
Architectural Nuances and
Benchmark Gaps in Scientific ML:

Two vignettes

Andrej Risteski
(Carnegie Mellon University)

Two major ingredients that fueled modern ML

Architectures Benchmarks

Convolution

Residual connections

Attention

U-net Transformer

Scientific ML: less settled ground

Flurry of architectural work, but less settled understanding
(A variety of graph neural networks (GNNs), Fourier & scale-aware architectures, symmetry-aware architectures…)

Benchmarks often too easy, missing crucial desiderata, misaligned w/ application domain,…

Figure from (Raonić et al ‘23) Figure from (Li et al ‘21)Figure from (Veličkovic ́ et al ‘21)

This talk

Two vignettes of modest architectural changes mattering in the right regimes:

Part I: Message-passing GNNs which maintain edge embeddings

when the graph has bottlenecks & memory is bounded.

Part II: Time-dependent PDE solvers which use memory

explicitly and the system is partially observed.

Common benchmarks would not have revealed these effects!

Part I: The value of edge embeddings
for memory-bounded GNNs

Tanya Marwah
(CMU →

Flatiron Institute)

Zack C. Lipton
(CMU &
Abridge)

Jianfeng Lu
(Duke)

Ankur Moitra
(MIT)

Dhruv Rohatgi
(MIT)

A primer on (message-passing) graph neural networks

1 2

3 4

GNNs are a generic approach to ML tasks involving graphs:

Node-level or edge-level prediction (e.g. predicting type of node or

edge), graph-level prediction (e.g. predicting properties of molecule), …

GNNs learn a message-passing protocol P: (ℝd)V→ (ℝk)V on a graph G = V, E .

ℎ4
(0)

ℎ2
(0)ℎ2
(1)

ℎ4
(1)ℎ3

(0)ℎ3
(1)

ℎ1
(0)ℎ1
(1)ℎ1

(0) ℎ2
(0)

ℎ3
(0) ℎ4

(0)

ℎ1
ℎ2
ℎ3
ℎ4

...
ℎ1

(𝑇𝑇) ℎ2
(𝑇𝑇)

ℎ3
(𝑇𝑇) ℎ4

(𝑇𝑇)

𝑃𝑃(ℎ)

States {ℎ𝑖𝑖
(𝑇𝑇)} aggregated to produce predictions

(typically just linear “read-off” layers)

Motivation: Protocol parametrized to make
{ℎ𝑖𝑖

(𝑡𝑡)} equivariant to node permutations.

A primer on (message-passing) graph neural networks

Much work on expressive power from the point-of-view of
invariance, i.e. relationships to Weisfeihler-Lehman
isomorphism tests. (Xu et al ‘19, Maron et al ‘19, Huang & Villar ‘21)

We view GNN’s as a “computational machine” which receives inputs (=initial
node features) and tries to compute some (symmetric) function (in a local,
distributed fashion).

Symmetry lens:

If the nodes have natural “resource bounds” (e.g. memory),
what kind of impact do they have representationally?

Does a GNN architecture necessarily output the same values
even if two graphs are non-isomorphic?

Computational machine lens:

A modest architectural change: edge-based GNNs

The “processors” in the message-passing protocol can also lie on the edges of the graph:

vs

Introduced for “edge-centric” tasks (Cai et al. ‘21; Liang & Pu ‘23) for which we often have rich
input edge features (Gilmer et al. ‘17; Choudhary & DeCost ‘21).

Question: Are the benefits mostly/solely due to richer input data,
or do edge-embeddings confer representational benefits?

Node-based GNN Edge-based GNN

Theoretical abstractions (node variant)

Definition (informal). A node message-passing protocol 𝑃𝑃 on graph 𝐺𝐺, given inputs
{𝐼𝐼𝑣𝑣}𝑣𝑣∈𝑉𝑉 iteratively computes:

ℎ𝑣𝑣
(𝑡𝑡) ≔ 𝑓𝑓𝑣𝑣

𝑡𝑡 ℎ𝑤𝑤
𝑡𝑡−1 :𝑤𝑤 ∈ 𝑁𝑁𝐺𝐺 𝑣𝑣 , ℎ𝑣𝑣

(0) ≔ 𝐼𝐼𝑣𝑣

Moreover, nodes are memory-constrained: 𝐵𝐵 ≔ max
𝑡𝑡,𝑣𝑣

BITCOMPLEXITY ℎ𝑣𝑣
𝑡𝑡

& the update functions are invariant to node indices.

A protocol 𝑃𝑃 with T rounds implements a function 𝑔𝑔:Φ𝑉𝑉 → {0,1}𝑉𝑉 if:

∀𝑣𝑣 ∈ 𝑉𝑉,∀𝐼𝐼: 𝑃𝑃𝑇𝑇,𝑣𝑣 𝐼𝐼 = 𝑔𝑔 𝐼𝐼 𝑣𝑣

Memory constraints model bounded dimensionality of latent representations (w/ finite precision).
No computational constraints on 𝑓𝑓𝑣𝑣

𝑡𝑡 : makes lower bounds stronger!

Read: there exists a GNN with depth T that implements the function g.

ℎ𝑣𝑣
(𝑡𝑡), when initialized

with ℎ(0) = 𝐼𝐼

Alphabet for inputs

Theoretical abstractions (edge variant)

Definition (informal). An edge message-passing protocol 𝑃𝑃 on graph 𝐺𝐺, given inputs
{𝐼𝐼𝑣𝑣}𝑣𝑣∈𝑉𝑉 iteratively computes:

ℎ𝑒𝑒
(𝑡𝑡) ≔ 𝑓𝑓𝑒𝑒

𝑡𝑡 ℎ𝑒𝑒𝑒
𝑡𝑡−1 : 𝑒𝑒𝑒 ∈ 𝑀𝑀𝐺𝐺 𝑒𝑒 , ℎ𝑒𝑒

(0) ≔ {{𝐼𝐼𝑢𝑢, 𝐼𝐼𝑣𝑣}}

Moreover, nodes are memory-constrained: 𝐵𝐵 ≔ max
𝑡𝑡,𝑣𝑣

BITCOMPLEXITY ℎ𝑒𝑒
𝑡𝑡

& the update functions are invariant to node indices.

A protocol 𝑃𝑃 with T rounds implements a function 𝑔𝑔:Φ𝑉𝑉 → {0,1}𝑉𝑉 if:

∀𝑣𝑣 ∈ 𝑉𝑉,∀𝐼𝐼: 𝑓𝑓𝑣𝑣 𝑃𝑃𝑇𝑇,𝑒𝑒 𝐼𝐼 : 𝑣𝑣 ∈ 𝑒𝑒 = 𝑔𝑔 𝐼𝐼 𝑣𝑣

Memory constraints model bounded dimensionality of latent representations (w/ finite precision).
In all our constructions, the functions 𝑓𝑓𝑒𝑒

𝑡𝑡 are exceedingly simple.

Read: there exists a GNN with depth T that implements the function g.

{{ }} = multiset

Symmetric “read-off”
functions

Main results

Thm 1 (informal). For any 𝑛𝑛, there is a graph with 𝑂𝑂(𝑛𝑛) vertices, and a function 𝑔𝑔: 0,1 𝑉𝑉 → 0,1 𝑉𝑉

which can be implemented by an edge protocol with 𝐵𝐵 = 𝑂𝑂(1) and 𝑇𝑇 = 𝑂𝑂(1).

On the other hand, any node protocol requires 𝑇𝑇𝐵𝐵 = Ω 𝑛𝑛

Thm 2 (informal). We can even construct function 𝑔𝑔: 0,1 𝑉𝑉 → 0,1 𝑉𝑉 representing natural task:

calculating the MAP (= Maximum A-Posteriori) value in a pairwise graphical model.

Read: node-based protocols have to pay either with depth or memory.

Thm 3 (informal). Without memory constraints, any 𝑇𝑇-round edge protocol

can be simulated by a (𝑇𝑇 + 1)-round node protocol.

Read: belief propagation in graphical models cannot be
simulated with a shallow node-based GNN with small memory.

Read: the symmetry lens alone is insufficient to capture separation.

Main intuition: bottleneck nodes

𝐼𝐼0

𝐼𝐼1 𝐼𝐼2 𝐼𝐼𝑛𝑛...

Warm-up task: Each node 𝑖𝑖 > 0 wants to calculate if another
node 𝑗𝑗 > 0 is is equal to it: g 𝐼𝐼 𝑖𝑖 = 1 ∃𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 .

Furthermore, let’s allow larger alphabet: ∀𝑖𝑖 ∈ 𝑛𝑛 , 𝐼𝐼𝑖𝑖 ∈ 𝑛𝑛

• In edge-based protocol, every edge sees every other edge (they are all adjacent).

Intuitions:

To check if node i and node j are the same, just check
if multisets 𝐼𝐼{0,𝑖𝑖} and 𝐼𝐼{0,𝑗𝑗} are equal.

Main intuition: bottleneck nodes

𝐼𝐼0

𝐼𝐼1 𝐼𝐼2 𝐼𝐼𝑛𝑛

• In node-based protocol, node i > 0 can only communicate with node j > 0 via node 0.

...

If memory is bounded by 𝐵𝐵 bits, do we have to pay with rounds?

• In edge-based protocol, every edge sees every other edge (they are all adjacent).

Intuitions:

One option is for node 0 to collect & broadcast all counts, but requires memory ~𝑛𝑛 log𝑛𝑛

Warm-up task: Each node 𝑖𝑖 > 0 wants to calculate if another
node 𝑗𝑗 > 0 is is equal to it: g 𝐼𝐼 𝑖𝑖 = 1 ∃𝑗𝑗, 𝐼𝐼𝑖𝑖 = 𝐼𝐼𝑗𝑗 .

Furthermore, let’s allow larger alphabet: ∀𝑖𝑖 ∈ 𝑛𝑛 , 𝐼𝐼𝑖𝑖 ∈ 𝑛𝑛

The main lemma

Lemma: Consider a “destination” set 𝑆𝑆 and a “bottleneck” set 𝐾𝐾. Let 𝐹𝐹 be the distance 𝑇𝑇-
neighborhood of S in G[�𝐾𝐾]. Then, for any node protocol implementing 𝑔𝑔:

𝑇𝑇𝐵𝐵 𝐾𝐾 ≥ log max
𝐼𝐼𝑭𝑭

|{𝑔𝑔𝑺𝑺 𝐼𝐼𝑭𝑭, 𝐼𝐼�𝑭𝑭 }𝐼𝐼�𝑭𝑭 |

Proof sketch: Values of nodes in 𝑆𝑆
after 𝑇𝑇 rounds can only depend on:

(1) Inputs on nodes within dist. 𝑇𝑇
neighborhood of 𝑆𝑆 in G[�𝐾𝐾], i.e. nodes in 𝐹𝐹.

(2) The protocol values up to round T
of the nodes in 𝐾𝐾.

Thus, for any value of the inputs 𝐼𝐼𝐹𝐹:

{𝑔𝑔𝑺𝑺 𝐼𝐼𝐹𝐹 , 𝐼𝐼 �𝐹𝐹 }𝐼𝐼�𝐹𝐹 ≤ 2𝐵𝐵 𝑇𝑇|𝐾𝐾|

𝐾𝐾
𝑆𝑆

The main lemma

Lemma: Consider a “destination” set 𝑆𝑆 and a “bottleneck” set 𝐾𝐾. Let 𝐹𝐹 be the distance 𝑇𝑇-
neighborhood of S in G[�𝐾𝐾]. Then, for any node protocol implementing 𝑔𝑔:

𝑇𝑇𝐵𝐵 𝐾𝐾 ≥ log max
𝐼𝐼𝑭𝑭

|{𝑔𝑔𝑺𝑺 𝐼𝐼𝑭𝑭, 𝐼𝐼�𝑭𝑭 }𝐼𝐼�𝑭𝑭 |

Related ideas in two areas of TCS:

𝐾𝐾
𝑆𝑆

• ”Flow” between variables in functions in
time-space tradeoffs (Grigoriev ‘76, Savage ‘98)

• ”Light-cone” techniques in lower bounds
for distributed computation
(e.g. LOCAL in Linial ‘92, CONGEST in Peleg ‘92)

Using the lemma for warm-up task

𝐼𝐼0

𝐼𝐼1 𝐼𝐼2 𝐼𝐼𝑛𝑛/2... 𝐼𝐼𝑛𝑛/2+1 ... 𝐼𝐼𝑛𝑛

Take K = {0}, S = {n/2 + 1, … ,𝑛𝑛}.

Then, G[�𝐾𝐾]= isolated nodes {1, … ,𝑛𝑛}.

Thus, 𝐹𝐹 = [𝑛𝑛/2 + 1,𝑛𝑛] and �𝐹𝐹 = [1,𝑛𝑛/2]

Take IF = (1,2, … ,𝑛𝑛/2).

Then, for any string 𝑥𝑥 ∈ {0,1}𝑛𝑛/2 we can “engineer” an input in I �𝐹𝐹 s.t. 𝑔𝑔𝑆𝑆 𝐼𝐼𝐹𝐹 , 𝐼𝐼 �𝐹𝐹 = 𝑥𝑥:

If we want to to make 𝑔𝑔𝑖𝑖 𝐼𝐼𝐹𝐹 , 𝐼𝐼 �𝐹𝐹 = 1, choose 𝐼𝐼𝑖𝑖−𝑛𝑛/2 = 𝐼𝐼𝑖𝑖

If we want to to make 𝑔𝑔𝑖𝑖 𝐼𝐼𝐹𝐹 , 𝐼𝐼 �𝐹𝐹 = 0, choose 𝐼𝐼𝑖𝑖−𝑛𝑛/2 ∈ [𝑛𝑛/2 + 1,𝑛𝑛]

Thus, 𝑇𝑇𝐵𝐵 ≥ log |{𝑔𝑔𝑆𝑆 𝐼𝐼𝐹𝐹 , 𝐼𝐼 �𝐹𝐹 }𝐼𝐼�𝐹𝐹 | = 𝑛𝑛/2 Seems we got a stronger
result than claimed?

Beyond the warm-up: smaller alphabet

The function we constructed has domain 𝑛𝑛 𝑛𝑛. We can also construct function w/ domain {0,1}𝑛𝑛.

Cannot just change domain in construction: node 0 can remember count of 0’s and 1’s
(only log𝑛𝑛 bits needed). In other words, a “compact summary” of inputs suffices.

𝐼𝐼0

𝐼𝐼1 𝐼𝐼2

...

𝐼𝐼 𝑛𝑛

𝐼𝐼1,1 𝐼𝐼1,2 𝐼𝐼1, 𝑛𝑛

...

𝐼𝐼 𝑛𝑛,1 𝐼𝐼 𝑛𝑛,2 𝐼𝐼 𝑛𝑛, 𝑛𝑛

Can simulate large-domain construction by attaching
“subtree” to each node i & “encode inputs in unary”:

...

Solution:

g 𝐼𝐼 𝑖𝑖 = 1(∃𝑗𝑗 s.t., subtree i & j have same # of 1’s)

= 1(∃𝑗𝑗 s.t., i & j have same # neighbors = 1)

This is where we get 𝐵𝐵 𝑇𝑇 = Ω(𝑛𝑛)

Beyond the warm-up: “natural” graph task

Previous function we constructed involves
“higher order” interactions, so graph
topology needs to be modified.

𝑛𝑛

𝑛𝑛

We can also make the task be a canonical
pairwise graphical model task:

Thm 2 (informal). We can even construct function 𝑔𝑔: 0,1 𝑉𝑉 → 0,1 𝑉𝑉 representing natural task:

calculating the MAP (= Maximum A-Posteriori) value in a pairwise graphical model.

argmax𝑥𝑥 �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝐺𝐺)

𝜙𝜙 𝑖𝑖,𝑗𝑗 (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) + �
𝑖𝑖∈𝑉𝑉(𝐺𝐺)

𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖

Idea: ”Copying” rightmost node on each
path to the leftmost end can
be written in the above form.

Remarks

Morally, similar to fine-grained architectural separations in standard deep learning:

• Depth separation for feedforward nets (Telgarsky ’16, Schmidt-Hieber ’19,’20)

• Depth separation for Transformers (Sanford et al ‘24)

Morally, seems related to “over-squashing” ? (Alon & Yadav ‘21)

• Task specification + topological bottlenecks lead to memory/computation bottlenecks:

𝑇𝑇𝐵𝐵 being large means either depth or width has to grow
(unclear how this interacts w/ training dynamics)

• Parallelizability of “sequential tasks” using Transformers? (Liu et al ‘23)

Would common benchmarks catch this?

Idea: “Plant” a dataset on a star graph:

(1) Take edge-based GNN with random weights.

(2) Choose random initial node features.

(3) Set targets to outputs of planted edge GNN (1) w/ initial features (2).

On standard datasets, advantage of edge-based GNNs isn’t substantial:

But, we create simple (synthetic, diagnostic) tasks on which node-based architectures are much worse:

Would common benchmarks catch this?

On standard datasets, advantage of edge-based GNNs isn’t substantial:

But, we create simple (synthetic, diagnostic) tasks on which node-based architectures are much worse:

Outlook

“Natural” way to implement an edge-based architecture is computationally
expensive for hubs: on a degree n star graph, each edge has n neighbors.

Computational challenges:

Thus, “total” computation by all edges is ~𝑛𝑛2 for one standard GCN layer,
whereas it’s ~𝑛𝑛 for a node-based architecture.

Note, a variety of works on “rewiring” the graph, but unclear what kind
of notion of “performance quality” they preserve.
(e.g. Topping et al ’22, Linkerhägner et al ’25,…)

Better benchmarks:

Many current datasets are solved by very simple approaches, so
unclear we are extracting signal (cf. MNIST and CIFAR era in images.)

“Graph tasks” is a very heterogeneous concept: we probably need
more tailored, higher quality benchmarks for each domain.

Part II: The value of memory in
(time-dependent) PDE solvers

Tanya Marwah
(CMU ->

Flatiron Institute)

Albert Gu
(CMU &
Cartesia)

Ricardo Buitrago
(CMU -> Cartesia)

The ML approach to PDE solvers

A common scientific computing primitive: solving (time-dependent) PDEs:

𝜕𝜕𝑡𝑡𝑢𝑢 𝑥𝑥, 𝑡𝑡 = ℒ𝑡𝑡 𝑢𝑢 𝑥𝑥, 𝑡𝑡 , 𝑥𝑥 ∈ Ω, 𝑡𝑡 ≥ 0 Governing equations

𝑢𝑢 𝑥𝑥, 0 = 𝑓𝑓 𝑥𝑥 , 𝑥𝑥 ∈ Ω Initial conditions

𝑢𝑢 𝑥𝑥, 𝑡𝑡 = 𝑔𝑔 𝑥𝑥 , 𝑥𝑥 ∈ 𝜕𝜕Ω, t ≥ 0 Boundary conditions

The machine learning approach:
Instead of running fixed numerical solver,
learn (hopefully faster) solver from data!

(Lu et al. ‘19, Li et al. ’20, Kovachki et al. ‘21,…)

Basic idea: discretize time and treat it as a sequence prediction problem (& unroll to “run” model):

How do we parametrize 𝒢𝒢? (Lots of work!)

Figure from (Raonić et al ‘23)Figure from (Li et al ‘21) Figure from (Cao et al ‘21)

The ML approach to PDE solvers

Modest q: to be Markovian or not to be Markovian ?

Predict

“Markovian” Operator

u t + Δt ≈ 𝒢𝒢t u t

Predict

u t + Δt ≈ 𝒢𝒢t u 0 , u Δt , … u(t)

Operator with memory

(So maybe, if training works, it should be only better?)

Empirical wisdom: Adding memory is not helpful, and possibly sometimes harmful.

(Tram et al ‘23, Lippe et al ‘23)

Maybe sensible, since the PDE we are solving is “Markovian”

𝜕𝜕𝑡𝑡𝑢𝑢 𝑥𝑥, 𝑡𝑡 = ℒ𝑡𝑡 𝑢𝑢 𝑥𝑥, 𝑡𝑡 ?

Potential pros: representationally, including memory is strictly more general.

Potential cons: many natural ways to add memory are computationally expensive.
(e.g., Attention is quadratic in t which is prohibitive for long rollouts & fine discretization)

Only if the initial state is

“fully observed”!

Modest q: to be Markovian or not to be Markovian ?

Mori-Zwanzig-Nakajima formalism

Even for linear operators ℒ:

If we’re observing the initial conditions partially,
(e.g. due to noise, aliasing, equipment imperfections, ..)

the best approximation on the
“observable subspace” is non-Markovian.

Mori-Zwanzig-Nakajima formalism

Suppose 𝜕𝜕𝑡𝑡𝑢𝑢 = ℒ𝑢𝑢 and we’re approximating the system in the image of projection 𝒫𝒫.

”Markovian”
approximation

𝒫𝒫ℒ�
0

𝑡𝑡
exp 𝒬𝒬ℒ 𝑠𝑠 − 𝑡𝑡 𝒬𝒬ℒ𝒫𝒫𝑢𝑢 𝑠𝑠 𝑑𝑑𝑠𝑠𝒫𝒫ℒ𝒫𝒫𝑢𝑢(𝑡𝑡) 𝒫𝒫ℒ exp 𝒬𝒬ℒ𝑡𝑡 𝒬𝒬𝑢𝑢0𝜕𝜕𝑡𝑡𝒫𝒫𝑢𝑢 𝑡𝑡 = + +

Convolution w/
“memory kernel”

Unobservable

Since 𝑢𝑢 = 𝒫𝒫𝑢𝑢 + 𝐼𝐼 − 𝒫𝒫 𝑢𝑢, denoting 𝒬𝒬 ≔ 𝐼𝐼 − 𝒫𝒫 𝑢𝑢, a simple calculation yields:

More formally (Nakajima ’58, Zwanzig ‘60):

The magnitude of the “memory correction” can be arbitrarily large!

The value of memory

Proposition (informal). For any 𝐵𝐵 > 0, there exist ℒ,𝒫𝒫 and 𝑢𝑢 0 , such that:

𝑢𝑢1 𝑡𝑡 − 𝑢𝑢2 𝑡𝑡 ≳ 𝐵𝐵 | 𝑢𝑢1 𝑡𝑡 |

If 𝑢𝑢1(𝑡𝑡) solves 𝜕𝜕𝑡𝑡𝒫𝒫𝑢𝑢1 𝑡𝑡 = 𝒫𝒫ℒ𝒫𝒫𝑢𝑢1 𝑡𝑡 ,

And 𝑢𝑢2(𝑡𝑡) solves 𝜕𝜕𝑡𝑡𝒫𝒫𝑢𝑢2 𝑡𝑡 = 𝒫𝒫ℒ𝒫𝒫𝑢𝑢2(𝑡𝑡) +𝒫𝒫ℒ ∫0
𝑡𝑡 exp 𝒬𝒬ℒ 𝑠𝑠 − 𝑡𝑡 𝒬𝒬ℒ𝒫𝒫𝑢𝑢 𝑠𝑠 𝑑𝑑𝑠𝑠, we have:

𝑢𝑢1 𝑡𝑡 − 𝑢𝑢2 𝑡𝑡 ≳ 𝐵𝐵𝑡𝑡 exp(2𝐵𝐵 𝑡𝑡)

Idea: In Fourier basis {𝑒𝑒𝑖𝑖}𝑖𝑖∈ℕ0, take ℒ such that: ℒ𝑒𝑒𝑛𝑛 = 𝑛𝑛2𝑒𝑒𝑛𝑛 + 𝐵𝐵 𝑒𝑒𝑛𝑛−1 + 𝑒𝑒𝑛𝑛+1

Take 𝒫𝒫 to project to span{𝑒𝑒0, 𝑒𝑒1}.

ℒ “leaks” information outside of 𝒫𝒫 which is dropped by 𝒫𝒫ℒ𝒫𝒫, but recovered by 𝒬𝒬ℒ𝒫𝒫 term.

“Memory-free” soln

“Memory-corrected” soln

(Neurally) operationalizing memory with SSMs

Structured state space models (S4, Gu et al ‘21) parametrize (learned) linear dynamical systems &
are conducive to a highly parallel-efficient “convolutional” evaluation:

ℎ𝑡𝑡+1 = 𝐴𝐴ℎ𝑡𝑡 + 𝐵𝐵 𝑥𝑥𝑡𝑡

𝑦𝑦𝑡𝑡+1 = 𝐶𝐶 ℎ𝑡𝑡 Input

State

Predicted output

Sequential description:

𝑦𝑦𝑡𝑡 = �
𝑠𝑠=0

𝑘𝑘

𝐾𝐾𝑡𝑡−𝑠𝑠 𝑢𝑢𝑠𝑠 = 𝐾𝐾 ⋆ 𝑢𝑢 𝑡𝑡

𝐾𝐾𝑡𝑡 = 𝐶𝐶 𝐴𝐴𝑡𝑡 𝐵𝐵

Convolutional description:

“Structured” A for fast parallel eval of 𝐾𝐾𝑡𝑡
Convolutions are sped up w/ FFT.

(Neurally) operationalizing memory with SSMs

Neural operator is Factorized Fourier Neural Operator (Tran et al ‘21), though in principle
any combination of neural operator & sequence mixer can be used.

M
em

or
y

(S
4)

 L
ay

er

Memory layer has access to all the past states,
but can be parallelized via convolutional interpretation.

Results I: A study in low resolution
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

+ 𝜈𝜈
𝜕𝜕4𝑢𝑢
𝜕𝜕𝑥𝑥4

+
𝑢𝑢𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

= 0Kuramoto-Sivashinsky (1D) with different viscosity 𝜈𝜈:

Advantage is larger for smaller viscosity.
(Smaller viscosity tends to introduce more of higher Fourier freqs later in time)

Results II: A study in observation noise

𝜕𝜕𝜕𝜕 𝑥𝑥, 𝑡𝑡
𝜕𝜕𝑡𝑡

+ 𝑢𝑢 𝑥𝑥, 𝑡𝑡 ⋅ ∇𝜕𝜕 𝑥𝑥, 𝑡𝑡 = 𝜈𝜈Δ𝜕𝜕 𝑥𝑥, 𝑡𝑡 + 𝑓𝑓 𝑥𝑥
∇ ⋅ 𝑢𝑢 𝑥𝑥, 𝑡𝑡 = 0
𝜕𝜕 𝑥𝑥, 0 = 𝜕𝜕0 𝑥𝑥

Navier-Stokes (2D) with viscosity 𝜈𝜈:

ΔRMSE at the final time T on Navier Stokes dataset under different noise standard deviations

Would common benchmarks catch this?

Consider the ”relative energy” of the unobserved modes at resolution f:
(averaged over time & trajectories)

𝜕𝜕𝑓𝑓 =
∑

𝑛𝑛 >𝑓𝑓2
𝑎𝑎𝑛𝑛 2

∑𝑛𝑛 𝑎𝑎𝑛𝑛 2

The state of common benchmarks
ΔnRMSE = |S4FFNO nRMSE – FFNO nRMSE|

Outlook

SSMs chosen for computational reasons: are there (provable) tradeoffs w/ Transformers?

Computational challenges:

Formalisms to capture “parallelism to accuracy” tradeoffs?

Better benchmarks:

”Inference-time compute” strategies:

Ways to smoothly trade-off accuracy for runtime at inference time?

Many current datasets are solved by very simple approaches, so
unclear we are extracting signal (cf. MNIST and CIFAR era in images.)

“PDE solving” is a very heterogeneous concept: we probably need
more tailored, higher quality benchmarks for each domain.

When does stochasticity (i.e. generative modeling) help?

References

https://arxiv.org/abs/2410.09867

Towards characterizing the value of edge
embeddings in Graph Neural Networks

(ICML 2025)

https://arxiv.org/abs/2409.02313

On the Benefits of Memory for Modeling
Time-Dependent PDEs

(ICLR 2025)

	Slide Number 1
	Two major ingredients that fueled modern ML
	Scientific ML: less settled ground
	This talk
	Slide Number 5
	A primer on (message-passing) graph neural networks
	A primer on (message-passing) graph neural networks
	A modest architectural change: edge-based GNNs
	Theoretical abstractions (node variant)
	Theoretical abstractions (edge variant)
	Main results
	Main intuition: bottleneck nodes
	Main intuition: bottleneck nodes
	The main lemma
	The main lemma
	Using the lemma for warm-up task
	Beyond the warm-up: smaller alphabet
	Beyond the warm-up: “natural” graph task
	Remarks
	Would common benchmarks catch this?
	Would common benchmarks catch this?
	Outlook
	Slide Number 23
	The ML approach to PDE solvers
	The ML approach to PDE solvers
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Would common benchmarks catch this?
	Outlook
	References

