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Thanks, the organizers

especially Leo, for teaching

a computer scientist like me
PDE, fluids, etc and

allowing me to use some of his slides

Disclaimer. All turbulent drivels are probabilistically mine, not Leo’s faults.



An everyday -life motivation: travel via air

A lot of questions
What makes it fly?
How to make it fly faster, consume less fuel?

How to make it safer, cheaper?

[Phofto Credits: Flightaware.com ]
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Earlier days (1850s -1900s): build — crash — repeat

Monoplane No 21 by Gustave WeilRkopf. Santos-Dumont 14-bis. Albatros Il by Jean-Marie Le Bris.
(Wikipedia) (Wikipedia) (Wikipedia)
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1920s-1970s: driven by scientific principles and experiments

Replica of Wright brothers wind tunnel Scale model in wind tunnel.
(Wikipedia) (NASA/JPL)
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2000s: in silico design

Aerodynamics simulation
(Simulia)

Antenna cross-talk simulation
(Comsol)



Computation and simulation is ubiquitous

Market for Simulation SW 41.8B in 2033, 10.8% per year

Accelerating design and discovery
Car battery simulation, COMSOL

Camera lenses simulations Microlithography lens system simulation, COMSOL Electric motor simulation, COMSOL
(COMSOL)


https://www.imarcgroup.com/simulation-software-market#:%7E:text=4.,automotive%2C%20aerospace%2C%20and%20healthcare.

But, there are many challenges

High fidelity simulations require very fine discretization of space and time

Need to overcome computational cost increase in quadratic to cubic

Many systems are highly turbulent/chaotic or operate in unknown conditions

Need uncertainty quantification of their behavior

For optimal design, many configurations need to be run

Need to summarize/survey the whole design space efficiently



Another real -world example:
understanding and modeling weather/climate systems

Google Research

[Photo Credits: MeteoBlue, CNBC, University of Utah]

10



Google Research

Richardson’s Fantastic Forecast Factory ~ 100 years ago

Charles Babbage

LS L

Lewis Richardson
(1922)

“Algorithm room”/v ’

“Weather Prediction
George Boole by Numerical
Ada Lovelace Process”

(Credit. https://www.emetsoc.org/resources/rff/)
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30 years later, first real computer

von Neumann

Google Research

-generated numerical weather forecast

Jules Charney

Carbon Dioxide and Climate:
A Scientific Assessment

[First Weather

Forecast by Compufter,

1950]

““““““““““““

ver the last 40 years
. from Mauina Lo

peratu ASR), 1979

300 3
1979 1984 1989 1994 1999 2004 2009 2014 2019

o
https://phys.org/new
$/2019-07-charney-
years-scientists-
accurately-
climate.html


https://www.historyofinformation.com/detail.php?id=64
https://www.historyofinformation.com/detail.php?id=64
https://www.historyofinformation.com/detail.php?id=64
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What is the “scaling” law in numerical weather prediction?

[Source.
https://www.ecmwf.int/en/newsletter/172
/editorial/towards-greater-resolution]

Year Resolution

1950 270km

1979 200km ~1.5 Chicago metro

1991 60km ~1.5 Cook county

2006 25km ~1 Chicago city

2022 9km ~

2025 3km (exp) ~

20307 3km

2035+ 1km (cloud | ~ 0.25 Hyde Park
resolving)
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“Headline” news: Al for NWP has been accelerating the process

Before 2022: Quiet (r) evolution After 2022: Roaring revolution led by A/-based

numerical weather prediction
Improvement: 1 day/decade

ECMWF HRes \ State of the art in Al weather prediction
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https://charts.ecmwf.int/products/plwww_m_hr_ccaf_adrian_ts?single_product=latest

Scientific ML: develop ML technology to tackle those challenges

High fidelity simulations require very fine discretization of space and time

Need to overcome computational cost increase in quadratic to cubic

Many systems are highly turbulent/chaotic or operate in unknown conditions

Need uncertainty quantification of their behavior

For optimal design, many configurations need to be run

Need to summarize/survey the whole design space efficiently

15
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Talk based on a subset of our work in this space

Representation and dynamics learning

A. Boral, Z. Y. Wan, L ZepedaNurez, J. Lottes, Q. Wang, Y. Chen, J. Anderson, F Sha. Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochatic
Differential Equations, NeurlPS2023.

Z.Y.Wan, L. ZepedaNufiez, A. Boral, F. Sha. Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems, ICLR 2023
Probabilistic generative modelling

M. A.Finzi, A. Boral, A. G. Wilson, F. Sha, L. ZepeddNufez, User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical
Systems, ICML 2023

L. Li, R. Carver, |. LopezGomez, F. Sha, J. Anderson. SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models. Saénces Advances 2024.

Y. Schiff, Z. Y. Wan, J. B. Parker, S. Hoyer, V. Kuleshov, F. Sha, L. Zepeddifez. DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems. ICML
2024.

Z.Y.Wan, R. Baptista, Y. Chen, J. Anderson, A. Boral, F. Sha, L. Zepeddliiez. Debias Coarsely, Sample Conditionally: Statistical Downscaling through Optimal
Transport and Probabilistic Diffusion Models, NeurlPS2023.

|. Lopez-Gomez, Z. Y. Wan, L. ZepedaNufez, T.Schneider, J.Anderson, F. Sha. Dynamicalgenerative downscaling of climate model ensembles. 2024

R.Molinaro, S.Lanthaler, B.Raoni¢, T. Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, L. Zepeda-Nuiiez. Generative Alfor fast and accurate Statistical Computation of
Fluids. 2024

Open source code

https://github.com/google-research/swirl-dynamics 16



https://github.com/google-research/swirl-dynamics

Prelude

Vignette 1: Methods

Vignette 2: Application

Vignette 3: Theory

Final thoughts

17



Prelude

Google Research
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Modeling dynamical systems

State variables (and/or observations) evolve, in discrete time steps

ur = S(up_ 1) = ... = S"(up) Uo, Uy, ..., ux €U

Sometimes with known governing equations (ex: Navier - Stokes equations)

1
hu+u-Vu=—-VP + 1*V?u
P

Those variables are vector -valued functions in both space and time.
thus, infinite -dimensional /high -dimensional objects.

19



Learning tasks

Data
trajectories, from observations or simulation
Goals: learn a model that mimics system dynamics

Reduce computation : evolving the learned model
efficiently

Maintain fidelity : matching trajectories or their (large -
scale) spatiotemporal patterns

20






Is not this just a supervised learning of predicting “video™?

On a high -level, right. But there are  nuances .

observing trajectory 1 learning to predict

min E. Z 1S (ui) — uj13

(wi,uj)er

“video”
"- ™ transformer -“Q
%, ~— | asregressor |——* asj’*




Multi -scale structures are common in turbulent flows

coarse
resolution

high
resolution

Big whirls have little whirls,
That feed on their velocity;
And little whirls have lesser

whirls,
And so on o viscosily.

(Lewis Fry Richardson)

(Credit. https://www.youtube.com/watch?v=IwAoNha2Jpc&ab_channel=AmericanPhysicalSociety)

22



Less poetic translation

At larger (spatial) scales, we see well
thus, physics is resolved .

At smaller scales, we cannot afford the compute,
thus, physics is unresolved .

Yet, their interaction is the troublemaker

as the nonlinearity is the culprit

23



Challenge: cost of reducing computation

Bias: how do we bridge the gap?

low -fidelity, biased simulation
cheap to compute

high -fidelity simulation
costly to compute

127 Yo,
9 )

\ \9 \?

Vi -

24



Vignette 1: Methods

Vignette 2: Application

Vignette 3: Theory

Final thoughts

25



Vignette #1: Methods

generative modeling for
coarse -grained modeling

Google Research
26
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Increasing resolution via statistical models

low resolution simulation high resolution simulation
cheap to compute costly to compute

¥ (7

. . Al/ML r ’ } . a
F = methods? e
-

27



Can we just super -resolution?

classical supervised learning setup in
computer vision

Google Research

28



Snag #1: bias in real world problem

coarse climate simulation

LENS2 (member 1) August 28th 2005

~
wor

Hurricane
Katrina is
absent

high -resolution weather

Google Research

29
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Snag #2: intertwined bias and lack of correspondence

from the same period (decade), but do not match atthe same time point
not a supervised learning problem where exact one to one mapping exists

LENS2 (member 1) August 28th 2005  LENS2 (member 2) August 28th 2005

P 2P

coarse climate simulation high -resolution weather

30



Two goals in one task

Correcting bias

Adding details s

la(k)| |

\

unbiased

AN

.~“\\\\\~.--"’__.. .
.
.
.
..,
fle”
L]

biased |

.

extrapolation

-

low-frequency

R

Debias Coarsely, Sample Conditionally:
Statistical Downscaling through Optimal Transport
and Probabilistic Diffusion Models

Zhong Yi Wan*
Google Research
Mountain View, CA 94043, USA
wanzy@google.com

Yi-fan Chen
Google Research
Mountain View, CA 94043, USA
yifanchen@google.com

Anudhyan Boral
Google Research
Mountain View, CA 94043, USA
anudhyan@google. com

Ricardo Baptista*
California Institute of Technology
Pasadena, CA 91106, USA
rsbQcaltech.edu

John Roberts Anderson
Google Research
Mountain View, CA 94043, USA
janders@google.com

Fei Sha
Google Research
Mountain View, CA 94043, USA
f£shalgoogle. com

Leonardo Zepeda-Niiiez
Google Research
Mountain View, CA 94043, USA
1zepedanunez@google. com

[NeurlPS 2023]
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Our approach: latent variable modeling

biased low resolution y latent unbiased low -resolution y’

plaly) = | plal/ o9y

high -resolution x

\./‘_“

.

/'-
S2K

32



Avoid costly posterior inference via “clamping” the latent variable

Often referred as “deterministic’ EM

biased low resolution y

>

latent unbiased low -resolution y’

I

plaly) = | plalyp(y/ )y

= p(z|y")d(y' =T(y))

high -resolution x
/ L J

S
»

Y

-

33



The key is to select a good candidate latent variable

Downsample high -resolution training data high resolution
KX

Pretend it as the mode of the posterior coarse resolution

paly) = [ plaly)o(y/lv)dy

= p(z|y")o(y" =T(y))




Deterministic EM decouples the learning into

biased low resolution y latent unbiased low -resolution
y ,
¥ .
. T()
Pat — e
H invert
- - r downsampling
_

plaly) = | plalyp(y/ )y
= p(zly)o(y =T (y))

two stages

high -resolution x

\./‘_"

-

/'-
S
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Stage 1: align manifolds and match distributions

Learning via optimal transport coarse resolution

Hy

min { / c(y, T(y))dpy (y) : Typy = uyr}

learning a map

@® manyscalable optimization algorithms have been to correct bias

developed

. . , & coarse resolution
e connectedto generative modeling methodologies

such as flow matching.

36



Stage 2: super -resolution via denoising diffusion model

Learn to invert the downsampling high resolution
Supervised learning with paired data

Well studied, standard recipes

coarse resolution
Ky’

Saharla et al 2020

Forward SDE (data — nois

dx £(x t)dt+g(t)dw4)@
U

= o gz@ 5 o + s @

se SDE (noise — data)

[Song et aI 2020]


https://arxiv.org/pdf/2205.11487.pdf

Generative downscaling a low

Google Research

-resolution Kolmogorov flow

Optimal transport  corrects bias ; denoising diffusion model fills details

Input
""

8x F -" r

16X

a) low resolution

c) BCSD

f) OT + cubic interpolation

Our method True sample
1 ’,’/J’.

{
<

g) OT + ViT
h) Ours

i) true samples
38



Why our method works better

Model multivariate distributions

more quantitative measures

Maintain spatiotemporal patterns

Model Var covRMSE| MELRu] MELRw| KLD| Wassl] MMDJ|
8x downscale
BCSD 0 0.31 0.67 0.25 2.19 0.23 0.10
- s@m cycGAN 0 0.15 0.08 0.05 1.62 0.32 0.08
" ClimAlign 0 2.19 0.64 0.45 64.37 277 0.53
\ = Raw-+cDfn 0.27 0.46 0.79 0.37 73.16 1.04 0.42
\C'I" la 4 A y OT+Cubic 0 0.12 0.52 0.06 1.46 0.42 0.10
cpk'x' OT+ViT 0 0.43 0.38 0.18 1.72 1.11 0.31
LB 1 - W | (ours) OT+cDfn  0.36 0.12 0.06 0.02 1.40 0.26 0.07 |
- | g ! ]
r A .p - 16x downscale
‘ - ’ f BCSD 0 0.34 0.67 0.25 2.17 0.21 0.11
X ll"-. > : A T I T cycGAN 0 0.32 1.14 0.28 2.05 0.48 0.13
T\ Wi ‘.\ . X y - y ClimAlign 0 2.53 0.81 0.50 7151 3.15 0.55
™ - Raw-+cDfn 1.07 0.46 0.54 0.30 93.87 0.99 0.39
\\ P 7‘ r i RE OT+Cubic 0 0.25 0.55 0.13 7.30 0.85 0.20
Y -~ OT+ViT 0 0.14 1.38 0.09 1.67 0.32 0.07
('-2‘/0, ' . ® » 7 |_(ours) OT+cDfn__1.56 0.12 0.05 0.02 0.83 0.29 0.07_|
N
. FEYS S '
-
. e ar |

39



But, if we want to get “real” unbiased coarse resolution?

Distribution matching is a weaker notion (of correspondence)

biased low resolution y

o

() i

r"-l.

latent unbiased low -resolution y’

invert
downsampling

high -resolution x

./ ‘4
&
=

Py N

40



Incorporating physics into generative modeling

Statistics work with stronger prior knowledge

cheap to compute physics

e == .

.l-
. statistical "Ry '
P u tooling r L =

low resolution simulation [ adding } unbiased coarse resolution




Closure modeling with generative models

Classical setup

O = R (u; v)
u=Gx*u
8t'& — RNS (,&; I/) 1+ Rclosure(ﬂ, u)

Supervised learning of a closure model

Oyt = RYS(a; v) + M(@;6)

f* = arg Irgnz ||2; — ﬁﬁllg
T

Neural Ideal Large Eddy Simulation: Modeling
Turbulence with Neural Stochastic Differential

Equations

Anudhyan Boral
Google Research
Mountain View, CA 94043, USA
anudhyan@google.com

Leonardo Zepeda-Nuiiez
Google Research
Mountain View, CA 94043, USA
1lzepedanunez@google . com

Qing Wang
Google Research
Mountain View, CA 94043, USA
wqing@google.com

John Roberts Anderson
Google Research
Mountain View, CA 94043, USA
janders@google.com

Zhong Yi Wan
Google Research
Mountain View, CA 94043, USA
wanzy@google.com

James Lottes
Google Research
Mountain View, CA 94043, USA
jlottes@google.com

Yi-fan Chen
Google Research
Mountain View, CA 94043, USA
yifanchen@google.com

Fei Sha
Google Research
Mountain View, CA 94043, USA
fsha@google.com

[NeurlPS 2023]



A Probabilistic Perspective

Ideal LES field
ov ou | _
o L [ i ]

Corresponding closure model

Ov = RN (v) + M(v)
M(v) = Er, [Opult = v] = Rg®(v)

Challenge

Analytically intractable LES field is the ensemble mean of
its corresponding DNS fields
Unknown distribution

[Langford and Moser, 1999]



Neural LES: learning the latent distribution

Intuitively, the latent space is our  imaginary “DNS” (high resolution) space

Time ’N\
Vi

""" - ©— LES State

Latent Space ~ @---. Negral SPE
---------------------- Trajectories

LES Space

.
-
—
-

44
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Modeling latent distribution with neural parameterized SDE

neural nets for drifting
latent and diffusion

representation
of DNS fields

Wiener process for
stochasticity

~a — S /
dZt — hg(Zt, t)dt + g¢(Zt, t) @) th

Time N\

S Iisss=c= ©— LES State

~ Neural SDE
Trajectories

Latent Space -
_________________ Y 2 U U W Wit s

LES Space

-
—
—

[Lietal,
AISTATS, 2020] 45



Google Research

Numerical study on Kolmogorov flow

Our neural ideal LES (niLES) is more stable, and get the energy spectra right

0.141 __ mplicit LES Y —— Filtered DNS
=== Deterministic NN II 106 0 ™ Implicit LES
0.121 —._ piLES 7 == Deterministic NN
010 105 - niLES
w 0.08 104
wn
e z
0.06 T 103
0.04 153
0.02
101
0 200 400 600 800 1000 10k
Num steps

Wavenumber (k)
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Vignette 2: Application

Vignette 3: Theory

Final thoughts
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Vignette #2: Application

generative modeling for
weather and climate

Google Research
48



High -resolution probabilistic forecast

Ensemble forecast is computationally very expensive

Forecast
uncertainty

Initial condition +
structural
uncertainty

A

\]

Forecast time
t=1p t=1ty+ 7 davs

49



SEEDS: generating conditional distribution

Use diffusion models for density estimate of high resolution data

— o p($|$1,$2)
t=1 Probabilistic
pm— forecast t =t
I -~ - \
/ . \
e /
/ ‘o .
‘\ \ Condlt|ona| ScienceAdVances Current Issue First release papers More v
\
|
' HOME > SCIENCE ADVANCES > VOL.10,NO.13 > GENERATIVE EMULATION OF WEATHER FORECAST...
( v diffusion model
\ ¢ J @ RESEARCH ARTICLE = ATMOSPHERIC SCIENCE f X in & %o 0 =
p ) - Generative emulation of weather fore-
b y cast ensembles with diffusion models
b Climatology | LizAOLI , ROBERT CARVER (%), IGNACIO LOPEZ-GOMEZ ([5), FEI SHA , AND JOHN ANDERSON
Small physics -based Large generative
ensemble ensemble [Science Advances 2024]

.g., N>500
(e.g., ) -
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Large ensembles to characterize likelihood of extreme weather

Case study: July 2022 Portugal heatwave (7 -day forecast)

5 3 _*0(10,000) samples Accurate estimation  of extreme events
5 =" -generated easily in 30min
g 30 on cloud -based TPUs . Temperature at 2 meters
g s g Ab
3 25 2
& G 7 0.006
£ 5 o More w
= accurate S % A A . A
g b ¥ 0.004
§ 15| g
c e o
E
ERR T 1 4 7 10 13 16
5 15 20 25 Lead time (days)
Temperature at 2 meters (C)
—m— GEFS-2 —&—  GEFS-Full —&— SEEDS-GEE
% ERA5 B  GEFS-2 A GEFS-Full - SEEDS .
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Downscaling future climate projection to meteorological variables

Supervised learning of super -resolution

Traditional approaches create data at regional level. xRl

Dynamical-generative downscaling of
climate model ensembles
H H H H ong Yi Wan, Leonardo da-Niez, | +2 |, and Fei Sha ©® wthors Info liations
Data production is limited and costly . S —————————————

Member Robert E. Dickinson

3500 April 25,2025 122(17) 2420288122  https://doi.org/10.1073/pnas. 2420288122
- + o X
2500
2000 £ Significance
£ Regional climate risk assessments serve as a crucial source of information for climate
=]
15003 resilience and adaptation policies. The current regional climate modeling paradigm,
o

which leverages physics-based models to downscale climate projections over limited

1000 areas, is too costly to apply to large climate projection ensembles. This hinders our ability
to capture the uncertainty in regional climate projections. Alternative statistical

500 downscaling methods, while efficient, often fail to capture compound extremes or

0 generalize to unseen climate conditions. We propose a paradigm that jointly exploits

physics-based models and generative Al to drastically reduce the cost of downscaling

climate projections, while retaining the skill of physics-based approaches. This framework

100km 45km resolution 9km resolution enables translating large climate projection ensembles into impact-relevant climate risk

resolution . 4 assessments,
"Expensive training déta [PNAS 2025]

0 .
.
. .
L N


https://www.pnas.org/doi/10.1073/pnas.2420288122

Google Research

Capture extreme events (Santa Ana wildfire threat index)

wildfire -producing Santa Ana winds in Southern California, speed and directions
accurately predicted, highly similar to physics -based systems

Our model (R2- D2) Previous SOTA model

7 7

f - - . . .,"‘- - -

q O "A--. - -
» ‘p.‘-.. ~ \‘K‘-—. .4..\..,‘

SAWTI
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Global downscaling from climate to weather

from the same period (decade), but do not match atthe same time point
not a supervised learning problem where exact one to one mapping exists

LENS2 (member 1) August 28th 2005  LENS2 (member 2) August 28th 2005

e 1 -

coarse climate simulation high -resolution weather
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Methodology adapted to real

-world applications

d
ﬁ = ‘Ug(y’, T)

= # global debias Yy =Ty

Google Research

local super-reseolution, sampling
pla|C'z=y')

noise =1

' T
der = —670:V logp (.'1:1- dr+ VQdTaTrlw‘
-

sample T7=()
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Teaser

; Our approach generates
realistic tropical cyclones and
accurate statistics.

climate
simulation

Total count: 17

ar <1V > cs > arXiv:2412.08079

downscaled by
our approach

Computer Science > Machine Learning

[Submitted on 11 Dec 2024]

Statistical Downscaling via High-Dimensional Distribution Matching
with Generative Models

Zhong Yi Wan, Ignacio Lopez-Gomez, Robert Carver, Tapio Schneider, John Anderson, Fei Sha, Leonardo
Zepeda-Nufez

Statistical downscaling is a technique used in climate modeling to increase the resolution of climate simulations. High-
resolution climate information is essential for various high-impact applications, including natural hazard risk
assessment. However, simulating climate at high resolution is intractable. Thus, climate simulations are often conducted

at a coarse scale and then to the desired ion. Existing i i are either sij

based methods with high computational costs, or statistical approaches with limitations in accuracy or application

specificity. We introduce Generative Bias Correction and Sup ion (GenBCSR), a g ilisti

framework for statistical downscaling that overcomes the limitations of previous methods. GenBCSR employs two

to match high-di i istributions at different ions: (i) the first stage, bias correction, aligns

refe re n ce the distributions at coarse scale, (i) the second stage, statistical super-resolution, lifts the corrected coarse distribution

by introducing fine-grained details. Each stage is i ated by a f-th ive model, resulting in an

efficient and effective ional pipeline for the well-studied distribution matching problem. By framing the

downscaling problem as distribution matching, GenBCSR relaxes the constraints of supervised learning, which requires
samples to be aligned. Despite not requiring such correspondence, we show that GenBCSR surpasses standard
approaches in predictive accuracy of critical impact variables, particularly in predicting the tails (99% percentile) of
composite indexes composed of interacting variables, achieving up to 4-5 folds of error reduction.

Total count: 78

[Being updated, forthcoming] 56



Vignette 3: Theory

Final thoughts
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Why these are not supervised learning of predicting “video”

On a high -level, right. But there are  nuances

observing trajectory 1 learning to predict

min E. Z 1S (ui) — uj13

(wi,uj)er

“video”
"- ™ transformer -“Q
%, ~— | asregressor |——* asj’*




Nuances: challenges and lessons from our earlier attempts

Trajectory matching is not necessarily a good or easy
to attain learning goal

Trajectories after long -horizon are divergent for chaotic
system

Short-term trajectory matching leads to unstable rollout

” 13

(“blow -up”, “unphysical”)

Lessons
Sometimes, statistical characterization is more useful

Discover and exploit unknown latent structures

min B, Y S0(us) — g3

(u‘?'- ,’u,j)E’T

arXiv:2301.10391 (cs)

[Submitted on 25 Jan 2023 (v1), last revised 6 Feb 2023 (this version, v3)]

Evolve Smoothly, Fit Consistently: Learning
Smooth Latent Dynamics For Advection-
Dominated Systems

arXiv:2402.04467 (cs)

[Submitted on 6 Feb 2024 (v1), last revised 5 Jun 2024 (this version , v2)]
DySLIM: Dynamics Stable Learning by
Invariant Measure for Chaotic Systems

Yair Schiff, Zhong Yi Wan, Jeffrey B. Parker, Stephan Hoyer, Volodymyr Kuleshov, Fei Sha,
Leonardo Zepeda-Nufez

[ICLR 2023, ICML 2024]
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Vignette #3: Theory v ——

Computer Science > Machine Learning

[Submitted on 27 Sep 2024]

Generative Al for fast and accurate Statistical

why does generative Computation of Fuids
y g Roberto Molinaro, Samuel Lanthaler, Bogdan Raonic, Tobias Rohner, Victor Armegioiu,

Zhong Yi Wan, Fei Sha, Siddhartha Mishra, Leonardo Zepeda-Nufez

L
m Od e I I n Wo rk So we I I ? We present a generative Al algorithm for addressing the challenging task of fast, accurate and
L robust statistical computation of three-dimensional turbulent fluid flows. Our algorithm, termed
as GenCFD, is based on a conditional score-based diffusion model. Through extensive numerical
experimentation with both incompressible and compressible fluid flows, we demonstrate that
GenCFD provides very accurate approximation of statistical quantities of interest such as mean,
variance, point pdfs, higher-order moments, while also generating high quality realistic samples
of turbulent fluid flows and ensuring excellent spectral resolution. In contrast, ensembles of
operator learning baselines which are trained to minimize mean (absolute) square errors regress
to the mean flow. We present rigorous theoretical results uncovering the surprising mechanisms
. . . . through which diffusion models accurately generate fluid flows. These mechanisms are
- ComprehenSIVe emplrlcal evaluatlon Of data - drlven illustrated with solvable toy models that exhibit the relevant features of turbulent fluid flows

while being amenable to explicit analytical formulas.

probabilistic modeling of 3D turbulent flows
- Rigorous analysis of the mechanism of generative
modeling Google Research
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Analytically tractable toy example

SA(w) = m(a) + A(Nf)

A: bounded hat function
m: mean function
N # of grids

fitting to trajectory,
collapse to mean
(expected)

fitting to distribution,
recover the underlying
measure (expected)
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Formal statement

Theorem C.5 (Constrained probabilistic approximation is tractable). Assume that the optimal conditional denoiser
Dypi(us @, o) for the statistical limit p, with density p(u, @) = p(w| @)pprior (W), is L*-Lipschitz continuous. Assume
that p and p® are supported on By = {||ul| < M}. Then, the optimal constrained denoiser D5 trained on the
numerical distribution u®, corresponding to p®™(u, @) = 6(u — 8 (1)) Pprior (1),

Dy (u;ui,0) = argmin  J2(Dy,0),
Lip(Dg)<L*

satisfies
J(D§,0) < T (Dopt,0) + CL*Wi(p®, ), Vo >0, (61)

with constant C independent of A, L* and o.

In English,

if the underlying probabilistic measure under the continuous chaotic system
exists , the denoiser of the optimally trained diffusion model from data converges
as the discretization increases, and  recovers the underlying measure



Example: Taylor - Green Vortex

Our method converges to the right statistical
characterization

SoTA method collapses to the mean

our method . ' '

SoTA (trajectory
fitting)
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Looking ahead

Exciting time for inventing new ways of computing and doing science

AI/ML has shown impacts on advancing scientific computing at unprecedented pace

Still nascent , we have a lotunknown operating conditions  of different paradigms

Opportunities to advance foundational AI/ML with unfamiliar and new challenges

O

O

O

How to physics-prior into statisticalmodeling choices
How to generate statisticaloutputs that are physically plausible
How to reduce sample complexity when acquiring high-resolution simulation is the

primary data source
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