Re-anchoring quantum Monte Carlo with tensor-train sketching

Yuehaw Khoo CAM Initiative and Department of Statistics University of Chicago Joint work with Ziang Yu (U.Chicago) and Shiwei Zhang (Flatiron Institute).

06/10/2025, IMSI

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Intro to quantum ground state problem I

For some particles x₁,...x_d ∈ Ω. Want to find its stable configuration in a potential well U : Ω^d → ℝ.

Classical minimization problem:

$$\min_{x \in \Omega^d} U(x), \quad x = [x_1^T \cdots x_d^T]$$

Not hard to get some local optimizer. Just gradient descent.

Equivalent to a measure optimization problem

$$\min_{\mu} \int U(x)\mu(dx), \quad \text{s.t. } \mu \ge 0, \ \int \mu(dx) = 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Intro to quantum ground state problem II

• When temperature $T \neq 0$, need to add some entropy

Entropic minimization problem:

$$\min_{\mu} \int U(x)\mu(dx) + T \int \ln \mu(x)\mu(dx), \quad \text{s.t. } \mu \ge 0, \ \int \mu(dx) = 1$$

- Free energy in stat. mech.
- ▶ Temperature gives particles some kinetic energy → Entropy.
- Particles' positions are spread out. μ^* not a dirac-delta.
- Another parameterization of the problem

$$\min_{\Psi} \int U(x) |\Psi(x)|^2 dx + T \int |\Psi(x)|^2 \ln |\Psi(x)|^2 dx, \quad \text{s.t.} \ , \ \|\Psi\|_{L_2} = 1$$

- Connection to quantum mechanics (probability is the square of some function). Born rule.
- Hadamard parameterization in optimization over probability simplex (Li-McKinsey-Yin 21).

Intro to quantum ground state problem III

 Quantum mechanics: A different penalty to "spread out" the particles

$$\min_{\Psi} \int U(x) |\Psi(x)|^2 dx + \hbar \int |\nabla \Psi(x)|^2 dx, \quad \text{s.t.} \ , \ \|\Psi\|_{L_2} = 1$$

- First term: Potential energy
- Second term: Kinetic energy (ħ: Planck constant)
- $\Psi: \Omega^d \to \mathbb{C}$: Wavefunction.
- Unlike stat. mech., even when temperature is zero, there is always kinetic energy spreading out particles (uncertainty principle).
- Solve an eigenvalue problem

$$E_0 := \min_{\Psi} \frac{\langle \Psi, H\Psi \rangle}{\langle \Psi, \Psi \rangle}$$

- *H*: Hamiltonian. Hermitian. Size $\mathbb{C}^{|\Omega|^d \times |\Omega|^d}$
- Denote lowest eigenstate as Ψ_0 .
- Curse-of-dim.

Function approximation approaches I:

• Represent solution Ψ as Ψ_{θ} .

Solve

$$E_0 \approx \min_{\theta} \frac{\langle \Psi_{\theta}, H\Psi_{\theta} \rangle}{\langle \Psi_{\theta}, \Psi_{\theta} \rangle}$$

Accuracy limited by approximation error.

- Methods: Meanfield, Perturbation theory, Exponential ansatz, Tensor-network (White 92), Deep neural-network (Carleo-Troyer 17)
 - Similar to variational inference methods (Blei 16) to solve entropic minimization problem.
- Meanfield has O(d) storage complexity. Others are worse in both storage and computational complexities.

Lots of efforts in making them closer to linear scaling

Function approximation approaches II:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Monte-Carlo approaches I:

• Ground state
$$\Psi_0$$
 satisfies $H\Psi_0 = E_0\Psi_0$.

• Energy is calculated with some "trial wavefuction" Ψ_{tr} :

$$E_0 = \frac{\langle \Psi_{\rm tr}, H\Psi_0 \rangle}{\langle \Psi_{\rm tr}, \Psi_0 \rangle}$$

Approximate Ψ₀ ≈ ∑^N_{k=1} Φ_k (empirical distribution of a wavefunction). Each Φ_k very simple. Storage O(Nd).

Energy is calculated as

$$E_0 \approx \frac{\langle \Psi_{\rm tr}, H \sum_{k=1}^N \Phi_k \rangle}{\langle \Psi_{\rm tr}, \sum_{k=1}^N \Phi_k \rangle}$$

Large variance!

Monte-Carlo approaches II:

Variance can blow-up without sophisticated importance sampling.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Denominator can go to zero.

Questions:

Function approximation approaches:

- Advantages: Deterministic. No/low variance.
- Disadvantages: Approximation error. High computational cost.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Monte-Carlo approaches:
 - Advantages: Cheap.
 - Disadvantages: High variance.

Can we have the best of both worlds?

Intro to auxilliary field quantum Monte-Carlo I:

Imaginary time evolution to get ground state:

$$\Psi_0 = \lim_{\tau \to \infty} \exp(-\tau H) \Phi^{(0)}$$

• Power method compute top eigenvector of $\exp(-\Delta \tau H)$:

$$\exp(-\tau H)\Phi^{(0)} = \exp(-\Delta\tau H)\cdots\exp(-\Delta\tau H)\Phi^{(0)}$$

Suppose there is a decomposition of propagator (mixture model for operator):

$$\exp(-\Delta\tau H) = \mathbb{E}_{y \sim P} B(y), \ B(y) \in \mathbb{C}^{|\Omega|^d \times |\Omega|^d}$$

• $y \in \mathbb{R}^d$, P is a distribution on \mathbb{R}^d .

• Approximate $\exp(-\Delta \tau H)$ by sampling operators B(y):

$$\Phi^{(n)} = B(y^{(n)}) \cdots B(y^{(1)}) \Phi^{(0)}, \quad y^{(1)}, \cdots, y^{(n)} \stackrel{\text{i.i.d.}}{\sim} P$$

• Then $\Psi_0 = \mathbb{E}\Phi^{(n)}$

Intro to auxilliary field quantum Monte-Carlo II:

- Three necessary ingredients:
 - Walker $\Phi^{(n)}$ is a tensor product functions (e.g. $g_1 \otimes \cdots \otimes g_d$)
 - B(y) is a tensor product operators (e.g. $O_1 \otimes \cdots \otimes O_d$)
 - ▶ B(y)Φ⁽ⁿ⁾ = O₁g₁ ⊗ · · · ⊗ O_dg_d can be done fast (O(d) complexity) and stays separable.

- ▶ An analogy of classical Ising model for d spins $s \in \{\pm 1\}^d$
 - Let $\mu(s) \propto \exp\left(-\frac{1}{2}\sum_{i,j=1}^{d} J_{ij}s_is_j\right)$.
 - ▶ If J positive semidefinite, Hubbard-Stratonovich transformation.
 - ▶ $\mu(s) \propto \int_{\mathbb{R}^d} P(y) \exp(i < y, s >) dy$, P(y) is a Gaussian (Fourier transform of Gaussian is Gaussian).
 - ► Then $\mu(s) \approx \exp(i < y, s >)$ where $y \sim P$. $\exp(i < y, s >) = \exp(iy_1s_1) \cdots \exp(iy_ds_d)$ is separable function.

Quantum Monte-Carlo II:

▶ **Pros**: Each mat-vec in $B(y^{(n)}) \cdots B(y^{(1)}) \Phi^{(0)}$ has O(d) complexity.

• **Cons**: Brownian motion in \mathbb{C}^{2^d} . Chance of finding Ψ_0 is $O\left(\frac{1}{2^d}\right)$. A very rare event.

Importance sampling I

 \blacktriangleright Importance sampling: Guide walkers to land on trial wavefunction $\Psi_{\rm tr}\approx\Psi_0.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(phys.org)

Importance sampling II

• Change sampling from P to $P^{(n)}$

$$\mathbb{E}_{y \sim P} B(y) \Phi^{(n)} = \mathbb{E}_{y \sim P^{(n)}} \frac{P(y)B(y)}{P^{(n)}(y)} \Phi^{(n)}$$
$$= \mathbb{E}_{y \sim P^{(n)}} \tilde{B}^{(n)}(y) \Phi^{(n)}$$

►
$$P^{(n)}(y) = \frac{\langle \Psi_{tr}, B(y)\Phi^{(n)}\rangle P(y)}{\mathcal{N}^{(n)}}$$
. $\mathcal{N}^{(n)}$: Normalizing constant.

 P⁽ⁿ⁾(y) can be negative. If so, do constrained path approximation (Zhang-Carlson-Gubernatis 97):

$$P^{(n)}(y) = \frac{\max\{\langle \Psi_{\mathsf{tr}}, B(y)\Phi^{(n)}\rangle, 0\}P(y)}{\mathcal{N}^{(n)}}$$

Space of opposite sign cannot be visited. Introducing some bias.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Importance sampling III

► Transverse field Ising model. 16 spins.

Importance sampling IV

• Overlap $\langle \Psi_{\mathsf{tr}}, \Phi^{(n)} \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Importance sampling V

▶ Bias depends on the choice of Ψ_{tr} . Usually closer to ground state Ψ_0 the better.

An overlooked fact: Variance also depends on how close Ψ_{tr} to ground state Ψ₀.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A good trial wavefunction Ψ_{tr} is crucial!

Theoretical results:

• Let Ψ_0 be the ground state of H with eigenvalues $E_0 < E_1 \leq E_2 \cdots$.

Standard results of one step of power method:

$$\frac{\langle \Psi_{\rm tr}, H \exp(-\Delta \tau H) \Phi^{(n)} \rangle}{\langle \Psi_{\rm tr}, \exp(-\Delta \tau H) \Phi^{(n)} \rangle} - E_0 \bigg| \lesssim e^{-\Delta \tau (E_1 - E_0)} \bigg| \frac{\langle \Psi_{\rm tr}, H \Phi^{(n)} \rangle}{\langle \Psi_{\rm tr}, \Phi^{(n)} \rangle} - E_0$$

- ▶ Now replace $\exp(-\Delta \tau H)$ with a sample $\widetilde{B}^{(n)}(y)$.
- ► Theorem (Yu-Zhang-K. 2024): Assuming there is no bias in the random walk. For $tan(\angle(\Psi_0, \Psi_{tr}))$ small enough:

$$\begin{split} & \left| \frac{\langle \Psi_{\mathrm{tr}}, H\widetilde{B}^{(n)}(y)\Phi^{(n)}\rangle}{\langle \Psi_{\mathrm{tr}}, \widetilde{B}^{(n)}(y)\Phi^{(n)}\rangle} - E_0 \right| \lesssim e^{-\Delta\tau(E_1 - E_0)} \left| \frac{\langle \Psi_{\mathrm{tr}}, H\Phi^{(n)}\rangle}{\langle \Psi_{\mathrm{tr}}, \Phi^{(n)}\rangle} - E_0 \right| \\ + \underbrace{\|H - E_0I\|_2 \tan(\angle(\Psi_0, \Psi_{\mathrm{tr}}))}_{\mathrm{magnitude}} \underbrace{\frac{\|\widetilde{B}^{(n)}(y) - e^{-\Delta\tau H}\|_2}{\|e^{-\Delta\tau E_0}\|_2} \tan(\angle(\Psi_0, \Phi^{(n)}))}_{\mathrm{random fluctuation}} \end{split}$$

• Better Ψ_{tr} gives smaller variance.

Intuition:

Due to importance sampling, overlap variance

$$\mathsf{Var}_{y \sim P^{(n)}}(\langle \Psi_{\mathsf{tr}}, \tilde{B}^{(n)}(y)\Phi^{(n)}\rangle) = 0.$$

► Therefore, when no bias, get faithful overlap:

$$\langle \Psi_{\rm tr}, \tilde{B}^{(n)}(y)\Phi^{(n)}\rangle = \langle \Psi_{\rm tr}, \exp(-\Delta\tau H)\Phi^{(n)}\rangle$$

• If
$$\Psi_{tr} = \Psi_0$$
:

$$\begin{split} \langle \Psi_{\mathsf{tr}}, H\tilde{B}^{(n)}(y)\Phi^{(n)}\rangle &= \langle H\Psi_{\mathsf{tr}}, \tilde{B}^{(n)}(y)\Phi^{(n)}\rangle \\ &= E_0 \langle \Psi_{\mathsf{tr}}, \tilde{B}^{(n)}(y)\Phi^{(n)}\rangle = E_0 \langle \Psi_{\mathsf{tr}}, \exp(-\Delta\tau H)\Phi^{(n)}\rangle \end{split}$$

► Zero variance:
$$\frac{\langle \Psi_{\text{tr}}, H\tilde{B}^{(n)}(y)\Phi^{(n)}\rangle}{\langle \Psi_{\text{tr}}, \tilde{B}^{(n)}(y)\Phi^{(n)}\rangle} = E_0$$

Re-anchoring quantum Monte-Carlo with tensor-train sketching¹:

- From current walkers $\{\Phi_k^{(n)}\}_{k=1}^N$, estimate a new Ψ_{tr} (in terms of tensor-train).
- Use new Ψ_{tr} to importance sample next episode of random walks. Hope improved Ψ_{tr} gives smaller energy variance and bias.
- Iterate back and forth.

Results I:

▶ 1D and 2D transverse-field Ising model.

▶ Walkers number 4000, 8000, 12000, 12000. Relative energy error:

	cp-AFQMC	cp-AFQMC with re-anchoring
32 spins 1D	$(+1.35\pm0.31)\times10^{-3}$	$(+0.44 \pm 2.43) \times 10^{-5}$
64 spins 1D	$(+1.88 \pm 0.37) \times 10^{-3}$	$(+0.77 \pm 1.07) \times 10^{-5}$
96 spins 1D	$(+2.49\pm0.33)\times10^{-3}$	$(-4.95 \pm 8.94) \times 10^{-6}$
4×16 spins	$(+4.18 \pm 1.42) \times 10^{-3}$	$(-0.66 \pm 1.96) \times 10^{-6}$

Results II:

Results III: Advantages over function approximation methods

- Energy matches direct minimization over rank-800 tensor train.
- We use only rank-4 tensor train as guide!

Figure: 8×8 model with magnetic field g = 3.0.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Computational cost:

• Applying $\tilde{B}^{(n)}(y)\Phi_k^{(n)}$ is O(d) (tensor product structure). With N walkers, O(Nd).

• Estimating a tensor-train Ψ_{tr} from walkers $\{\Phi_k^{(n)}\}_{k=1}^N$ is O(Nd).

- Use tensor-train (TT) sketching¹.
- Almost no extra cost on top of Monte Carlo!

Tensor-train sketching I

• Given
$$\Phi_k^{(n)} \in \mathbb{C}^{m^d}$$
. A tensor $\underbrace{m \times \cdots \times m}_{d \text{ times}}$

$$\hat{\Phi} := \sum_{k=1}^{N} \Phi_k^{(n)} \stackrel{N \to \infty}{\longrightarrow} \Phi^*$$

• $\hat{\Phi}$: empirical wavefunction. Φ^* : Ground truth wavefunction.

• Want to estimate
$$\Phi^*$$
 from $\hat{\Phi}$.

- - Think of $\Phi^* := \Phi^*(x_1, \dots, x_d)$ (function of *d*-variables).
 - The matrix $\Phi^*(x_{1:k}; x_{k+1:d}) \in \mathbb{C}^{m^k \times m^{k-d}}$ with row/col indexed by $x_{1:k}/x_{k+1:d}$ is rank-r
 - Low correlation/entanglement between $x_{1:k}$ and $x_{k+1:d}$.

Tensor-train sketching II

• Equivalent to Φ^* being a tensor train (TT):

$$\Phi^{\star}(x_1,\ldots,x_d) = G_1^{\star}(x_1,:)G_2^{\star}(:,x_2,:)\cdots G_{d-1}^{\star}(:,x_{d-1},:)G_d^{\star}(:,x_d)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$G_1^{\star} \in \mathbb{C}^{m \times r}, G_i^{\star} \in \mathbb{C}^{r \times m \times r}, G_d^{\star} \in \mathbb{C}^{r \times m}.$$

• $r = 1$: separable state.

Generalize low-rank matrices.

• Want to determine d cores G_i^{\star} 's in O(d) time.

Matrix example: d = 2 case

- ▶ If $\Phi^* \in \mathbb{C}^{m \times m}$ rank-r.
- ▶ Randomized linear algebra: $Range(\Phi^*) = Range(\Phi^*T)$ for some chosen sketch matrix T of size $m \times r$.
- Low-rank decomposition of Φ^{*} = G₁^{*}G₂^{*} by sketching (G₁^{*} m × r, G₂^{*} r × m):

$$\begin{split} G_1^\star &= \Phi^\star T & G_1^\star &= \Phi^\star T \\ G_1^\star G_2^\star &= \Phi^\star & \Longrightarrow (\Phi^\star T) G_2^\star &= \Phi^\star \end{split}$$

- Over-determined. Use a second sketch $S \ m \times r$:
 - $\begin{aligned} G_1^{\star} &= \Phi^{\star}T & \text{(Range finding)} \\ (S^{\star}\Phi^{\star}T)G_2^{\star} &= S^{\star}\Phi^{\star} & \text{(Interpolate)} \end{aligned}$

Finally with empirical distribution $\hat{\Phi}$:

$$G_1 = \hat{\Phi}T$$
 (Range finding)
$$(S^*\hat{\Phi}T)G_2 = S^*\hat{\Phi}$$
 (Interpolate)

► Just solving two linear system. $O(r^3 + mr^2)$. Not the dominating cost.

Matrix example: Computational cost

Forming equation is expensive.

▶ Naively:
▶ Form
$$\hat{\Phi} = \sum_{k=1}^{N} \Phi_k^{(n)}$$
. Cost $O(Nm^2)$.
▶ Sketch $\hat{\Phi}T$. Cost $O(m^2r)$.

• However $\hat{\Phi} = \sum_{k=1}^{N} a_k b_k^*$ (each sample is a rank-1 outer product).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \blacktriangleright $(a_k b_k^*)T$ is O(mr)

• Total cost
$$O(Nmr)$$
.

$\mathsf{High-}d$ case

Parallelly solve a system of equations

$$\begin{array}{rcl} G_1(x_1,:) &=& \hat{B}_1(x_1,:)\\ \hat{A}_1 G_2(:,x_2,:) &=& \hat{B}_2(:,x_2,:)\\ &\vdots\\ \hat{A}_{d-1} G_d(:,x_d) &=& \hat{B}_d(:,x_d) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\blacktriangleright \hat{B}_k \ r \times m \times r. \ \hat{A}_{k-1} \ r \times r.$$

• \hat{A}_{k-1}, \hat{B}_k 's formed with O(dNmr) complexity.

Computational scaling:

Figure: Left: different number of spins with 2000 walkers; right: different number of walkers for 16 spins.

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Comparisons with "Ground truth" wavefunction:

- Proposed method provides more that an energy estimate.
- Fitted trial wavefunction $\Psi_{\rm tr} \approx \Psi_0$

Figure: The overlap between TT trial wavefunction and the ground-state wavefunction. 32 spins in 1D; 64 spins in 1D; 96 spins in 1D; 4×16 spins.

 "Ground truth" from a density matrix renormalization group calculation. (Could be wrong!)

Guarantees:

- Can say things rigorously in density estimation setting
- Hur-Hoskins-Lindsey-Stoudenmire-K. 23: Guarantees on learning Markovian distribution.
- Peng-Yang-K.-Wang 24: Tensor density estimator by Convolution-Deconvolution. Unified framework for more general densities.

Figure: (Left) Comparison with neural-network for some ground truth density. (Right) Generated MNIST data

Conclusions:

Combine quantum Monte-Carlo and wavefunction methods.

Best of both worlds?

Future work: electronic problems.

 Acknowledgements: Supported by DMS-2111563, DMS-2339439, DE-SC0022232, Sloan foundation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Thank you!