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Intro to quantum ground state problem I

I For some particles x1, . . . xd ∈ Ω. Want to find its stable
configuration in a potential well U : Ωd → R.

I Classical minimization problem:

min
x∈Ωd

U(x), x = [xT1 · · ·xTd ]

I Not hard to get some local optimizer. Just gradient descent.

I Equivalent to a measure optimization problem

min
µ

∫
U(x)µ(dx), s.t. µ ≥ 0,

∫
µ(dx) = 1

I Minimizer: µ? = δ(· − x?).
I Size: |Ω|d.



Intro to quantum ground state problem II

I When temperature T 6= 0, need to add some entropy

I Entropic minimization problem:

min
µ

∫
U(x)µ(dx) + T

∫
lnµ(x)µ(dx), s.t. µ ≥ 0,

∫
µ(dx) = 1

I Free energy in stat. mech.
I Temperature gives particles some kinetic energy → Entropy.
I Particles’ positions are spread out. µ? not a dirac-delta.

I Another parameterization of the problem

min
Ψ

∫
U(x)|Ψ(x)|2dx+T

∫
|Ψ(x)|2 ln |Ψ(x)|2dx, s.t. , ‖Ψ‖L2 = 1

I Connection to quantum mechanics (probability is the square of some
function). Born rule.

I Hadamard parameterization in optimization over probability simplex
(Li-McKinsey-Yin 21).



Intro to quantum ground state problem III
I Quantum mechanics: A different penalty to “spread out” the

particles

min
Ψ

∫
U(x)|Ψ(x)|2dx+ ~

∫
|∇Ψ(x)|2dx, s.t. , ‖Ψ‖L2

= 1

I First term: Potential energy
I Second term: Kinetic energy (~: Planck constant)
I Ψ : Ωd → C: Wavefunction.

I Unlike stat. mech., even when temperature is zero, there is always
kinetic energy spreading out particles (uncertainty principle).

I Solve an eigenvalue problem

E0 := min
Ψ

〈Ψ, HΨ〉
〈Ψ,Ψ〉

I H: Hamiltonian. Hermitian. Size C|Ω|
d×|Ω|d

I Denote lowest eigenstate as Ψ0.
I Curse-of-dim.



Function approximation approaches I:

I Represent solution Ψ as Ψθ.

I Solve

E0 ≈ min
θ

〈Ψθ, HΨθ〉
〈Ψθ,Ψθ〉

I Accuracy limited by approximation error.

I Methods: Meanfield, Perturbation theory, Exponential ansatz,
Tensor-network (White 92), Deep neural-network (Carleo-Troyer 17)
I Similar to variational inference methods (Blei 16) to solve entropic

minimization problem.

I Meanfield has O(d) storage complexity. Others are worse in both
storage and computational complexities.
I Lots of efforts in making them closer to linear scaling



Function approximation approaches II:

https://tensornetwork.org/
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Monte-Carlo approaches I:

I Ground state Ψ0 satisfies HΨ0 = E0Ψ0.
I Energy is calculated with some “trial wavefuction” Ψtr:

E0 =
〈Ψtr, HΨ0〉
〈Ψtr,Ψ0〉

I Approximate Ψ0 ≈
∑N
k=1 Φk (empirical distribution of a

wavefunction). Each Φk very simple. Storage O(Nd).

I Energy is calculated as

E0 ≈
〈Ψtr, H

∑N
k=1 Φk〉

〈Ψtr,
∑N
k=1 Φk〉

I Large variance!



Monte-Carlo approaches II:

I Variance can blow-up without sophisticated importance sampling.

I Denominator can go to zero.



Questions:

I Function approximation approaches:
I Advantages: Deterministic. No/low variance.
I Disadvantages: Approximation error. High computational cost.

I Monte-Carlo approaches:
I Advantages: Cheap.
I Disadvantages: High variance.

I Can we have the best of both worlds?



Intro to auxilliary field quantum Monte-Carlo I:
I Imaginary time evolution to get ground state:

Ψ0 = lim
τ→∞

exp(−τH)Φ(0)

I Power method compute top eigenvector of exp(−∆τH):

exp(−τH)Φ(0) = exp(−∆τH) · · · exp(−∆τH)Φ(0)

I Suppose there is a decomposition of propagator (mixture model for
operator):

exp(−∆τH) = Ey∼PB(y), B(y) ∈ C|Ω|
d×|Ω|d .

I y ∈ Rd, P is a distribution on Rd.

I Approximate exp(−∆τH) by sampling operators B(y):

Φ(n) = B(y(n)) · · ·B(y(1))Φ(0), y(1), · · · , y(n) i.i.d.∼ P

I Then Ψ0 = EΦ(n)



Intro to auxilliary field quantum Monte-Carlo II:

I Three necessary ingredients:
I Walker Φ(n) is a tensor product functions (e.g. g1 ⊗ · · · ⊗ gd)
I B(y) is a tensor product operators (e.g. O1 ⊗ · · · ⊗Od)
I B(y)Φ(n) = O1g1 ⊗ · · · ⊗Odgd can be done fast (O(d) complexity)

and stays separable.

I An analogy of classical Ising model for d spins s ∈ {±1}d

I Let µ(s) ∝ exp
(
− 1

2

∑d
i,j=1 Jijsisj

)
.

I If J positive semidefinite, Hubbard-Stratonovich transformation.
I µ(s) ∝

∫
Rd P (y) exp(i < y, s >)dy, P (y) is a Gaussian (Fourier

transform of Gaussian is Gaussian).
I Then µ(s) ≈ exp(i < y, s >) where y ∼ P .

exp(i < y, s >) = exp(iy1s1) · · · exp(iydsd) is separable function.



Quantum Monte-Carlo II:

I Pros: Each mat-vec in B(y(n)) · · ·B(y(1))Φ(0) has O(d) complexity.

I Cons: Brownian motion in C2d

. Chance of finding Ψ0 is O
(

1
2d

)
. A

very rare event.
I 〈Ψ0, B(y(n)) · · ·B(y(1))Φ(0)〉 ≈ 0

Φ(")
Ψ"

𝑪$!



Importance sampling I

I Importance sampling: Guide walkers to land on trial wavefunction
Ψtr ≈ Ψ0.

(phys.org)



Importance sampling II

I Change sampling from P to P (n)

Ey∼PB(y)Φ(n) = Ey∼P (n)

P (y)B(y)

P (n)(y)
Φ(n)

= Ey∼P (n)B̃(n)(y)Φ(n)

I P (n)(y) = 〈Ψtr,B(y)Φ(n)〉P (y)

N (n) . N (n) : Normalizing constant.

I P (n)(y) can be negative. If so, do constrained path
approximation (Zhang-Carlson-Gubernatis 97):

P (n)(y) =
max{〈Ψtr, B(y)Φ(n)〉, 0}P (y)

N (n)
.

I Space of opposite sign cannot be visited. Introducing some bias.



Importance sampling III

I Transverse field Ising model. 16 spins.



Importance sampling IV

I Overlap 〈Ψtr,Φ
(n)〉



Importance sampling V

I Bias depends on the choice of Ψtr. Usually closer to ground state
Ψ0 the better.

I An overlooked fact: Variance also depends on how close Ψtr to
ground state Ψ0.

I A good trial wavefunction Ψtr is crucial!



Theoretical results:
I Let Ψ0 be the ground state of H with eigenvalues
E0 < E1 ≤ E2 · · · .

I Standard results of one step of power method:∣∣∣∣ 〈Ψtr, H exp(−∆τH)Φ(n)〉
〈Ψtr, exp(−∆τH)Φ(n)〉

− E0

∣∣∣∣ . e−∆τ(E1−E0)

∣∣∣∣ 〈Ψtr, HΦ(n)〉
〈Ψtr,Φ(n)〉

− E0

∣∣∣∣
I Now replace exp(−∆τH) with a sample B̃(n)(y).

I Theorem (Yu-Zhang-K. 2024): Assuming there is no bias in the
random walk. For tan(∠(Ψ0,Ψtr)) small enough:∣∣∣∣∣ 〈Ψtr, HB̃

(n)(y)Φ(n)〉
〈Ψtr, B̃(n)(y)Φ(n)〉

− E0

∣∣∣∣∣ . e−∆τ(E1−E0)

∣∣∣∣ 〈Ψtr, HΦ(n)〉
〈Ψtr,Φ(n)〉

− E0

∣∣∣∣
+‖H − E0I‖2 tan(∠(Ψ0,Ψtr))︸ ︷︷ ︸

magnitude

‖B̃(n)(y)− e−∆τH‖2
‖e−∆τE0‖2

tan(∠(Ψ0,Φ
(n)))︸ ︷︷ ︸

random fluctuation

I Better Ψtr gives smaller variance.



Intuition:

I Due to importance sampling, overlap variance

Vary∼P (n)(〈Ψtr, B̃
(n)(y)Φ(n)〉) = 0.

I Therefore, when no bias, get faithful overlap:

〈Ψtr, B̃
(n)(y)Φ(n)〉 = 〈Ψtr, exp(−∆τH)Φ(n)〉

I If Ψtr = Ψ0:

〈Ψtr, HB̃
(n)(y)Φ(n)〉 = 〈HΨtr, B̃

(n)(y)Φ(n)〉
= E0〈Ψtr, B̃

(n)(y)Φ(n)〉 = E0〈Ψtr, exp(−∆τH)Φ(n)〉

I Zero variance: 〈Ψtr,HB̃
(n)(y)Φ(n)〉

〈Ψtr,B̃(n)(y)Φ(n)〉 = E0



Re-anchoring quantum Monte-Carlo with tensor-train
sketching1:

I From current walkers {Φ(n)
k }Nk=1, estimate a new Ψtr (in terms of

tensor-train).

I Use new Ψtr to importance sample next episode of random walks.
Hope improved Ψtr gives smaller energy variance and bias.

I Iterate back and forth.

.

1Yu-Zhang-K. arxiv 2411.07194



Results I:

I 1D and 2D transverse-field Ising model.

I Walkers number 4000, 8000, 12000, 12000. Relative energy error:

cp-AFQMC cp-AFQMC with re-anchoring
32 spins 1D (+1.35± 0.31)× 10−3 (+0.44± 2.43)× 10−5

64 spins 1D (+1.88± 0.37)× 10−3 (+0.77± 1.07)× 10−5

96 spins 1D (+2.49± 0.33)× 10−3 (−4.95± 8.94)× 10−6

4× 16 spins (+4.18± 1.42)× 10−3 (−0.66± 1.96)× 10−6



Results II:

96 1D spins 4x16 2D spins



Results III: Advantages over function approximation
methods

I Energy matches direct minimization over rank-800 tensor train.

I We use only rank-4 tensor train as guide!
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Figure: 8× 8 model with magnetic field g = 3.0.



Computational cost:

I Applying B̃(n)(y)Φ
(n)
k is O(d) (tensor product structure). With N

walkers, O(Nd).

I Estimating a tensor-train Ψtr from walkers {Φ(n)
k }Nk=1 is O(Nd).

I Use tensor-train (TT) sketching1.
I Almost no extra cost on top of Monte Carlo!

1Hur-Hoskins-Lindsey-Stoudenmire-K. ACHA 2023



Tensor-train sketching I

I Given Φ
(n)
k ∈ Cmd

. A tensor m× · · · ×m︸ ︷︷ ︸
d times

Φ̂ :=

N∑
k=1

Φ
(n)
k

N→∞−→ Φ∗

I Φ̂: empirical wavefunction. Φ?: Ground truth wavefunction.

I Want to estimate Φ? from Φ̂.

I Crucial assumption: Φ? is low-rank:
I Think of Φ? := Φ?(x1, . . . xd) (function of d-variables).

I The matrix Φ?(x1:k;xk+1:d) ∈ Cmk×mk−d

with row/col indexed by
x1:k/xk+1:d is rank-r

I Low correlation/entanglement between x1:k and xk+1:d.



Tensor-train sketching II

I Equivalent to Φ? being a tensor train (TT):

Φ?(x1, . . . , xd) = G?1(x1, :)G
∗
2(:, x2, :) · · ·G?d−1(:, xd−1, :)G

?
d(:, xd)

I G?
1 ∈ Cm×r, G?

i ∈ Cr×m×r, G?
d ∈ Cr×m.

I r = 1: separable state.

I Generalize low-rank matrices.

I Want to determine d cores G?i ’s in O(d) time.



Matrix example: d = 2 case
I If Φ? ∈ Cm×m rank-r.
I Randomized linear algebra: Range(Φ?) = Range(Φ?T ) for some

chosen sketch matrix T of size m× r.
I Low-rank decomposition of Φ? = G?1G

?
2 by sketching

(G?1 m× r,G?2 r ×m):

G?1 = Φ?T G?1 = Φ?T

G?1G
?
2 = Φ? =⇒ (Φ?T )G?2 = Φ?

I Over-determined. Use a second sketch S m× r:

G?1 = Φ?T (Range finding)

(S∗Φ?T )G∗2 = S∗Φ? (Interpolate)

I Finally with empirical distribution Φ̂:

G1 = Φ̂T (Range finding)

(S∗Φ̂T )G2 = S∗Φ̂ (Interpolate)

I Just solving two linear system. O(r3 +mr2). Not the dominating
cost.



Matrix example: Computational cost

I Forming equation is expensive.

I Naively:
I Form Φ̂ =

∑N
k=1 Φ

(n)
k . Cost O(Nm2).

I Sketch Φ̂T . Cost O(m2r).

I However Φ̂ =
∑N
k=1 akb

∗
k (each sample is a rank-1 outer product).

I (akb
∗
k)T is O(mr)

I Total cost O(Nmr).



High-d case

I Parallelly solve a system of equations

G1(x1, :) = B̂1(x1, :)
Â1G2(:, x2, :) = B̂2(:, x2, :)

...
Âd−1Gd(:, xd) = B̂d(:, xd)

I B̂k r ×m× r. Âk−1 r × r.

I Âk−1, B̂k’s formed with O(dNmr) complexity.



Computational scaling:

Figure: Left: different number of spins with 2000 walkers; right: different
number of walkers for 16 spins.



Comparisons with “Ground truth” wavefunction:

I Proposed method provides more that an energy estimate.

I Fitted trial wavefunction Ψtr ≈ Ψ0

I Overlap |〈Ψtr,Ψ0〉|:
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Figure: The overlap between TT trial wavefunction and the ground-state
wavefunction. 32 spins in 1D; 64 spins in 1D; 96 spins in 1D; 4× 16 spins.

I “Ground truth” from a density matrix renormalization group
calculation. (Could be wrong!)



Guarantees:
I Can say things rigorously in density estimation setting
I Hur-Hoskins-Lindsey-Stoudenmire-K. 23: Guarantees on learning

Markovian distribution.
I Peng-Yang-K.-Wang 24: Tensor density estimator by

Convolution-Deconvolution. Unified framework for more general
densities.

Figure: (Left) Comparison with neural-network for some ground truth
density. (Right) Generated MNIST data



Conclusions:

I Combine quantum Monte-Carlo and wavefunction methods.

I Best of both worlds?

I Future work: electronic problems.
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