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Intro to quantum ground state problem |

» For some particles x1,...x4 € . Want to find its stable
configuration in a potential well U : Q¢ — R.

» Classical minimization problem:

min U(z), z= [z - -z}
zeNd

» Not hard to get some local optimizer. Just gradient descent.

» Equivalent to a measure optimization problem

min/U(x)u(d:z:), st >0, /u(da:) =1

m

» Minimizer: p* =6(- — z¥).
> Size: |Q|°.



Intro to quantum ground state problem Il

» When temperature 7" # 0, need to add some entropy

» Entropic minimization problem:

min / U(z)p(dz) + T / I p(@)u(dz), st >0, / p(dz) =1

m

> Free energy in stat. mech.
» Temperature gives particles some kinetic energy — Entropy.
> Particles’ positions are spread out. p* not a dirac-delta.

» Another parameterization of the problem

n}gn/U(x)|\I/(a:)|2dx—|—T/|\I/(a:)|2ln|\1'(x)\2dx, st ||¥]z, =1

» Connection to quantum mechanics (probability is the square of some
function). Born rule.

» Hadamard parameterization in optimization over probability simplex
(Li-McKinsey-Yin 21).



Intro to quantum ground state problem IlI

» Quantum mechanics: A different penalty to “spread out” the
particles

n}én/U(m)\\Il(x)Fdx—&-h/|V\IJ(x)|2dx, st., |9, =1

> First term: Potential energy
> Second term: Kinetic energy (h: Planck constant)
> ¥: Q% — C: Wavefunction.

» Unlike stat. mech., even when temperature is zero, there is always
kinetic energy spreading out particles (uncertainty principle).

» Solve an eigenvalue problem

v HY
Ey ::min7< . )

v (P, T)

. . . . d d
» H: Hamiltonian. Hermitian. Size C/®2"*1€I

» Denote lowest eigenstate as Uy.
» Curse-of-dim.



Function approximation approaches I:
» Represent solution ¥ as Uy.

» Solve

» Accuracy limited by approximation error.

» Methods: Meanfield, Perturbation theory, Exponential ansatz,
Tensor-network (White 92), Deep neural-network (Carleo-Troyer 17)

» Similar to variational inference methods (Blei 16) to solve entropic
minimization problem.

» Meanfield has O(d) storage complexity. Others are worse in both
storage and computational complexities.

> Lots of efforts in making them closer to linear scaling



Function approximation approaches Il:

Matrix Product State / PEPS
Tensor Train

660000

Tree Tensor Network /
Hierarchical Tucker MERA
R. Parmar — Towards Data Science

inputlayer  hiddenlayer 1 hiddenlayer2  hidden layer 3

https://tensornetwork.org/




Monte-Carlo approaches I:

» Ground state Vg satisfies HVy = EyVy.
> Energy is calculated with some “trial wavefuction” Wy,:

(Ver, HU )

FEy=~ 12"
0T (W, Wo)

» Approximate ¥, = Z,Ij:l 4. (empirical distribution of a
wavefunction). Each @, very simple. Storage O(Nd).

» Energy is calculated as

(U, H S, )
(T, Sy D)

0~

» Large variance!



Monte-Carlo approaches II:

» Variance can blow-up without sophisticated importance sampling.

» Denominator can go to zero.



Questions:

» Function approximation approaches:

» Advantages: Deterministic. No/low variance.
» Disadvantages: Approximation error. High computational cost.

» Monte-Carlo approaches:

» Advantages: Cheap.
» Disadvantages: High variance.

» Can we have the best of both worlds?



Intro to auxilliary field quantum Monte-Carlo I:

» Imaginary time evolution to get ground state:
Uy = lim exp(—7H)d®
T—00
» Power method compute top eigenvector of exp(—ATH):
exp(—7H)®®) = exp(=ATH) - - - exp(—ATH)®®)

» Suppose there is a decomposition of propagator (mixture model for
operator):

exp(—ATH) =E,.pB(y), B(y) € Cl2"x12I",
> 4 c R? P is a distribution on R%.
» Approximate exp(—A7H) by sampling operators B(y):
™ = B(y™)... B(yM)a©® 4O ... 40 iid p

» Then ¥y = Ed™)



Intro to auxilliary field quantum Monte-Carlo II:

» Three necessary ingredients:
> Walker ™ is a tensor product functions (e.g- g1 ® - ®ga)
» B(y) is a tensor product operators (e.g. O1 ® - - - ® Oy4)
> B(y)®™ = 0191 ® - -+ ® Oaga can be done fast (O(d) complexity)
and stays separable.

» An analogy of classical Ising model for d spins s € {£1}¢

> Let pu(s) x exp (77 i1 JijSi s])

> If J positive semldeflnlte Hubbard-Stratonovich transformation.

>  [oa P(y) exp(i < y,s >)dy, P(y) is a Gaussian (Fourier
transform of Gaussnan is Gaussian).

> Then pu(s) =~ exp(i < y,s >) where y ~ P.

exp(i < y,s >) = exp(iy1s1) - - - exp(iyasq) is separable function.



Quantum Monte-Carlo II:

» Pros: Each mat-vec in B(y(™)--- B(y™")®© has O(d) complexity.
> Cons: Brownian motion in C2°. Chance of finding ¥q is O (id)

very rare event.
> (o, B(y (n)). -B(y (U)@(O) ~0



Importance sampling |

\Iltr ~ qfo

» Importance sampling: Guide walkers to land on trial wavefunction

(phys.org)



Importance sampling |l

» Change sampling from P to P(™)

P(y)B(y)
E,.pB)®"™ = E. _pm—2P e

= E,.pm B(™ (y)q)(n)

) iy
> PM(y) = W. N : Normalizing constant.

» P()(y) can be negative. If so, do constrained path
approximation (Zhang-Carlson-Gubernatis 97):

max{(¥, B(y)®™),0}P(y)
N (@) ’

P (y) =

> Space of opposite sign cannot be visited. Introducing some bias.



Importance sampling Ill

» Transverse field Ising model. 16 spins.
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Importance sampling 1V

> Overlap (U, &™)
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Importance sampling V

» Bias depends on the choice of Wy,. Usually closer to ground state
U, the better.

» An overlooked fact: Variance also depends on how close ¥y, to
ground state V.

» A good trial wavefunction WUy, is crucial!



Theoretical results:

» Let Uy be the ground state of H with eigenvalues
Ey<Ei<Ey---.
» Standard results of one step of power method:

(U, HOM)

—AT(E1—E)p) _
<\Ijtr7 (b(n)>

<e

~

0

‘ (U, Hexp(—ATH)(I)(")>
)

(U, exp(—ATH)P™)

> Now replace exp(—AT7H) with a sample E(”)(y).

» Theorem (Yu-Zhang-K. 2024): Assuming there is no bias in the
random walk. For tan(Z(¥, ¥y,)) small enough:

(Vir, HB™ (y)2(™)
(Vir, BO) () ()

0

~

o~ AT(E1—Eo) (U, HO™)
<\Iltr7q)(n)>

IB™ (y) — e~ 27 s
le= 27505

+||H — EoI |2 tan(Z(Wg, Uy,)) tan(Z (o, ®™))

magnitude
random fluctuation

> Better Uy, gives smaller variance.




Intuition:

» Due to importance sampling, overlap variance

Var, . pe ((Wir, B (y)q)(n)>) =0.

» Therefore, when no bias, get faithful overlap:

(Wi, BT ()0 = (Wyy, exp(—ATH) ™)

> If Uy = Wy

(W, HB™ (y)@™) = (HW,, B™ (y)@™)
= Ey (W, B (y)®™) = Eq(Wyy, exp(—ATH)D™)

(W HBW ()8 _ o
— L0

> i : =
Zero variance: e B () B™)



Re-anchoring quantum Monte-Carlo with tensor-train
sketching!:

» From current walkers {@;")}kN:l, estimate a new Uy, (in terms of
tensor-train).

» Use new Wy, to importance sample next episode of random walks.
Hope improved Wy, gives smaller energy variance and bias.

» [terate back and forth.
weame o AFOME

o 9

o

.

1Yu-Zhang-K. arxiv 2411.07194



Results I:

» 1D and 2D transverse-field Ising model.

» Walkers number 4000, 8000, 12000, 12000. Relative energy error:

cp-AFQMC cp-AFQMC with re-anchoring
32 spins 1D | (+1.35+0.31) x 1073 (+0.44 +£2.43) x 107
64 spins 1D | (+1.88+£0.37) x 1073 +0.77+1.07) x 10~°

(
( ) ( )
96 spins 1D | (+2.49 £ 0.33) x 103 (—4.95 £ 8.94) x 10 ©
4% 16 spins | (+4.18 £ 1.42) x 103 (—0.66 = 1.96) x 10~ ©




Results II:
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Results Ill: Advantages over function approximation

methods

» Energy matches direct minimization over rank-800 tensor train.

» We use only rank-4 tensor train as guide!

Energy
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Figure: 8 x 8 model with magnetic field g = 3.0.



Computational cost:

» Applying B (y)@,(cn) is O(d) (tensor product structure). With N
walkers, O(Nd).

> Estimating a tensor-train Wy, from walkers {&\" 1N is O(Nd).

> Use tensor-train (TT) sketching®.
» Almost no extra cost on top of Monte Carlo!

Hur-Hoskins-Lindsey-Stoudenmire-K. ACHA 2023



Tensor-train sketching |

> Given <I>,(€”) e C™ . Atensor m X ---xm
—_————

d times

N
b= o 25 ¢
k=1

» &: empirical wavefunction. ®*: Ground truth wavefunction.

» Want to estimate ®* from ®.

» Crucial assumption: ®* is low-rank:
» Think of ®* := ®*(z1,...24) (function of d-variables).
> The matrix ®* (z1.1; Tht1:4) € et with row/col indexed by

Z1:k/Tkt1:4 IS rank-r
» Low correlation/entanglement between 1.5 and Tgy1.4.



Tensor-train sketching Il

» Equivalent to ®* being a tensor train (TT):

D (z1,...,2q) = Gi(x1,:)G5(:,22,:) - - G_1 (a1, :)G5(:, 24)

» G‘{ G mer’ G: e C’I‘XmX’V‘yG; e (C’I‘Xm.
» r = 1: separable state.

» Generalize low-rank matrices.

> Want to determine d cores G}'s in O(d) time.



Matrix example: d = 2 case

>
>

>

If ®* € C™*™ rank-r.

Randomized linear algebra: Range(®*) = Range(®*T') for some
chosen sketch matrix 7" of size m x r.

Low-rank decomposition of ®* = G7G% by sketching

(Gy m xr,G5 r xm):

GY = ®*T GY =T
GiGs = o* = (®*T)G5 = *
Over-determined. Use a second sketch S m x r:
G} =T (Range finding)
(S*®*T)Gs5 = S*d* (Interpolate)

Finally with empirical distribution P:
Gy =T (Range finding)
(S*®T)Gy = S*P (Interpolate)

Just solving two linear system. O(73 + mr?). Not the dominating
cost.



Matrix example: Computational cost

» Forming equation is expensive.

> Naively:
> Form & =S~ | 3™ Cost O(Nm?).
> Sketch ®T. Cost O(m?>r).

> However & = Z,ivzl arby, (each sample is a rank-1 outer product).
> (apbi)T is O(mr)

» Total cost O(Nmr).



High-d case

» Parallelly solve a system of equations

N Gi(z1,:) = Bl(xla:)
A1G2(27$272) = BQ(Z,LEQ,:)

Ag1Ga(iyxd) = Ba(:,za)

» BerxXxmXr. Arx_1 17 XT.

> Aj_1, By's formed with O(dNmzr) complexity.



Computational scaling:
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Figure: Left: different number of spins with 2000 walkers; right: different
number of walkers for 16 spins.



Comparisons with “Ground truth” wavefunction:

» Proposed method provides more that an energy estimate.
» Fitted trial wavefunction ¥, = ¥,

» Overlap [(Uy, Up)l:

o
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Imaginary-time steps Imaginary-time steps Imaginary-time steps Imaginary-time steps

Figure: The overlap between TT trial wavefunction and the ground-state
wavefunction. 32 spins in 1D; 64 spins in 1D; 96 spins in 1D; 4 x 16 spins.

» “Ground truth” from a density matrix renormalization group
calculation. (Could be wrong!)



Guarantees:

» Can say things rigorously in density estimation setting

» Hur-Hoskins-Lindsey-Stoudenmire-K. 23: Guarantees on learning
Markovian distribution.

» Peng-Yang-K.-Wang 24: Tensor density estimator by
Convolution-Deconvolution. Unified framework for more general

densities.
i P =2 |=2[=[=]
IS (o |a o |~ [=]
/M//
® | g | ===

Figure: (Left) Comparison with neural-network for some ground truth
density. (Right) Generated MNIST data



Conclusions:

» Combine quantum Monte-Carlo and wavefunction methods.

» Best of both worlds?

» Future work: electronic problems.
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