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Two major ingredients that fueled modern ML
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Scientific ML: less settled ground

Flurry of architectural work, but less settled understanding

(A variety of graph neural networks (GNNs), Fourier & scale-aware architectures, symmetry-aware architectures...)
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Benchmarks often too easy, missing crucial desiderata, misaligned w/ application domain,...
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This talk

Two vignettes of modest architectural changes mattering in the right regimes:

Part I: Message-passing GNNs which maintain edge embeddings

when the graph has bottlenecks & memory is bounded.

Part Il: Time-dependent PDE solvers which use memory

explicitly and the system is partially observed. SN

u(:, to) u(, t1) u(:, ty) u(-, t3)

Common benchmarks would not have revealed these effects!



Part |: The value of edge embeddings
for memory-bounded GNNs

Tanya Marwah  Dhruv Rohatgi Zack C. Lipton Jianfeng Lu Ankur Moitra
(CMU — (MIT) (CMU & (Duke) (MIT)
Flatiron Institute) Abridge)



A primer on (message-passing) graph neural networks

GNNSs are a generic approach to ML tasks involving graphs:

Node-level or edge-level prediction (e.g. predicting type of node or

edge), graph-level prediction (e.g. predicting properties of molecule), ...

GNNs learn a message-passing protocol P: (Rd)v—> (IRk)V onagraph G = (V,E).

States {hl@} aggregated to produce predictions Motivation: Protocol parametrized to make
: : : 7 ” (t) . . c
(typically just linear “read-off” layers) {h; "} equivariant to node permutations.



A primer on (message-passing) graph neural networks

Symmetry lens:

¢(o, {o, o}})\ oo, ., D
(o, {o0,0,0}) oC, { 0,0}

Much work on expressive power from the point-of-view of
@ @ S all  invariance, i.e. relationships to Weisfeihler-Lehman

isomorphism tests. (Xu et al ‘19, Maron et al ‘19, Huang & Villar ‘21)

A A A A il Does a GNN architecture necessarily output the same values

even if two graphs are non-isomorphic?

Computational machine lens:

We view GNN’s as a “computational machine” which receives inputs (=initial
node features) and tries to compute some (symmetric) function (in a local,
distributed fashion).

If the nodes have natural “resource bounds” (e.g. memory),
what kind of impact do they have representationally?



A modest architectural change: edge-based GNNs

The “processors” in the message-passing protocol can also lie on the edges of the graph:

Node-based GNN Edge-based GNN
-

VS - -

-

Introduced for “edge-centric” tasks (caiet al. 21; Liang & Pu 23) for which we often have rich
input edge features (Gilmer et al. ‘17; Choudhary & DeCost ‘21).

Question: Are the benefits mostly/solely due to richer input data,
or do edge-embeddings confer representational benefits?



Theoretical abstractions (node variant)

Definition (informal). A node message-passing protocol P on graph G, given inputs
{L,},ey iteratively computes:

hg) = v(t) (h&f_l): w € Ng (U)) ) hg)) =1,

Moreover, nodes are memory-constrained: B := max BITCOMPLEXITY (h,(,t))
,U

& the update functions are invariant to node indices.

Memory constraints model bounded dimensionality of latent representations (w/ finite precision).
No computational constraints on fv(t): makes lower bounds stronger! Alphabet for inputs

, when initialized /

(0
with h©® = | A protocol P with T rounds implements a function g: ®” - {0,1}" if:

v

vv eV, vI: Pr,(I) = g(I),

Read: there exists a GNN with depth T that implements the function g.



Theoretical abstractions (edge variant) ({1} = multiset

Definition (informal). An edge message-passing protocol P on graph G, given ipputs
{L,},ey iteratively computes:

h = g ® (hgf‘”:e’eMG(e)), h'® = {I,, I,}}

Moreover, nodes are memory-constrained: B := max BITCOMPLEXITY (hgt))
v

& the update functions are invariant to node indices.

Memory constraints model bounded dimensionality of latent representations (w/ finite precision).
In all our constructions, the functions fe(t)are exceedingly simple.

Symmetric “read-off”

functions A protocol P with T rounds implements a function g: ®¥ — {0,1}V if:

vv e V,VIL: f,(Pr.(D:v €e) =g,

Read.: there exists a GNN with depth T that implements the function g.



Main results

Thm 1 (informal). For any n, there is a graph with O(n) vertices, and a function g: {0,1} - {0,1}
which can be implemented by an edge protocol with B = 0(1) and T = 0(1).
On the other hand, any node protocol requires TB = Q(y/n)

Read: node-based protocols have to pay either with depth or memory.

Thm 2 (informal). We can even construct function g: {0,1}V — {0,1}" representing natural task:

calculating the MAP (= Maximum A-Posteriori) value in a pairwise graphical model.

Read: belief propagation in graphical models cannot be
simulated with a shallow node-based GNN with small memory.

Thm 3 (informal). Without memory constraints, any T-round edge protocol

can be simulated by a (T + 1)-round node protocol.

Read: the symmetry lens alone is insufficient to capture separation.




Main intuition: bottleneck nodes

Warm-up task: Each node i > 0 wants to calculate if another
node j > Oisis equal toit: g(I); = 1(Elj, I; = I]-) .

Furthermore, let’s allow larger alphabet: Vi € [n], I; € [n]

Intuitions:

* |n edge-based protocol, every edge sees every other edge (they are all adjacent).

To check if node i and node j are the same, just check
if multisets Iyo 13 and I jy are equal.



Main intuition: bottleneck nodes

Warm-up task: Each node i > 0 wants to calculate if another

/ T \ node j > Oisis equal toit: g(I); = 1(Elj, I; = I]-) .

Furthermore, let’s allow larger alphabet: Vi € [n], I; € [n]

Intuitions:

* |n edge-based protocol, every edge sees every other edge (they are all adjacent).

* |In node-based protocol, node i >0 can only communicate with node j > 0 via node 0.

One option is for node O to collect & broadcast all counts, but requires memory ~nlogn

If memory is bounded by B bits, do we have to pay with rounds?



The main lemma

Lemma: Consider a “destination” set S and a “bottleneck” set K. Let F be the distance T-
neighborhood of S in G[K]. Then, for any node protocol implementing g:

TB|K| = log i [{gsUF, [F)}1; |

Proof sketch: Values of nodes in S
after T rounds can only depend on:

/’ S (1) Inputs on nodes within dist. T
K. .’ o | neighborhood of S in G[K], i.e. nodes in F.
’ . i
o ) 5/,’ (2) The protocol values up toround T
| 7 of the nodes in K.
1 s
" e Thus, for any value of the inputs Ig:

|{gS(IF,Ip)}IF | < 2BTIK]



The main lemma

Lemma: Consider a “destination” set S and a “bottleneck” set K. Let F be the distance T-
neighborhood of S in G[K]. Then, for any node protocol implementing g:

TB|K| = log i [{gsUF, [F)}1; |

Related ideas in two areas of TCS:

AN  "Flow” between variables in functions in
K /7 . \‘ ; . . ( (
. ® time-space tradeoffs (Grigoriev ‘76, Savage ‘98)
/ . S i
I
/ . . .
. ® . « ”Light-cone” techniques in lower bounds
! ,/' for distributed computation

< (e.g. LOCAL in Linial ‘92, CONGEST in Peleg ‘92)



Using the lemma for warm-up task

Take K={0},S= {n/2 +1,...,n}.

Then, G| K |=isolated nodes {1, ..., n}.
v Thus, F =[n/2+ 1,n]land F = [1,n/2]

TakeIg = (1,2, ...,/2).

Then, for any string x € {0,1}"/2 we can “engineer” an inputin Iz s.t. gs(Ip, I[g) = x:
If we want to to make g;(Ig,Ig) = 1, choose I;_y,, = I

If we want to to make g;(Ig,Ig) = 0, choose I;_,,/, € [n/2 + 1,n]

B o Seems we got a stronger
> -
Thus, T = log |{g5 (IF’ IF)}IF | n/2 result than claimed?



Beyond the warm-up: smaller alphabet

The function we constructed has domain [n]™. We can also construct function w/ domain {0,1}".

Cannot just change domain in construction: node O can remember count of 0’s and 1’s
(only log n bits needed). In other words, a “compact summary” of inputs suffices.

Solution:

Can simulate large-domain construction by attaching
“subtree” to each node i & “encode inputs in unary”:

g(l); = 1(3j s.t., subtree i & j have same # of 1’s)

= 1(3j s.t., i & j have same # neighbors = 1)

This is where we get BT = Q(xy/n)



Beyond the warm-up: “natural” graph task

Thm 2 (informal). We can even construct function g: {0,1}V — {0,1}" representing natural task:
calculating the MAP (= Maximum A-Posteriori) value in a pairwise graphical model.

We can also make the task be a canonical
\ pairwise graphical model task:

argmax, z by (i, x7) + z ¢ (x;)
{i,j}€E(G) LEV(G)
VE

Previous function we constructed involves
“higher order” interactions, so graph
topology needs to be modified.

j ldea: "Copying” rightmost node on each
path to the leftmost end can
be written in the above form.




Remarks

Morally, similar to fine-grained architectural separations in standard deep learning:
* Depth separation for feedforward nets (Telgarsky 16, Schmidt-Hieber 19,'20)
e Depth separation for Transformers (Sanford et al 24)

e Parallelizability of “sequential tasks” using Transformers? (Liu et al ‘23)

Morally, seems related to “over-squashing” ? (Alon & Yadav 21)

* Task specification + topological bottlenecks lead to memory/computation bottlenecks:

TB being large means either depth or width has to grow
(unclear how this interacts w/ training dynamics)



Would common benchmarks catch this?

On standard datasets, advantage of edge-based GNNs isn’t substantial:

ZINC MNIST CIFAR-10 Peptides-Func Peptides-Struct
Model MAE ()  ACCURACY (1) ACCURACY (1) AP (1) MAE (1)
GCN 0.3430 + 0.034 95.29 + 0.163 55.71 + 0.381 0.6816 + 0.007 0.2453 + 0.0001

Edge-GCN (Ours) 0.3297 +0.011 94.37 £ 0.065 57.44 £0.387 0.6867 1 0.004 0.2437 + 0.0005

Table 1: Comparison of node-based (3) and edge-based (4) GCN architectures across various graph
benchmarks. The performance of the edge-based architecture robustly matches or improves the
node-based architecture.

But, we create simple (synthetic, diagnostic) tasks on which node-based architectures are much worse:

|dea: “Plant” a dataset on a star graph:
(1) Take edge-based GNN with random weights.
(2) Choose random initial node features.

(3) Set targets to outputs of planted edge GNN (1) w/ initial features (2).




Would common benchmarks catch this?

On standard datasets, advantage of edge-based GNNs isn’t substantial:

ZINC MNIST CIFAR-10 Peptides-Func Peptides-Struct
Model MAE (}) ACCURACY (1) ACCURACY (1) AP (1) MAE (})
GCN 0.3430 £ 0.034 95.29 + 0.163 55.71 + 0.381 0.6816 + 0.007 0.2453 £ 0.0001

Edge-GCN (Ours) 0.3297 £0.011 94.37 £ 0.065 57.44 £0.387 0.6867 1 0.004 0.2437 + 0.0005

Table 1: Comparison of node-based (3) and edge-based (4) GCN architectures across various graph
benchmarks. The performance of the edge-based architecture robustly matches or improves the

node-based architecture.

But, we create simple (synthetic, diagnostic) tasks on which node-based architectures are much worse:

Depth of Planted Model (RMSE)

Number of ) 3 1
Leaves Edge Node Edge Node Edge Node
64 0.004 0.3790 0.011 0.3596 0.008 0.3752

32 0.003 0.3664 0.005 0.3626 0.003 0.3614
16 0.007 0.3336 0.002 0.2100 0.002 0.2847

Table 2: Performance (in RMSE |) of edge-based and node-based architectures on a star-graph
topology. The first number is the performance of the best edge-based model, and the second is
the best node-based model, across a range of depths up to 10 (2x the planted model), widths

€ {16,32,64}, and a range of learning rates.



Outlook

Computational challenges:

“Natural” way to implement an edge-based architecture is computationally

expensive for hubs: on a degree n star graph, each edge has n neighbors.

Thus, “total” computation by all edges is ~n? for one standard GCN layer,
whereas it's ~n for a node-based architecture.

Note, a variety of works on “rewiring” the graph, but unclear what kind
of notion of “performance quality” they preserve.

(e.g. Topping et al ‘22, Linkerhagner et al '25,...)

Better benchmarks:

Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks

Many current datasets are solved by very simple approaches, so e Gabit Chpopaer Mopir T P
unclear we are extracting signal (cf. MNIST and CIFAR era in images.)

Oversmoothing, “Oversquashing”, Heterophily,
Long-Range, and more: Demystifying Common Beliefs

“Graph tasks” is a very heterogeneous concept: we probably need i Groph Machine Learnine
more tailored, higher quality benchmarks for each domain.

ELLIS Alicante NEC Laboratories Europe
adrian@ellisalicante.org federico.errica@neclab.eu




Part Il: The value of memory in
(time-dependent) PDE solvers

Tanya Marwah Ricardo Buitrago Albert Gu
(CMU -> (CMU -> Cartesia) (CMU &
Flatiron Institute) Cartesia)



The ML approach to PDE solvers

A common scientific computing primitive: solving (time-dependent) PDEs:

~
dou(x, t) = Lt(u(x, t)) , xXENt=0 Governing equations

< u(x, 0) = f(x), x €Q Initial conditions
_ u(x,t) = g(x), x €00,t=>0 Boundary conditions

The machine learning approach:
Instead of running fixed numerical solver,
learn (hopefully faster) solver from data!

(Lu et al. ‘19, Li et al. ’20, Kovachki et al. ’21,...)



The ML approach to PDE solvers

Basic idea: discretize time and treat it as a sequence prediction problem (& unroll to “run” model):

to tl tz t3
u(:, to) u(-, t1) u(-, ty) u(:, t3)

How do we parametrize G ? (Lots of work!)

0| ourier - 7 - Concat ‘
...... | H | = - - .
U o \@ ot I»E' [dﬂ -r{ﬁ'—rE—r‘ dd ->|’Eﬂ-r
e e e o ) - | | concat =p  softmax 4 - a =) Yout,
. vy H H%H H H =/ 7 5 =
2N ! Attn

Figure from (Li et al ‘21) Figure from (Raonic¢ et al ‘23) Figure from (Cao et al ‘21)




Modest q: to be Markovian or not to be Markovian ?

MWW S
—) MW )
Predict Predict
“Markovian” Operator Operator with memory

u(t + At) = Ge(u(t)) u(t + At) = G¢(u(0),u(Av), ...u(t))



Modest q: to be Markovian or not to be Markovian ?

Potential pros: representationally, including memory is strictly more general.

(So maybe, if training works, it should be only better?)

Potential cons: many natural ways to add memory are computationally expensive.

Maybe sensible, since the PDE we are solving is “Markovian”

diu(x, t) = Lt(u(x, t)) ?

Only if the initial state is
“fully observed”!






Mori-Zwanzig-Nakajima formalism

-

\_

Even for linear operators L:

If we’re observing the initial conditions partially,
(e.g. due to noise, aliasing, equipment imperfections, ..)

the best approximation on the
“observable subspace” is non-Markovian.







Mori-Zwanzig-Nakajima formalism

More formally (Nakajima ’58, Zwanzig ‘60): >

Suppose d;u = Lu and we’re approximating the system in the image of projection P.

Sinceu = Pu+ (I —P)u,denoting Q := (I — P)u, a simple calculation yields:

t

0:Pu(t) = PLPu(t) + PL f exp{QL(s — t)}QLPu(s)ds + PLexp(QLL)Qu,
~ ~
“Markovian” Convolution w/ Unobservable
approximation “memory kernel”

The magnitude of the “memory correction” can be arbitrarily large!






The Value Of memory “Memory-free” soln

“Memory-corrected” soln

Proposition (informal). For any B > 0, there exist £, P andA41(0), such that:
If uq(t) solves d;Puq(t) = PLPu,(t),

And u, (t) solves d;Pu,(t) = PLPu,(t) +PL fot exp{QL(s — t)}QLPu(s)ds, we have:

|luy (&) — u, (D1 = B |luy (D] |luy (8) — up (6)|| = Bt exp(vV2B t)

Idea: In Fourier basis {€;};en,, take £ such that: Le, = n%e, + B(e,_1 + €p41)
Take P to project to span{eg, e1 }.

L “leaks” information outside of P which is dropped by PLP, but recovered by QLP term.




(Neurally) operationalizing memory with SSMs

are conducive to a highly parallel-efficient “convolutiona

II)

Structured state space models (S4, Guetal 21) parametrize (learned) linear dynamical systems &

evaluation:

Sequential description: Convolutional description:
h Ah, + B -
State «—— Niypq = ANe + b Xt
T~ Y = Ki_sus = (K* u),
_ | t -
Predicted output «—— Yt+1 = C hy npd s=0
Structured State Space Model (SSM)

S4

Structured

— t
K, = CA'B
State Space
Diagonal State Space Model

Duality (SSD)
DSS

“Structured” A for fast parallel eval of K;

%c(t) = ADe() + BOF(®)

Efficient Autoregressive Attention
Semiseparable SMA

Convolutions are sped up w/ FFT.

Structured Masked Attention (SMA)




(Neurally) operationalizing memory with SSMs

L/2

L/2

» Neural Operator » » Neural Operator » Decoder M
Position grld =

L/2

» Neural Operator » WW

L/2
1

|

|

Encoder Neural Operator i

i

Pos tion g'nd i
1]

L/2

» Neural Operator » » Neural Operator » MM/‘}/
Position gnd i

Memory layer has access to all the past states,
but can be parallelized via convolutional interpretation.

Memory (S4) Layer

L/2

Neural operator is Factorized Fourier Neural Operator (Tran et al ‘21), though in principle
any combination of neural operator & sequence mixer can be used.



KS, v=0.075. nRMSE vs Resolution
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Advantage is larger for smaller viscosity.
(Smaller viscosity tends to introduce more of higher Fourier fregs later in time)



Results Il: A study in observation noise

dw(x,t)

+u(x,t) - Volx,t) = vAw(x, t) + f(x)

Navier-Stokes (2D) with viscosity v: ot
V-u(x,t) =0
w(x,0) = wo(y)
Navier Stokes 2D, v = 10~3: nRMSE for FFNO and s4FFNO for several noise levels Navier Stokes 2D, v = 10"%: nRMSE for FFNO and s4FFNO for several noise levels.
—e— FFNO-2D —e— FFNO-2D
—o— s4FFNO-2D —o— S4FFNO-2D
10—1_
=1
E ué 10
z z
1072 10724
) ; ; o Q-Q& o-°°bl 090% o&b 09,,;1, 09@‘ o'\’<b o’-f)b 0"\' x&h "veéb
Noise Std Noise Std
— -5
(@) v =10"2,T = 16s, N; = 32 b)v =10"°,T = 3.2s, N; = 32

ARMSE at the final time T on Navier Stokes dataset under different noise standard deviations



Would common benchmarks catch this?

Dataset

X slanl?

: ” . ” . . | | >
Consider the “relative energy” of the unobserved modes at resolution f: W =
. . . 2
(averaged over time & trajectories) ananl
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Outlook

Computational challenges:

SSMs chosen for computational reasons: are there (provable) tradeoffs w/ Transformers?

Formalisms to capture “parallelism to accuracy” tradeoffs?

When does stochasticity (i.e. generative modeling) help?

"Inference-time compute” strategies:

Ways to smoothly trade-off accuracy for runtime at inference time?

Better benchmarks:

Many current datasets are solved by very simple approaches, so
unclear we are extracting signal (cf. MNIST and CIFAR era in images.)

“PDE solving” is a very heterogeneous concept: we probably need
more tailored, higher quality benchmarks for each domain.

Weak baselines and reporting biases lead to
overoptimism in machine learning for fluid-related
partial differential equations

Nick McGreivyE & Ammar Hakim

Nature Machine Intelligence 6, 1256-1269 (2024) | Cite this article
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