More Examples…

{X1, ⋯, Xn} ∼ ℙθ → ̂θ → Φ( ̂θ)
Downstream applicationScientific Machine Learning

Example 1  θ = f, Xi = (xi, f(xi))  Φ(θ) = ∫ f q(x)dx

Example 3  θ = A, Xi = (xi, Axi)  Φ(θ) = tr(A)
Estimation  via Randomized SVD̂A Estimate  via Hutchinson's estimatortr(A − ̂A)

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20 

Application in graph theory, quantum …

Example 2  θ = Δ−1f, Xi = (xi, f(xi))  Φ(θ) = θ(x)



Tale 2: Pre-condition 
with a surprising connection with debiasing



Tale 2: Preconditioning

Nothing will be more central to computational 
science in the next century than the art of 
transforming a problem that appears intractable into 
another whose solution can be approximated 
rapidly.



What is precondition

• Solving  is equivalent to solving Ax = b B−1Ax = B−1b
hardness depend on κ(A) hardness depend on κ(B−1A)

Become easier when B ≈ A



A New Way to Implement  Precondition

• Debiasing is a way of solving 


• Using an approximate solver 

Ax = b

Bx1 = b
Error depends on ∥A−1(A − B)∥



A New Way to Implement  Precondition

• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate   via 

Ax = b

Bx1 = b

x − x1 A(x − x1) = b − Ax1

x − x1 Bx2 = b − Ax1
Easy to solve for  is smallb − Ax1



• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate  via 

Ax = b

Bx1 = b

x −
t

∑
i=1

xi A(x −
t

∑
i=1

xi) = b − A
t

∑
i=1

xi

x −
t

∑
i=1

xi Bxi+1 = b − A
t

∑
i=1

xi

A New Way to Implement  Precondition

Iterative Refinement Algorithm



• Debiasing is a way of solving 


• Using an approximate solver 


•  satisfies the equation 


• Using the approximate solver to approximate  via 

Ax = b

Bx1 = b

x −
t

∑
i=1

xi A(x −
t

∑
i=1

xi) = b − A
t

∑
i=1

xi

x −
t

∑
i=1

xi Bxi+1 = b − A
t

∑
i=1

xi

A New Way to Implement  Precondition

Iterative Refinement Algorithm

xi+1 = (I − B−1A)xi + B−1b

Preconditioned Jacobi Iteration



This Talk: A New Way to Implement  Precondition
Via Debiasing

• Step 1: Aim to solve (potentially nonlinear) equation 


• Step 2: Build an approximate solver 


• Via machine learning/sketching/finite element….


• Step 3: Solve 

A(u) = b

A( ̂u) ≈ b

u − ̂u

Unrealiable approximate 
solver as preconditioner

Connection with control variate, doubly robust estimator, 
Multifidelity Monte Carlo

use Machine Learning

AIM: Debiasing a  Learned Solution = Using Learned Solution as preconditioner!



Randomized NLA as Machine Learning

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

Xi = (x, Ax) Φ(A) =A
Eigenvalue of A
A−1b

“Randomized Numerical Linear Algebra”/Sketching

“Sketch-and-Solve”



Randomized NLA as Machine Learning

{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

Xi = (x, Ax) Φ(A) =A
Eigenvalue of A
A−1b

Structure here:  is the solution of a fixed point equationΦ

Φ( ̂θ) − Φ(θ) − ∇Φ( ̂θ)( ̂θ − θ) = O(ϵ2)
“A Newton Step”

Exact estimationRadomized estimation
(In)exact Sub-sample Newton Method/Sketch-and-Precondtion



Relationship with Inverse Power Methods

(Approximate) 
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

∇Φ( ̂θ) (θ − ̂θ)



Relationship with Inverse Power Methods

(Approximate) 
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate 

solver  changes the fixed point̂A

Ture eigenvector is the fix point 

for every approximate solver ̂A

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

How you construct such iteration? 
What is the rule of  ?̂A

(Approximate) 
Inverse Power Method Our Method

Xn+1 = (λI − A)†Xn Xn+1 = (λI − ̂A)†(A − ̂A)Xn

Replace with an approximate 

solver  changes the fixed point̂A

Ture eigenvector is the fix point 

for every approximate solver ̂A

Take Hoem Message 1:

Power the Residual but not Power the vector

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD
“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition

Least Square Sketch-and-precondition, Sketch-and-project, 
Iterataive Sketching, ….

Low rank 
Approx

Idea 1: plug in a SVD Solver: Random SVD

Idea 2: plug in a inverse power method Our Work!

Use sketched matrix  as 

an approximation to 

̂A
A

Use sketched matrix  as 

an precondition to the probelm

̂A

Sorry… but I can’t see the 
relationship….

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD
“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition

Least Square Sketch-and-precondition, Sketch-and-project, 
Iterataive Sketching, ….

Low rank 
Approx

Idea 1: plug in a SVD Solver: Random SVD

Idea 2: plug in a inverse power method Our Work!

Use sketched matrix  as 

an approximation to 

̂A
A

Use sketched matrix  as 

an precondition to the probelm

̂A

Idea: using (approximate) Newton method to solve the Lagrange from




Thus Our convergence is linear-quadratic

min
u

u⊤Au − λ(x⊤x − 1)

We only sketch

 the Hessian

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?

Contraction coefficient improves when sketching quality increases



Eigenvalue Computation

Random ill-conditioned matrix Amazon (SNAP)

PDE (Laplacian) Web Stanford (SNAP)



Runing Time



arXiv



Another Supersing Fact…

Iteration lies in the Krylov Subspace

- enable dynamic mode decomposition

- Online fast update

- Much better than DMD



Dynamic Mode Decomposition with Feedback

Time 1

Time 2

Time t



Dynamic Mode Decomposition with Feedback

Time 1

Time 2

Time t
Measure the error

Provide feedback



Another Supersing Fact…

Iteration lies in the Krylov Subspace

- enable dynamic mode decomposition

- Online fast update

- Much better than DMD

No matrix inverse, No SVD computation 

Only a  QR decomposition


(Everything has a closed-form solution)
n × r



Prediction of Tube Flow



One more thing…

Iterative 
debiasing

Newton 
Methods

<—
>

Easier for numerical stability computation

Algorithms can do online computation

Easier for convergence analysis

AISTATS 

2025
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{X1, ⋯, Xn} ∼ ℙθ → θ → Φ(θ)
Step 1: Using Machine Learning to fit the rough function/environment 

Step 2: Using validation dataset to know how much mistake machine  
learning algorithm has made  f

̂f

Step 3: Using Simulation algorithm to estimate Φ(θ) − Φ( ̂θ) Examples Later!

What is SCaSML about?

Using ML surrogate during inference time to improve ML solution


