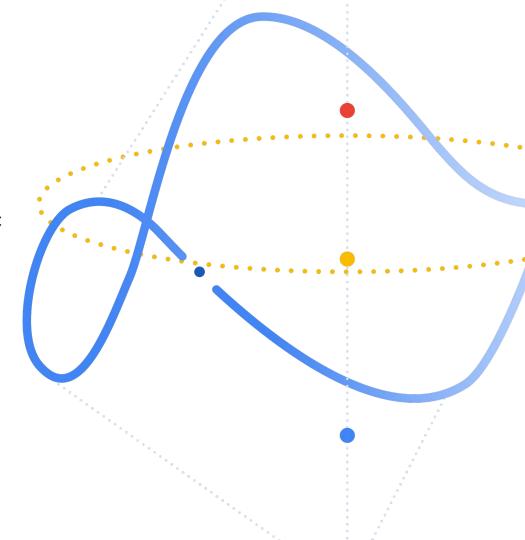
## Recent Advances in Probabilistic Scientific Machine Learning for Chaotic Dynamical Systems

June 13th 2024 IMSI Workshop in Probabilistic SciML

Leonardo Zepeda-Núñez lzepedanunez@google.com



### Who we are and what we do



Zhong Yi Wan



Leonardo Zepeda-Núñez



Fei Sha

Mission Foundational technologies that drive efficient modeling of large-scale, high-stake, and computationally intensive physical systems

**Representation/Dynamics Learning:** Leverage implicit representation tools for learning the dynamics of advection-dominated systems.

Probabilistic Modelling: Leverage generative AI tools for physical systems (UQ)

### Machine Learning by tasks

Machine learning can be roughly divided into 3 buckets:

| ML Task        | Underlying Math Problem                 | Applied Math Techniques                                                   |  |  |  |  |
|----------------|-----------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| Classification | Learning a <b>Partition</b> of a domain | Meshing techniques                                                        |  |  |  |  |
| Regression     | Learning a <b>Map</b>                   | Approximating functions<br>Solving ODEs/PDEs<br>Approximating dynamics    |  |  |  |  |
| Generation     | Learning a <b>Distribution</b>          | Solving SDEs<br>Sampling from Distributions<br>Uncertainty quantification |  |  |  |  |

Classical Problems in Numerical Analysis / Computational Maths

Difference: Much Higher Dimension!!

### Machine Learning by tasks

Machine learning can be roughly divided into 3 buckets:

| ML Task        | Underlying Math Problem                 | Applied Math Techniques                                                   |               |
|----------------|-----------------------------------------|---------------------------------------------------------------------------|---------------|
| Classification | Learning a <b>Partition</b> of a domain | Meshing techniques                                                        |               |
| Regression     | Learning a <b>Map</b>                   | Approximating functions<br>Solving ODEs/PDEs<br>Approximating dynamics    |               |
| Generation     | Learning a <b>Distribution</b>          | Solving SDEs<br>Sampling from Distributions<br>Uncertainty quantification | Today's talk! |

Classical Problems in Numerical Analysis / Computational Maths

Difference: Much Higher Dimension!!

### Who we are and what we do

#### **Representation/Dynamics Learning**

- A. Boral, Z. Y. Wan, L. Zepeda-Núñez, J. Lottes, Q. Wang, Y. Chen, J. Anderson, F Sha. Neural Ideal Large Eddy Simulation: Modeling Turbulence with Neural Stochastic Differential Equations, *NeurIPS 2023*.
- Z. Y. Wan, L. Zepeda-Núñez, A. Boral, F. Sha. Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems, *ICLR 2023*
- G. Dresdner, D. Kochkov, P. Norgaard, L. Zepeda-Núñez, J. A. Smith, M. Brenner, S. Hoyer. Learning to correct spectral methods for simulating turbulent flows. *TMLR 2023*.

#### Probabilistic Modelling

- M. A. Finzi, A. Boral, A. G. Wilson, F. Sha, **L. Zepeda-Núñez**, User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems, *ICML 2023*
- Y. Schiff, Z. Y. Wan, J. B. Parker, S. Hoyer, V. Kuleshov, F. Sha, L. Zepeda-Núñez. DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems. *ICML 2024*.
- Z. Y. Wan, R. Baptista, Y. Chen, J. Anderson, A. Boral, F. Sha, **L. Zepeda-Núñez**. Debias Coarsely, Sample Conditionally: Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models, *NeurIPS 2023*.
- B. Barthel Sorensen, L. Zepeda-Núñez, I. Lopez-Gomez, Z. Y. Wan, R. Carver, F. Sha, and T. P. Sapsis. A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data, arXiv:2408.02688.
- B. Zhang, M. Guerra, Q. Li, and L. Zepeda-Núñez. Back-Projection Diffusion: Solving the Wideband Inverse Scattering Problem with Diffusion Models. CMAME 2025.
- I. Lopez-Gomez, Z. Y. Wan, L. Zepeda-Núñez, T. Schneider, J. Anderson, F. Sha. Dynamical-generative downscaling of climate model ensembles. PNAS 2025.
- R. Molinaro, S.Lanthaler, B. Raonić, T. Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, L. Zepeda-Núñez. Generative AI for fast and accurate Statistical Computation of Fluids, arXiv:2409.18359.

### **Probabilistic Reformulation to Leverage GenAl**

Focus: High-Dimensional problems

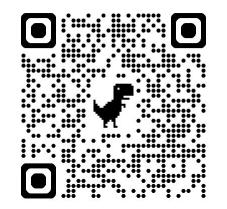
Probabilistic SciML  $\rightarrow$  two stage approach:

Recast the problem in a "probabilistic" manner

Leverage and tailor genAl tools to solve the new formulation

Open source code:

https://github.com/google-research/swirl-dynamics



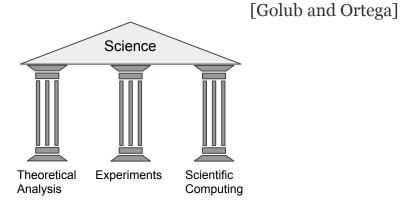


## What is SciML?

Scientific Machinetingarning

What is Scientific Computing?

"... Scientific Computing is the collection of tools, techniques, and theories required to solve on a computer mathematical models of problems in Science and Engineering"



Gene H. Golub and James M. Ortega. *Scientific Computing and Differential Equations – An Introduction to Numerical Methods*. Academic Press, 1992.

## **SciML: Accelerating Science and Engineering**

Scientific Computing:

In silico for downstream applications but still experimental **data** is the gold standard

Issues with in silico workflows

- More **accurate** simulations require more **expensive** computations
- Need to run **thousands** of simulations with different parameters
- Quantify the uncertainty to increase robustness

**SciML** is the evolution of **Scientific computing** to further accelerate the development pipelines by making **computations more efficient**.

Probabilistic SciML seeks to address computational bottlenecks in Scientific computing dealing with probability distributions, by leveraging generative AI tools

## Probabilistic SciML: Two examples (or Vignettes)

### Learning Stable Dynamics by Invariant Measure Matching

Y. Schiff, Z. Y. Wan, J. B. Parker, S. Hoyer, V. Kuleshov, F. Sha, L. Zepeda-Núñez. DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems. ICML 2024.

#### **Generative AI for fast and accurate Statistical Computation of Fluids**

R. Molinaro, S. Lanthaler, B. Raonic, T Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, and L. Zepeda-Núñez, ArXiv:2409.18359

## Learning Stable Dynamics by Invariant Measure Matching

$$\partial_t u = \mathcal{F}[u(t)] \xrightarrow{\text{discretize}} u_{k+1} = \mathcal{S}_{\Delta t}(u_k),$$
$$u_k = \mathcal{S}(u_{k-1}) = \mathcal{S} \circ \mathcal{S}(u_{k-2}) = \dots = \mathcal{S}^k(u_0)$$

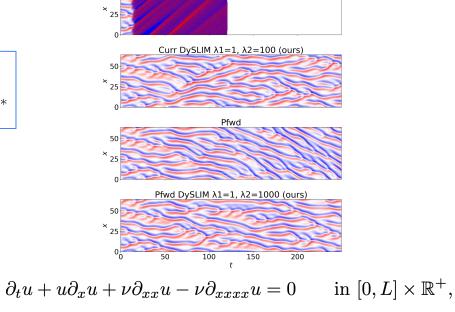
Invariant measure

known through data
$$\mathcal{D} = \{(u_j^{(i)})_{j=0}^{\ell^{(i)}}\}_{i=1}^n$$

$$\{u_0^{(i)}\}_{i=1}^n \stackrel{iid}{\sim} \mu_0 = \mu^* \\ \mu_j := \mathcal{S}^j_{\sharp} \mu_0 = \mathcal{S}^j_{\sharp} \mu^* = \mu^*$$

Data-driven dynamics learning

$$\min_{\theta} E_j E_{u_j \sim \mu_j} \left[ \| \mathcal{S}_{\theta}(u_j) - \mathcal{S}(u_j) \|^2 \right]$$



Unstable or goes to the wrong attractor

Curr

× 25

50

Recent Advances in Probabilistic Machine Learning

### Learning Stable Dynamics by Invariant Measure Matching

Data-driven dynamics learning

$$\min_{\theta} E_j E_{u_j \sim \mu_j} \left[ \left\| \mathcal{S}_{\theta}(u_j) - \mathcal{S}(u_j) \right\|^2 \right]$$

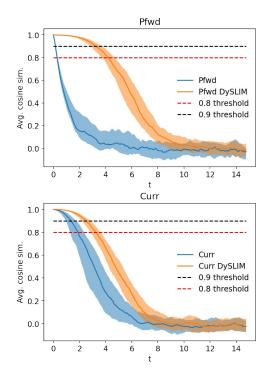
**Constrained minimization** 

 $\min_{\theta} \mathcal{L}(\theta) \quad \text{ s.t. } \ \mu_{\theta}^* = \mu^*$ 

Relaxed version  $\mathcal{L}^D_\lambda(\theta) = \mathcal{L}(\theta) + \lambda D(\mu^*,\mu^*_\theta)$ 



$$D(\mu^*, \mu_{\theta}^*) \approx D(\mu^*, \left(\mathcal{S}_{\theta}^k\right)_{\sharp} \mu^*)$$



 $D(\mu^*, \mu_{\theta}^*) = E_{u, u' \sim \mu^*}[\kappa(u, u')] + E_{v, v' \sim \mu_{\theta}^*}[\kappa(v, v')] - 2E_{u \sim \mu^*, v \sim \mu_{\theta}^*}[\kappa(u, v)]$ 

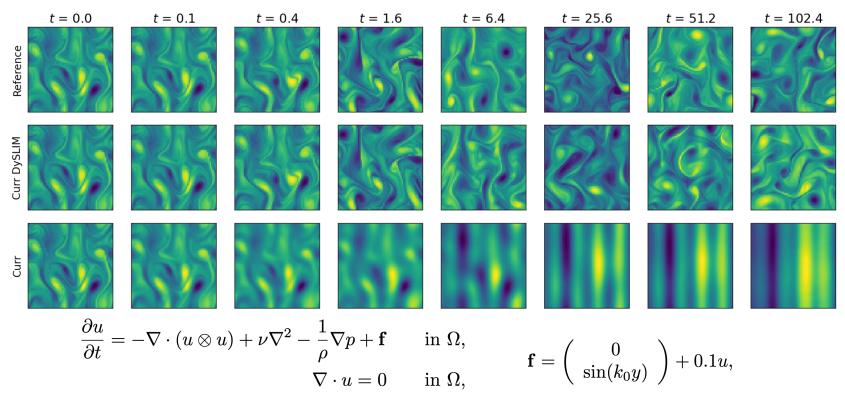
Recent Advances in Probabilistic Machine Learning

## Learning Stable Dynamics by Invariant Measure Matching

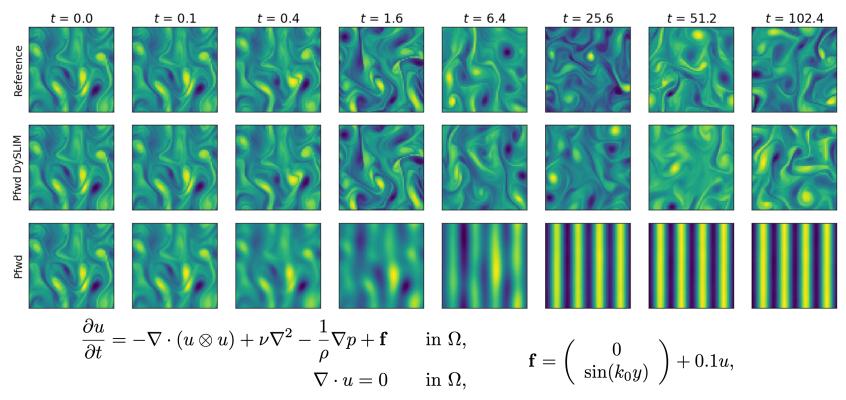
$$\mathcal{L}^{\ell\text{-step}}(\theta) = \mathbb{E}_{j} \mathbb{E}_{u_{j} \sim \mu_{j}} \sum_{k=1}^{\ell} \omega(k) \left\| \mathcal{S}_{\theta}^{k}(u_{j}) - u_{j+k} \right\|^{2}$$
$$\mathcal{L}^{\text{Pfwd},\ell}(\theta) = \mathbb{E}_{j} \mathbb{E}_{u_{j} \sim \mu_{j}} \sum_{k=1}^{\ell} \omega(k) \left\| \mathcal{S}_{\theta}(\operatorname{sg}(\mathcal{S}_{\theta}^{\ell-1}(u_{j}))) - u_{j+k} \right\|^{2}$$

| Baseline    | Batch<br>size | Learning<br>rate | $MELR\downarrow (\times 10^{-2})$ |        | $\begin{array}{c} \text{MELRw} \downarrow \\ (\times 10^{-2}) \end{array}$ |        | $\begin{vmatrix} \text{covRMSE} \\ (\times 10^{-2}) \end{vmatrix}$ |        | Wass1 $\downarrow$ (×10 <sup>-2</sup> ) |        | $\begin{vmatrix} \text{TCM} \downarrow \\ (\times 10^{-2}) \end{vmatrix}$ |        |
|-------------|---------------|------------------|-----------------------------------|--------|----------------------------------------------------------------------------|--------|--------------------------------------------------------------------|--------|-----------------------------------------|--------|---------------------------------------------------------------------------|--------|
|             |               |                  | Base                              | DySLIM | Base                                                                       | DySLIM | Base                                                               | DySLIM | Base                                    | DySLIM | Base                                                                      | DySLIM |
| Pushforward | 128           | 1e-4             | 3.19                              | 2.46   | 0.53                                                                       | 0.53   | 6.81                                                               | 6.69   | 4.64                                    | 4.51   | 3.68                                                                      | 0.72   |
| Curriculum  | 64            | 5e-4             | 5.35                              | 1.64   | 0.95                                                                       | 0.45   | 8.13                                                               | 6.95   | 9.66                                    | 4.76   | 3.50                                                                      | 2.83   |
| 1-step      | 64            | 5e-4             | 2.77                              | 1.84   | 0.44                                                                       | 0.85   | 7.93                                                               | 7.30   | 16.2                                    | 5.55   | 5.39                                                                      | 2.45   |

### Learning Stable Dynamics by Invariant Measure Matching



### Learning Stable Dynamics by Invariant Measure Matching



## **Probabilistic SciML: Learning Statistical Solutions**

#### **Generative AI for fast and accurate Statistical Computation of Fluids**

R. Molinaro, S. Lanthaler, B. Raonic, T Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, and L. Zepeda-Núñez, ArXiv:2409.18359

### How to efficiently compute statistical solutions of fluid flows.

## An Incredible Hammer: Diffusion Models

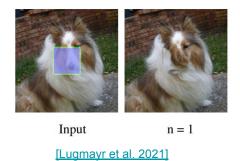
Learn a prior p(x) of the high-resolution data.

Why?

**High-quality** samples High **coverage** of the distribution

Then conditional sampling

$$p(x|C'x=y)$$

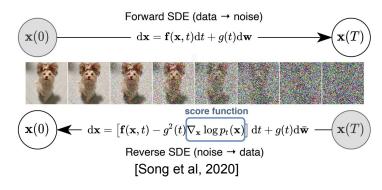






A cute corgi lives in a house made out of sushi

[Saharia et al. 2020]

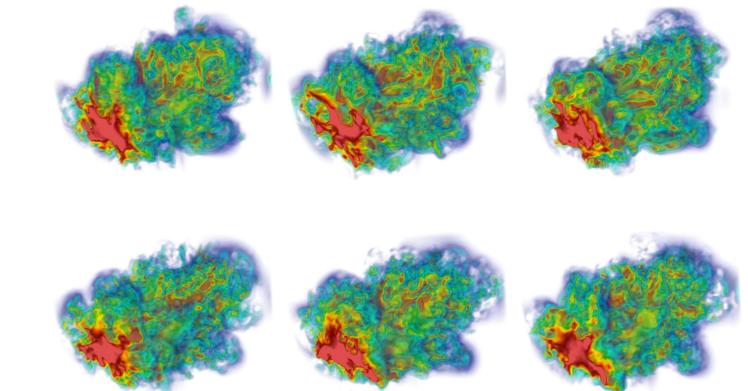


$$\mathbb{E}[x_0|x_t] = \frac{x_t + \sigma_t^2 \nabla_{x_t} \log p(x_t)}{s_t} := \hat{x}_0(x_t)$$

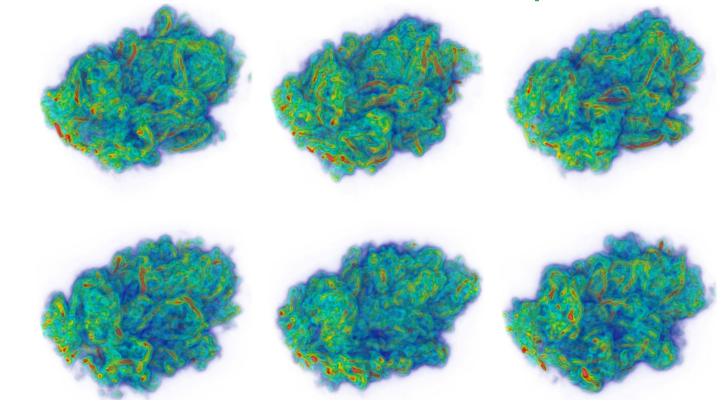
More details: http://smai.emath.fr/cemracs/cemracs23/summer-school.html

Recent Advances in Probabilistic Machine Learning

## **Quick Quiz: Real or Generated Samples?**

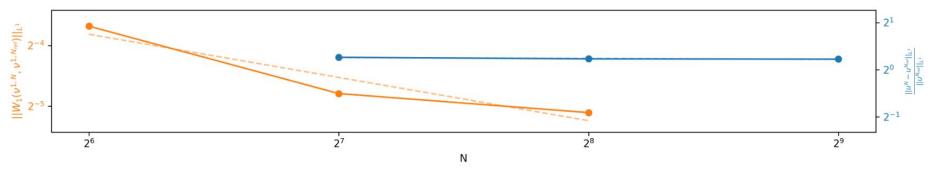


## **Quick Quiz: Real or Generated Samples?**



# Why Statistical Solutions?

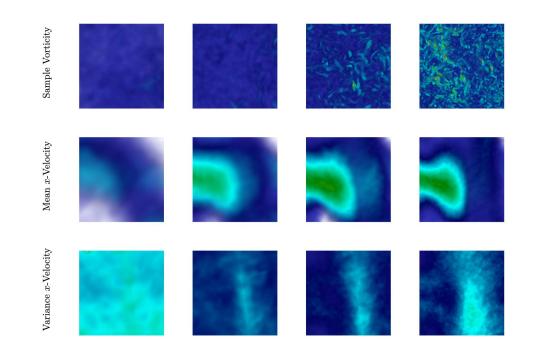
Due to the chaotic nature of system, its numerical solution **doesn't converge** under mesh refinement (3D Cylindrical Shear Flow problem)



Even though there is no convergence per trajectory, the **statistics** of the flow do converge.

# Why Statistical Solutions?

Increasing Resolution



## **Statistical Solutions**

$$\partial_t u(x,t) + \mathcal{L}\left(u, \nabla_x u, \nabla_x^2 u, \ldots\right) = 0, \quad \forall x \in D \subset \mathbb{R}^d, t \in (0,T),$$
$$\mathcal{B}(u) = 0, \quad \forall (x,t) \in \partial D \times (0,T),$$
$$u(0,x) = \bar{u}(x), \quad x \in D,$$

Solution operator
$$\mathcal{S}: [0,T] \times \mathbb{X} \mapsto \mathbb{X}$$
 $\hat{\mu}_t = \mathcal{S}_{\#}^t \bar{\mu}$ Statistical solution $u(t) = \mathcal{S}^t(\bar{u}) = \mathcal{S}(t,\bar{u})$  $\uparrow \lim_{\Delta \to 0}$  $\uparrow \lim_{\Delta \to 0}$ Discrete solution operator $\mathcal{S}^{t,\Delta}: \mathbb{X}^{\Delta} \mapsto \mathbb{X}^{\Delta}$  $\hat{\mu}_t^{\Delta} = \mathcal{S}_{\#}^{t,\Delta} \bar{\mu}$ Approximate statistical solution $\operatorname{Lip}(\mathcal{S}^{t,\Delta}) \to \infty$  $\lim_{\Delta \to 0} W_p(\hat{\mu}_t^{\Delta}, \hat{\mu}_t) = 0$  $\downarrow$ 

## **Extended Statistical Solutions**

$$ig(\mathcal{S}^{t,\Delta} imes\mathtt{id}ig):\mathbb{X} o\mathbb{X} imes\mathbb{X}$$
 $ig(\mathcal{S}^{t,\Delta} imes\mathtt{id}ig)(ar{u})=(\mathcal{S}^{t,\Delta}(ar{u}),ar{u})$ 

Approximate extended statistical solution

$$\mu^{\Delta}_t := \left( \mathcal{S}^{t,\Delta} \times \operatorname{id} \right)_{\#} \bar{\mu}^{\Delta}$$

extended statistical solutions

$$\mu_t = \lim_{\Delta \to 0} \mu_t^\Delta = \lim_{\Delta \to 0} \left( \mathcal{S}^{t,\Delta} \times \operatorname{id} \right)_{\#} \bar{\mu}^\Delta$$

 $\mu_t(du, d\bar{u}) = P_t(du \,|\, \bar{u}) \,\bar{\mu}(d\bar{u}),$ 

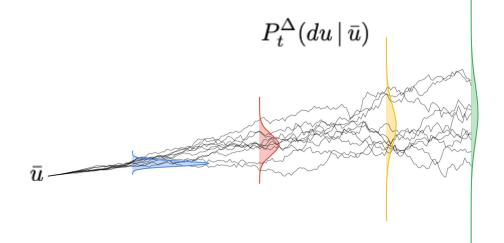
We need to learn the conditional probability

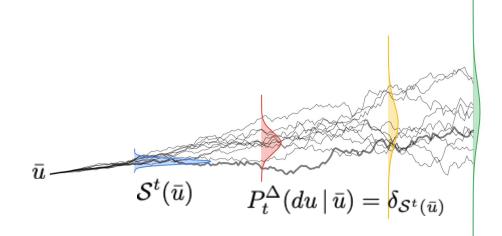
$$\mu_t^{\Delta}(du, d\bar{u}) = P_t^{\Delta}(du \,|\, \bar{u}) \,\bar{\mu}^{\Delta}(d\bar{u})$$

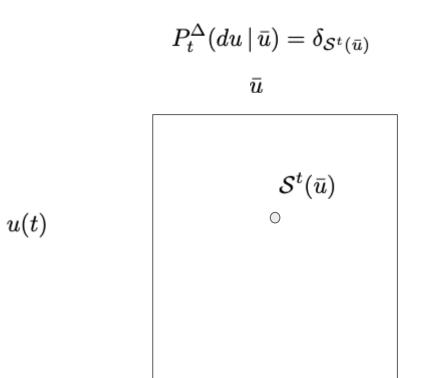
Only have access to the approximate conditional probability

We need to **sample** from this conditional probability

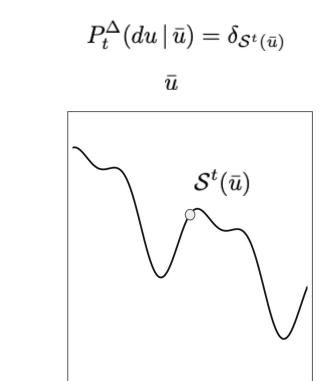
If the operator is well-behaved then  $P_t(du \,|\, \bar{u}) = \delta_{\mathcal{S}^t(\bar{u})}$  it goes back to the deterministic case



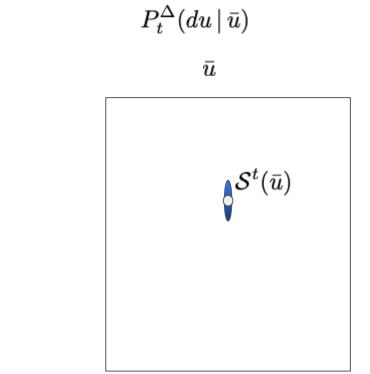




Recent Advances in Probabilistic Machine Learning



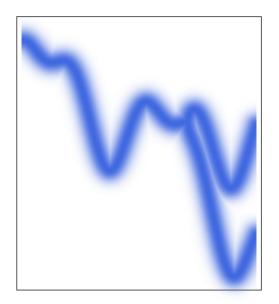
u(t)



u(t)

 $P_t^{\Delta}(du \,|\, \bar{u})$ 

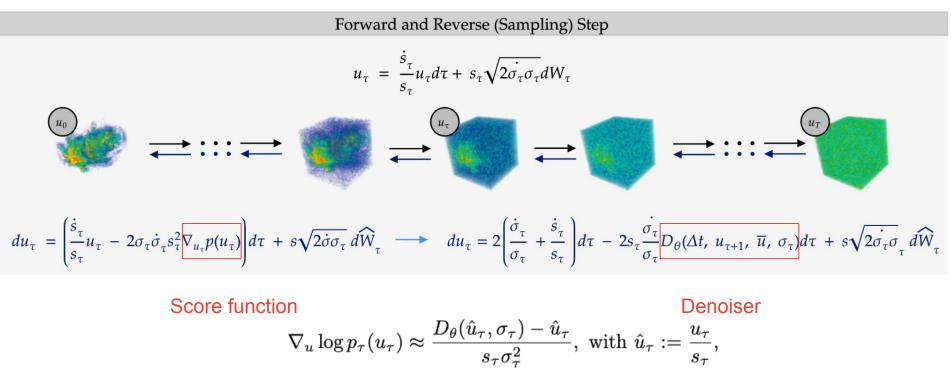
 $\bar{u}$ 



u(t)

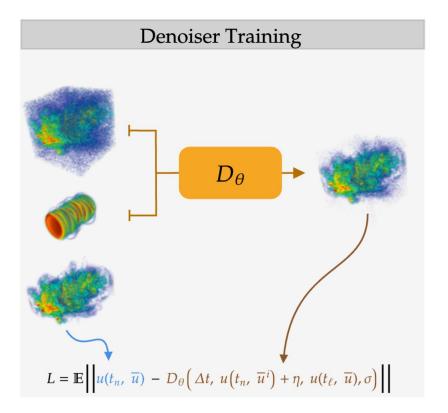
# Methodology

 $u_{\tau=0} \sim P_t^{\Delta}(du|\bar{u})$ 



Recent Advances in Probabilistic Machine Learning

# Methodology



# Why Probabilistic Approach?

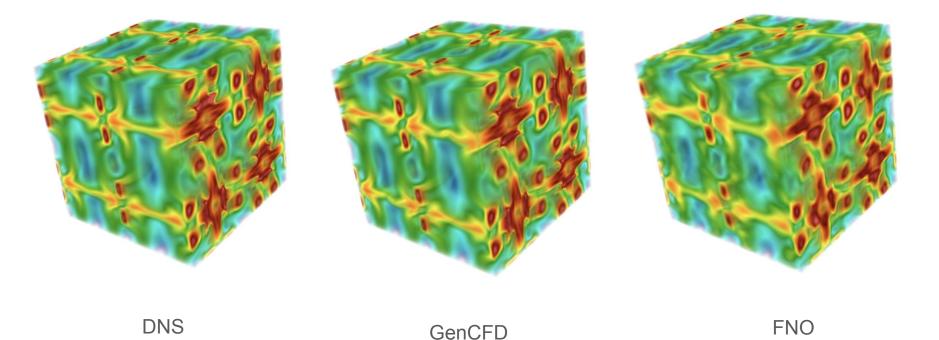
Deterministic models:

Learn the mean Small variability Tend to force a small Lipschitz constant for stability

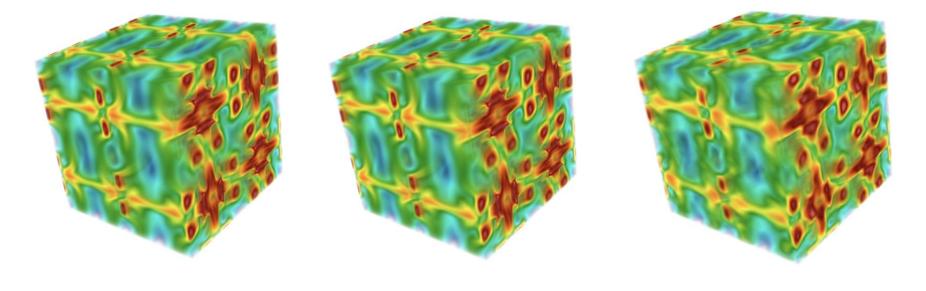
Probabilistic models:

Sampler for the target distribution Moments computed by Monte-Carlo Distribution convergence Low sample complexity Learns transitions in the behavior of the distribution quasi-deterministic to turbulent

# Taylor-Green Vortex (samples T=1)



## Taylor-Green Vortex (Mean T=1)

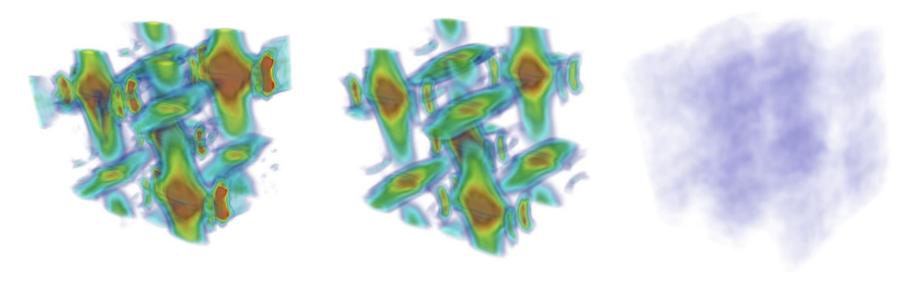


GenCFD

FNO

### Small deviation of the mean!

## Taylor-Green Vortex (Std T=1)

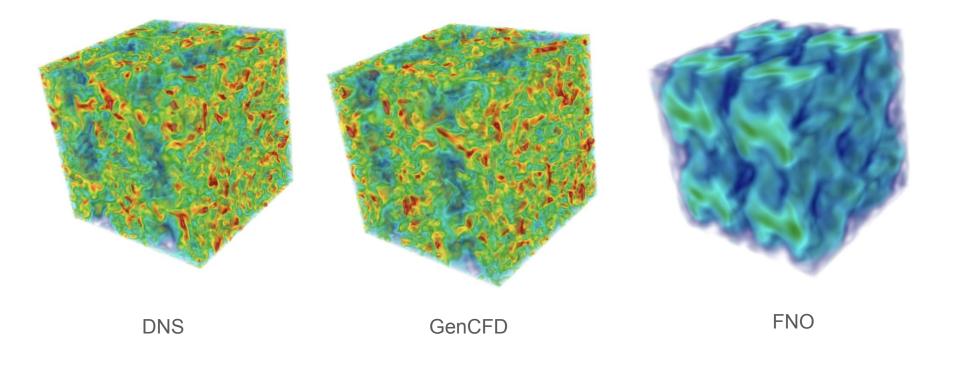


DNS

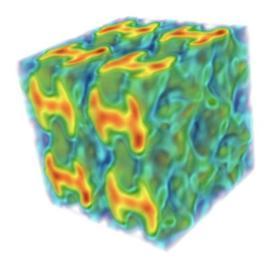
GenCFD

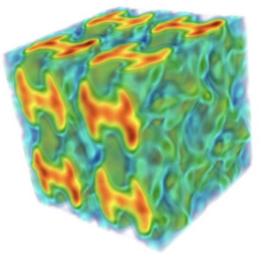
FNO

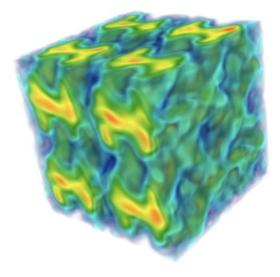
## Taylor-Green Vortex (samples T=2)



#### **Taylor-Green Vortex (Mean)**

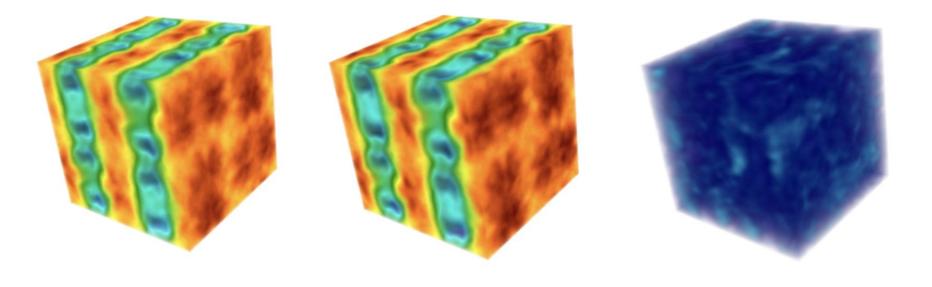






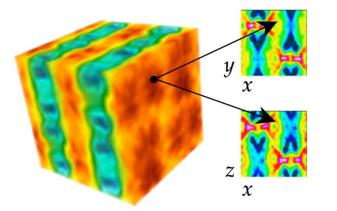


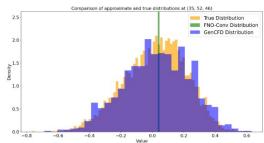
#### **Taylor-Green Vortex (std)**

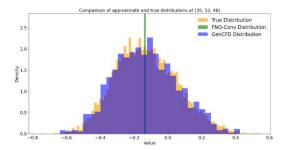




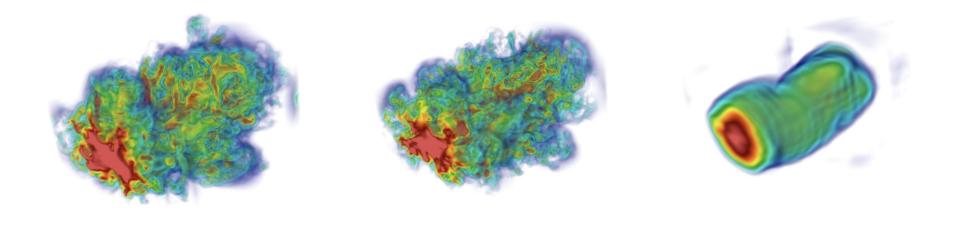
#### **Taylor-Green Vortex (PDF)**







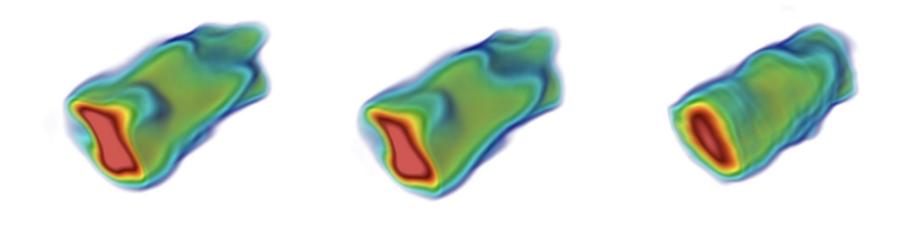
#### Cylinder Shear Layer (Samples)





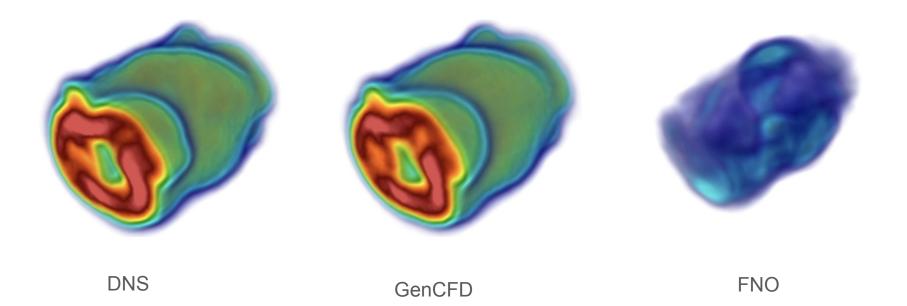


# Cylinder Shear Layer (Mean)



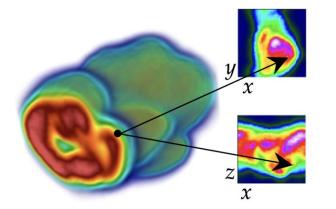


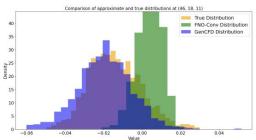
# Cylinder Shear Layer (Std)

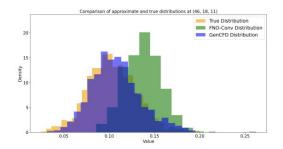




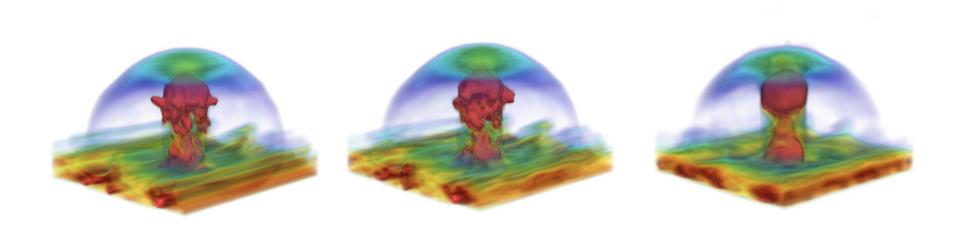
# Cylinder Shear Layer (pdf)







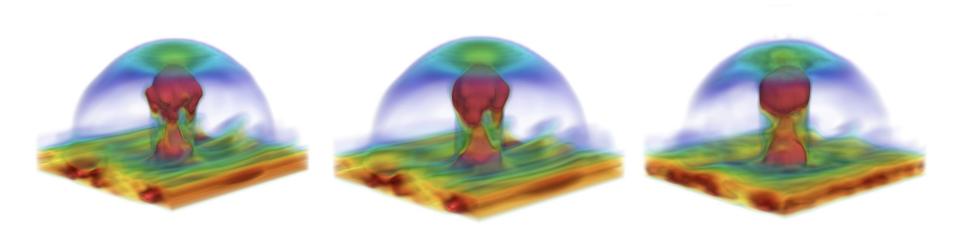
# Cloud Shock Interaction Problem (samples)





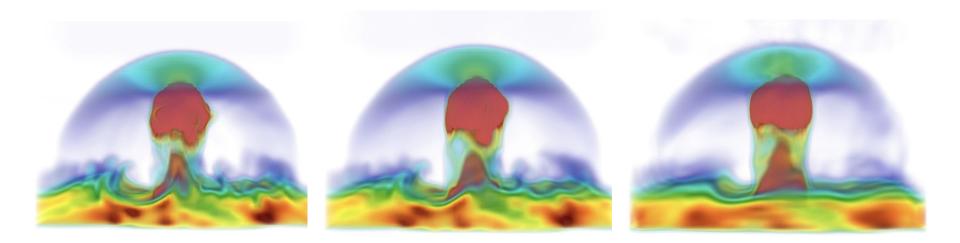


#### Cloud Shock Interaction Problem (mean)



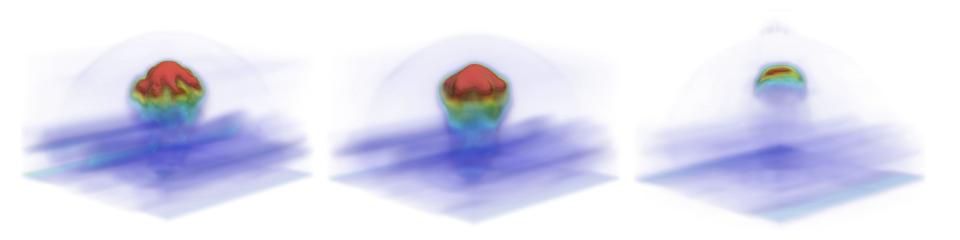


#### **Cloud Shock Interaction Problem (Mean)**



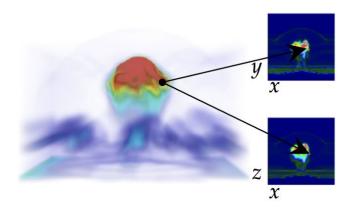
GenCFD

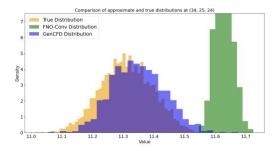
### Cloud Shock Interaction Problem (Std)

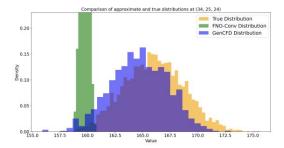


GenCFD

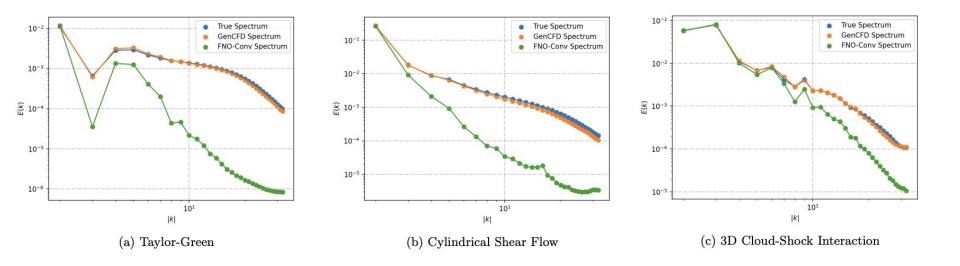
### **Cloud Shock Interaction Problem (std)**





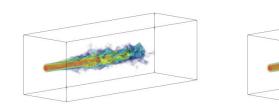


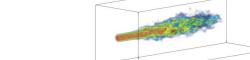
#### Spectrum

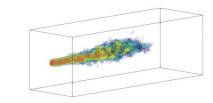


# **Turbulent Jet**

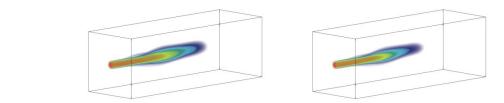
Ground Truth







GenCFD

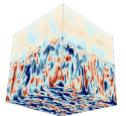


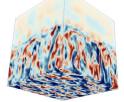
UViT

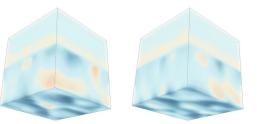
# **Convective Boundary Layer**

Ground Truth

GenCFD







UViT

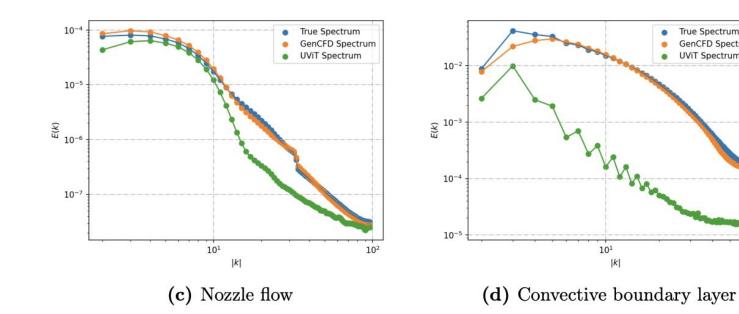
True Spectrum

**UViT Spectrum** 

GenCFD Spectrum

0

#### Spectrum



#### Conclusions

Lessons learned:

- Good software enables good research
- Stochastic description renders the learning easier
- Trading high-dimension by smoothness

# Thank you!



Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models