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Thanks, the organizers
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especially Leo,   for teaching 

a computer scientist like me

PDE, fluids, etc  and

allowing me to use some of his slides

Disclaimer.  All turbulent drivels are probabilistically mine, not Leo’s faults.



A lot of questions

What makes it fly?

How to make it fly faster, consume less fuel?

How to make it safer, cheaper?

…

An everyday - life motivation:  travel via air

[Photo Credits: Flightaware.com ]
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Earlier days (1850s -1900s): build → crash → repeat
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Albatros II by Jean-Marie Le Bris. 
(Wikipedia)

Monoplane No 21 by Gustave Weißkopf. 
(Wikipedia)

Santos-Dumont 14-bis.
(Wikipedia)



1920s-1970s:  driven by scientific principles and experiments
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Scale model in wind tunnel.
(NASA/JPL)

Replica of Wright brothers wind tunnel
(Wikipedia) 



2000s: in silico design
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Antenna cross-talk simulation
(Comsol)

Aerodynamics simulation 
(Simulia)



Market for Simulation SW 41.8B in 2033, 10.8% per year

Accelerating design and discovery

Computation and simulation is ubiquitous
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Car battery simulation, COMSOL

Electric motor simulation, COMSOLCamera lenses simulations
(COMSOL)

Microlithography lens system simulation, COMSOL

https://www.imarcgroup.com/simulation-software-market#:%7E:text=4.,automotive%2C%20aerospace%2C%20and%20healthcare.


High fidelity simulations require very fine discretization of space and time

Need to overcome computational cost increase in quadratic to cubic

Many systems are highly turbulent/chaotic or operate in unknown conditions 

Need uncertainty quantification of their behavior

For optimal design,  many configurations need to be run

Need to summarize/survey the whole design space efficiently

But, there are many challenges
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Another  real -world example: 
understanding and modeling weather/climate systems

10[Photo Credits: MeteoBlue, CNBC, University of Utah]



Richardson’s Fantastic Forecast Factory ~ 100 years ago

Lewis Richardson 
(1922)
“ Weather Prediction 
by Numerical 
Process”

Charles Babbage

“Algorithm room”
George Boole
Ada Lovelace

(Credit. https://www.emetsoc.org/resources/rff/)
11



30 years later, first real computer -generated numerical weather forecast
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[First Weather 
Forecast by Computer, 

1950]

von Neumann

Jules Charney

https://phys.org/new
s/20 19-0 7-charney-
years- scientists-
accurate ly-
climate .html

https://www.historyofinformation.com/detail.php?id=64
https://www.historyofinformation.com/detail.php?id=64
https://www.historyofinformation.com/detail.php?id=64


What is the “scaling” law in numerical weather prediction?

Year Resolution

1950 270km

1979 200km ~1.5 Chicago metro

1991 60km ~1.5 Cook county

2006 25km ~1 Chicago city

2022 9km ~

2025 3km (exp) ~ 

2030? 3km 

2035+ 1km (cloud 
resolving)

~ 0.25 Hyde Park[Source. 
https://www.ecmwf.int/en/newsletter/172
/editorial/towards-greater-resolution] 13



“Headline” news: AI for NWP has been accelerating the process

Improvement: 1 day / decade

Before 2022: Quiet (r) evolution

[Plot Credits. ECMWF (https://arxiv.org/pdf/2407.03787)]

Useful
(60%)

After 2022: Roaring revolution led by AI-based 
numerical weather prediction

AI surpassing 
operational 
system w/ 

caveat 14

https://charts.ecmwf.int/products/plwww_m_hr_ccaf_adrian_ts?single_product=latest


Scientific ML: develop ML technology to tackle those challenges

High fidelity simulations require very fine discretization of space and time

Need to overcome computational cost increase in quadratic to cubic 

Many systems are highly turbulent/chaotic or operate in unknown conditions 

Need uncertainty quantification of their behavior

For optimal design,  many configurations need to be run

Need to summarize/survey the whole design space efficiently

15



Talk based on a subset of our work in this space
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Representation and dynamics learning

A. Boral, Z. Y. Wan, L Zepeda-Núñez, J. Lottes, Q. Wang, Y. Chen, J. Anderson, F Sha. Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic 
Differential Equations, NeurIPS2023.

Z. Y. Wan, L. Zepeda-Núñez, A. Boral, F. Sha. Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems, ICLR 2023

Probabilistic generative modelling

M. A. Finzi, A. Boral, A. G. Wilson, F. Sha, L. Zepeda-Núñez, User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical 
Systems, ICML 2023

L. Li, R. Carver, I. Lopez-Gomez, F. Sha, J. Anderson. SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models. Sciences Advances 2024.

Y. Schiff, Z. Y. Wan, J. B. Parker, S. Hoyer, V. Kuleshov, F. Sha, L. Zepeda-Núñez. DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems. ICML 
2024.

Z. Y. Wan, R. Baptista, Y. Chen, J. Anderson, A. Boral, F. Sha, L. Zepeda-Núñez. Debias Coarsely, Sample Conditionally: Statistical Downscaling through Optimal 
Transport and Probabilistic Diffusion Models, NeurIPS2023.

I. Lopez-Gomez, Z. Y. Wan, L. Zepeda-Núñez, T.Schneider, J.Anderson, F. Sha. Dynamical-generative downscaling of climate model ensembles. 2024

R.Molinaro, S. Lanthaler, B. Raonić, T. Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, L. Zepeda-Núñez. Generative  AI for fast  and accurate  Statist ical Computation of 
Fluids. 20 24

Open source code

https://github.com/google -re search/swirl-dynamics

https://github.com/google-research/swirl-dynamics


Prelude

Vignette 1: Methods

Vignette 2: Application

Vignette 3: Theory

Final thoughts
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Prelude 
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State variables (and/or observations) evolve, in discrete time steps

Sometimes with known governing equations  (ex: Navier -Stokes equations)

Modeling dynamical systems

Those variables are vector - valued functions in both space and time.
thus,  infinite -dimensional /high -dimensional objects.
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Learning tasks

Data

trajectories, from observations or simulation 

Goals: learn a model that mimics system dynamics

Reduce computation : evolving the learned model 
efficiently

Maintain fidelity : matching trajectories or their (large -
scale) spatiotemporal patterns

20






On a high - level, right. But there are nuances .

Is not this just a supervised learning of predicting “video”?

observing trajectory τ learning to predict

“video” 
transformer
as regressor
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Multi - scale structures are common in turbulent flows

Big whirls have little whirls,
That feed on their velocity;
And little whirls have lesser 
whirls, 
And so on to viscosity.

(Lewis Fry Richardson)
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coarse 
resolution

high 
resolution

(Credit. https://www.youtube.com/watch?v=IwAoNha2Jpc&ab_channel=AmericanPhysicalSociety)



Less poetic translation

At larger (spatial) scales, we see well

thus, physics is resolved . 

At smaller scales, we cannot afford the compute,

thus, physics is unresolved .

Yet, their interaction is the troublemaker

as the nonlinearity is the culprit .
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Bias: how do we bridge the gap?

Challenge: cost of reducing computation 

low - fidelity, biased simulation
cheap to compute

high - fidelity  simulation
costly to compute
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Prelude

Vignette 1: Methods

Vignette 2: Application

Vignette 3: Theory

Final thoughts
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Vignette #1: Methods

generative modeling for 
coarse -grained modeling
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Increasing resolution via statistical models

high resolution simulation
costly to compute

low resolution simulation
cheap to compute

AI/ML 
methods?
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Can we just super - resolution?

28

classical supervised learning setup in 
computer vision



Snag #1: bias in real world problem

coarse climate simulation high - resolution weather

Hurricane 
Katrina is 

absent
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Snag #2: intertwined bias and lack of correspondence

from the same period (decade), but do not match at the same time point 
not a supervised learning problem where exact one to one mapping exists

coarse climate simulation high - resolution weather
30



Two goals in one task

Correcting bias

Adding details

31
[NeurIPS 2023]



Our approach:  latent variable modeling
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high - resolution xbiased low resolution y latent unbiased low - resolution y’



Often referred as “deterministic” EM

Avoid costly posterior inference via “clamping” the latent variable
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high - resolution xbiased low resolution y latent unbiased low - resolution y’



The key is to select a good candidate latent variable

Downsample high - resolution training data

Pretend it as the mode of the posterior
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downsampling

high resolution

coarse resolution



Deterministic EM decouples the learning into two stages
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high - resolution xbiased low resolution y latent unbiased low - resolution 
y’

invert 
downsampling



Stage 1: align manifolds and match distributions

Learning via optimal transport 

● many scalable  optimization algorithms have  been 
deve loped

● connected to gene rative  mode ling me thodologie s
such as flow matching.
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learning a map 
to correct bias

coarse resolution

coarse resolution



Stage 2: super - resolution via denoising diffusion model

Learn to invert the downsampling

Supervised learning with paired data

Well studied, standard recipes
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[Song et al, 2020]

[Saharia et al, 2020]
upsampling

high resolution

coarse resolution

https://arxiv.org/pdf/2205.11487.pdf


Generative downscaling a low - resolution Kolmogorov flow
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Our method  True sample

8x

16x

Input

a) low resolution

b) OT-corrected
c) BCSD

d) cycle-GAN
e) ClimAlign
f) OT + cubic interpolation

g) OT + ViT
h) Ours
i) true samples

Optimal transport corrects bias ; denoising diffusion model fills details



Model multivariate distributions

Maintain spatiotemporal patterns

Why our method works better
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more quantitative measures



Distribution matching is a weaker notion (of correspondence)

But, if we want to get “real” unbiased coarse resolution?
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high - resolution xbiased low resolution y latent unbiased low - resolution y’

invert 
downsampling



Statistics work with stronger prior knowledge 

Incorporating physics into generative modeling

unbiased coarse resolutionlow resolution simulation
cheap to compute

statistical 
tooling

41

adding 
physics



Classical setup

Supervised learning of a closure model

Closure modeling with generative models

42
[NeurIPS 2023]



Ideal LES field

Corresponding closure model

Challenge

Analytically intractable

Unknown distribution

A Probabilistic Perspective
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LES field is the ensemble mean of 
its corresponding DNS fields 

[Langford and Moser, 1999]



Neural LES:  learning the latent distribution
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is approximated by simulation inside the latent space.

Intuitively, the latent space is our imaginary “DNS” (high resolution) space



Modeling latent distribution with neural parameterized SDE
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latent 
representation 
of DNS fields

neural nets for drifting 
and diffusion Wiener process for 

stochasticity

[Li et al, 
AISTATS, 2020]



Numerical study on Kolmogorov flow

Our neural ideal LES (niLES) is more stable, and get the energy spectra right
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Vignette #2: Application 

generative modeling for 
weather and climate

48



Ensemble forecast is computationally very expensive

High - resolution probabilistic forecast

Forecast 
uncertainty

Initial condition + 
structural 

uncertainty

Forecast time 49



Use diffusion models for density estimate of high resolution data

SEEDS: generating conditional distribution
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Small physics -based 
ensemble

Large generative 
ensemble

(e.g., N>500)

Climatology

Probabilistic 
forecast

conditional 

diffusion model

[Science Advances 2024]



Large ensembles to characterize likelihood of  extreme weather 
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Accurate estimation of extreme events

Case study: July 2022 Portugal heatwave (7 -day forecast)

More 
accurate

O(10,000) samples 
generated easily in 30min 
on cloud -based TPUs



Supervised learning of super - resolution

Traditional approaches create data at regional level.

Data production is limited and costly .

Downscaling future climate projection to meteorological variables

[PNAS 2025 ]

45km resolution 9km resolution100km 
resolution

Expensive training data
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https://www.pnas.org/doi/10.1073/pnas.2420288122


Capture extreme events (Santa Ana wildfire threat index)

wildfire -producing Santa Ana winds in Southern California, speed and directions 
accurately predicted, highly similar to physics -based systems

Target Our model (R2-D2) Previous SoTA model
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Global downscaling from climate to weather

coarse climate simulation high - resolution weather
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from the same period (decade), but do not match at the same time point 
not a supervised learning problem where exact one to one mapping exists



Methodology adapted to real -world applications
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Teaser

56[Being updated, forthcoming]

climate 
simulation

downscaled by 
our approach

reference 

Our approach generates 
realistic tropical cyclones and 
accurate statistics.
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On a high - level, right. But there are nuances

Why these are not supervised learning of predicting “video”

observing trajectory τ learning to predict

“video” 
transformer
as regressor
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Trajectory matching is not necessarily a good or easy 
to attain learning goal

Trajectories after long -horizon are divergent for chaotic 
system 

Short- term trajectory matching leads to unstable rollout 
(“blow -up”, “unphysical” )

Lessons

Sometimes, statistical characterization is more useful

Discover and exploit unknown latent structures

Nuances: challenges and lessons from our earlier attempts

[ICLR 2023, ICML 2024]
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Vignette #3: Theory

why does generative 
modeling work so well?

- Comprehensive empirical evaluation of data -driven 

probabilistic modeling of 3D turbulent flows

- Rigorous analysis of the mechanism of generative 

modeling

60



Analytically tractable toy example

𝚲𝚲: bounded hat function
m: mean function
N: #  of grids

fitting to trajectory, 
collapse to mean 
(expected)

fitting to distribution, 
recover the underlying 
measure (expected)
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Formal statement

In English,

if the underlying probabilistic measure under the continuous chaotic system 
exists , the denoiser of the optimally trained diffusion model from data converges 
as the discretization increases, and recovers the underlying measure .
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Example: Taylor -Green Vortex

Our method converges to the right statistical 
characterization

SoTA method collapses to the mean 

GT

our method

SoTA (trajectory 
fitting)
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Looking ahead

Exciting time for inventing new ways of computing and doing science

AI/ML has shown impacts on advancing scientific computing at unprecedented pace

Still nascent , we have a lot unknown operating conditions of different paradigms

Opportunities to advance foundational AI/ML with unfamiliar and new challenges

○ How to physics-prior into statist ical mode ling choices

○ How to gene rate  statist ical outputs that are  physically plausible

○ How to reduce  sample  complexity when acquiring high- re solution simulation is the  

primary data source

○ …
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Thank you!
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