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Who we are and what we do

. Leonardo Fei Sha
Zhong YiWan Zepeda-Nunez

Foundational technologies that drive efficient modeling of large-scale, high-stake, and

Mission . . - .
computationally intensive physical systems

Representation/Dynamics Learning: Leverage implicit representation tools for learning the
dynamics of advection-dominated systems.

Probabilistic Modelling: Leverage generative Al tools for physical systems (UQ)

Recent Advances in Probabilistic Scientific Machine Learning



Machine Learning by tasks

Machine learning can be roughly divided into 3 buckets:

ML Task Underlying Math Problem
Classification Learning a Partition of a domain
Regression Learning a Map

Generation Learning a Distribution

Applied Math Techniques

Meshing techniques

Approximating functions
Solving ODEs/PDEs
Approximating dynamics

Solving SDEs
Sampling from Distributions
Uncertainty quantification

Classical Problems in Numerical Analysis / Computational Maths

Difference: Much Higher Dimension!!
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Who we are and what we do
Representation/Dynamics Learning

A.Boral, Z. Y. Wan, L. Zepeda-Nunez, J. Lottes, Q. Wang, Y. Chen, J. Anderson, F Sha. Neural Ideal Large Eddy
Simulation: Modeling Turbulence with Neural Stochastic Differential Equations, NeurlPS 2023.

Z.Y.Wan, L. Zepeda-Nunez, A. Boral, F. Sha. Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics
For Advection-Dominated Systems, ICLR 2023

G. Dresdner, D. Kochkov, P. Norgaard, L. Zepeda-Nunez, J. A. Smith, M. Brenner, S. Hoyer. Learning to correct
spectral methods for simulating turbulent flows. TMLR 2023.

Probabilistic Modelling

M. A. Finzi, A. Boral, A. G. Wilson, F. Sha, L. Zepeda-Nunez, User-defined Event Sampling and Uncertainty
Quantification in Diffusion Models for Physical Dynamical Systems, ICML 2023

Y. Schiff, Z. Y. Wan, J. B. Parker, S. Hoyer, V. Kuleshov, F. Sha, L. Zepeda-Nunez. DySLIM: Dynamics Stable Learning by
Invariant Measure for Chaotic Systems. ICML 2024.

Z.Y.Wan, R. Baptista, Y. Chen, J. Anderson, A. Boral, F. Sha, L. Zepeda-Nunez. Debias Coarsely, Sample
Conditionally: Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models, NeurIPS 2023.
B. Barthel Sorensen, L. Zepeda-Nunez, |. Lopez-Gomez, Z. Y. Wan, R. Carver, F. Sha, and T. P. Sapsis. A probabilistic
framework for learning non-intrusive corrections to long-time climate simulations from short-time training data,
arXiv:2408.02688.

B. Zhang, M. Guerra, Q. Li, and L. Zepeda-Nunez. Back-Projection Diffusion: Solving the Wideband Inverse
Scattering Problem with Diffusion Models. CMAME 2025.

l. Lopez-Gomez, Z. Y. Wan, L. Zepeda-Nunez, T. Schneider, J. Anderson, F. Sha. Dynamical-generative downscaling
of climate model ensembles. PNAS 2025.

R. Molinaro, S.Lanthaler, B. Raonic, T. Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, L. Zepeda-Nunez. Generative
Al for fast and accurate Statistical Computation of Fluids, arXiv:2409.18359.
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Probabilistic Reformulation to Leverage GenAl

Focus: High-Dimensional problems Dol
Probabilistic SCIML == two stage approach: i
Recast the problem in a “probabilistic” manner :

Leverage and tailor genAl tools to solve the new formulation

Open source code:

https://aithub.com/google-research/swirl-dynamics

Recent Advances in Probabilistic Scientific Machine Learning



Google Research

What is SciML?

Scientific-Heshetihgearning—
What is Scientific Computing?

“... Scientific Computing is the collection of tools, techniques, and
theories required to solve on a computer mathematical models of
problems in Science and Engineering”

[Golub and Ortega]

m

Theoretical  Experiments Scientific
Analysis Computing

Gene H. Golub and James M. Ortega. Scientific Computing and Differential Equations —
An Introduction to Numerical Methods. Academic Press, 1992.
Recent Advances in Probabilistic Machine Learning
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SciML: Accelerating Science and Engineering

Scientific Computing:
In silico for downstream applications but still experimental data is the gold standard

Issues with in silico workflows
- More accurate simulations require more expensive computations
- Need to run thousands of simulations with different parameters
- Quantify the uncertainty to increase robustness

SciML is the evolution of Scientific computing to further accelerate the
development pipelines by making computations more efficient.

Probabilistic SciML seeks to address computational bottlenecks in Scientific
computing dealing with probability distributions, by leveraging generative Al tools

Recent Advances in Probabilistic Machine Learning
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Probabilistic SciML: Two examples (or Vignettes)

Learning Stable Dynamics by Invariant Measure Matching

Y. Schiff, Z. Y. Wan, J. B. Parker, S. Hoyer, V. Kuleshov, F. Sha, L. Zepeda-Nunez. DySLIM: Dynamics Stable
Learning by Invariant Measure for Chaotic Systems. ICML 2024.

Generative Al for fast and accurate Statistical Computation of Fluids
R. Molinaro, S. Lanthaler, B. Raonic, T Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, and L.
Zepeda-Nunez, ArXiv:2409.18359
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Learning Stable Dynamics by Invariant Measure Matching

Unstable or goes to the wrong attractor

discretize -

— — s s =
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Data-driven dynamics learning
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Learning Stable Dynamics by Invariant Measure Matching

Pfwd

Data-driven dynamics learning 1 T~
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Relaxed version
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— Curr

—— Curr DySLIM
--- 0.9 threshold
--- 0.8 threshold

o

Avg. cosine sim.
o o o
S

N S

Sampling and matching
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Learning Stable Dynamics by Invariant Measure Matching

Google Research

£-ste k
L75P(0) = EjEu; ~p, Zw ) |85 (ug) — ujpx
Pfwd,¢ £—1 2
L 0) = B mop; Ew |39 sg(Sy~ (uy))) — Uj+k||
' Batdh | Lsariing MELRj MELRv;ri covRMS2EL WassléL TCMi2
Baseline size rafe (x107°) (x107°) (x107°) (x107°) (x107°)
Base DySLIM | Base DySLIM | Base DySLIM | Base DySLIM | Base DySLIM
Pushforward | 128 le-4 3.19 2.46 0.53 0.53 6.81 6.69 4.64 4.51 3.68 0.72
Curriculum 64 Se-4 D35 1.64 0.95 0.45 8.13 6.95 9.66 4.76 3.50 2.83
1-step 64 Se-4 2.77 1.84 0.44 0.85 7.93 7.30 16.2 555 5.39 245
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Learning Stable Dynamics by Invariant Measure Matching

t=102.4

Reference

Curr DySLIM

Curr

ou

oV
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Learning Stable Dynamics by Invariant Measure Matching

Pfwd DySLIM Reference

Pfwd

ou 5 1
=y, _ - £
5 V- (u®u)+rvV pr—i—

V-u=0
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Probabilistic SciML: Learning Statistical Solutions

Generative Al for fast and accurate Statistical Computation of Fluids
R. Molinaro, S. Lanthaler, B. Raonic, T Rohner, V. Armegioiu, Z. Y. Wan, F. Sha, S. Mishra, and L.
Zepeda-Nunez, ArXiv:2409.18359

How to efficiently compute statistical solutions of fluid flows.

Recent Advances in Probabilistic Machine Learning
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An Incredible Hammer: Diffusion Models

Learn a prior p(x) of the high-resolution data.
Why?
High-quality samples

High coverage of the distribution

A cute corgi lives in a house made out of sushi.

[Saharia et al, 2020]

Then conditional sampling

Forward SDE (data — noise)
! . dx_fxt)dt+g —)@
p(z|Cz=y)
- : scorfunctlon
b = [60x) - (7 og )+ o0 @

Reverse SDE (noise — data)
[Song et al, 2020]

T+ 02V, 10gp(wt)

Elzo|z] = Zo(w¢)
[Lugmayr et al. 2021] St

More details: http://smai.emath.fr/cemracs/cemracs23/summer-school.html .

Recent Advances in Probabilistic Machine Learning
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Quick Quiz: Real or Generated Samples?
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Why Statistical Solutions?

Due to the chaotic nature of system, its numerical solution doesn’t converge under
mesh refinement (3D Cylindrical Shear Flow problem)

Mo

(W, (VLN, p1 N
N

26

27 2
N

Even though there is no convergence per trajectory, the statistics of the flow do

converge.

Recent Advances in Probabilistic Machine Learning
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Why Statistical Solutions?

Increasing Resolution

Sample Vorticity

Mean z-Velocity

Variance z-Velocity

Recent Advances in Probabilistic Machine Learning
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Statistical Solutions

Ou(z,t) + L (u,Vou,Viu,...) =0, VzeDcCR%te(0,7),
B(u) =0, Y(z,t) €dD x (0,T),
u(0,z) =u(x), z€ D,

Solution operator S:[0,T]| xX—X fit = S;#ﬁ Statistical solution
‘o _ .
u(t) = 8'(u) = S(t, a) A
Discrete solution operator ~ §HA : XA 5 XA Ly = S;;Aﬁ Approximate statistical
solution

Lip(8*2) — oo Ajino Wp(ﬂtA, fi) =0

Recent Advances in Probabilistic Machine Learning
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Extended Statistical Solutions

(St’A X id) X 3 X x X Approximate extended
statistical solution
t,A . =\ — tA =\ =
(82 x id) (@) = (8" (a), @) ud = (84 x 1a) , gt

extended statistical solutions

. F A _ 1 t,A X —A
= fim = fim (52 x 1)

Recent Advances in Probabilistic Machine Learning
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Conditional Representation

Mt (dua d’l_l,) = Pt (du | ?._l,) ﬁ(dﬁ),

We need to learn the conditional probability

ug (du, du) = P (du | w)|a° (du)

Only have access to the approximate conditional probability

We need to sample from this conditional probability

If the operator is well-behaved then  P(du | @) = ds¢(a)
it goes back to the deterministic case

Recent Advances in Probabilistic Machine Learning
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Conditional Representation

Recent Advances in Probabilistic Machine Learning
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Conditional Representation

Recent Advances in Probabilistic Machine Learning
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Conditional Representation

u(t)

Advances in Probabilistic Machine Learning

PtA (du | ’l_l,) = 5sz (@)

u

S'(w)

Google Research
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Conditional Representation

PP (du| @) = dst(a

u

u(t)

Recent Advances in Probabilistic Machine Learning
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Conditional Representation
PA (du| @)

u

St(u
u(t) yo
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Conditional Representation
PA (du | w)

u

u(t)
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Methodology

Ur—o ~ PP (du|i)
Forward and Reverse (Sampling) Step

S ;
u, = —u.dt+ s,\20,0.dW,

ST
— —>
— D

_>..C_>
——— ¢ o ¢+ 44—

s — o s o : -~
du, = |=u, - ZaTdefvqu(uT) dt + s\/200, dWT —  du. = 2[—T o ]d'c — 25.—Dg(At, Uy, T, 0 )T + S\/ZGTGT dWT
S O¢ S¢ Oz
Score function Denoiser
Dy(t-,0.-) —1u o U
Vulogp,(u;) = o(ir,0r) T with 4, := —,

8703 St

Recent Advances in Probabilistic Machine Learning



Google Research

Methodology

Denoiser Training

-

L=]E|

|u(t,,, u) - De(At, u(t,,, ﬁi) +1, u(te, u), 0) ”

Recent Advances in Probabilistic Machine Learning



Google Research

Why Probabilistic Approach?

Deterministic models:
Learn the mean
Small variability
Tend to force a small Lipschitz constant for stability

Probabilistic models:
Sampler for the target distribution
Moments computed by Monte-Carlo
Distribution convergence
Low sample complexity
Learns transitions in the behavior of the distribution quasi-deterministic to turbulent

Recent Advances in Probabilistic Machine Learning
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Taylor-Green Vortex (samples T=1)

DNS GenCFD FNO

Recent Advances in Probabilistic Machine Learning
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Taylor-Green Vortex (Mean T=1)

DNS GenCFD FNO
Small deviation of the mean!

Recent Advances in Probabilistic Machine Learning
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Taylor-Green Vortex (Std T=1)

»

DNS GenCFD FNO
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Taylor-Green Vortex (samples T=2)

DNS GenCFD FNO
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Taylor-Green Vortex (Mean)

DNS GenCFD FNO
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Taylor-Green Vortex (std)

DNS GenCFD FNO
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Taylor-Green Vortex (PDF)

‘Comparison of and true di: ions at (35, 52, 46) Comparison of at (35, 52, 46)

25 True Distribution True Distribution
== FNO-Conv Distribution 25 s FNO-Conv Distribution
== GenCFD Distribution == GenCFD Distribution

20

> 15 >
4 2
- -1
10
05
0.0
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D

Cylinder Shear Layer (Samples)

DNS GenCFD FNO
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Cylinder Shear Layer (Mean)

DNS GenCFD FNO
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Cylinder Shear Layer (Std)

DNS GenCFD FNO
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Cylinder Shear Layer (pdf)

Comparison of

and true distributions at (46, 18, 11) Comparison of and true distri at (46, 18,11)
True Distribution True Distribution
401 s FNO-Conv Distribution mmm FNO-Conv Distribution
== GenCFD Distribution 20 == GenCFD Distribution
354
301
22|
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Cloud Shock Interaction Problem (samples)

DNS GenCFD FNO
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Cloud Shock Interaction Problem (mean)

DNS GenCFD FNO
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Cloud Shock Interaction Problem (Mean)

DNS GenCFD FNO
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Cloud Shock Interaction Problem (Std)

DNS GenCFD FNO
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Cloud Shock Interaction Problem (std)

Comparison of imate and true di at (34, 25, 24) Comparison of and true distril at (34, 25, 24)
7 True Distribution True Distribution
mmm FNO-Conv Distribution 020 = FNO-Conv Distribution
=== GenCFD Distribution W GenCFD Distribution
015
z z
2 2
& 8010
0.05
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Spectrum
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(a) Taylor-Green

E(k)
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I

(b) Cylindrical Shear Flow
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(c) 3D Cloud-Shock Interaction
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Turbulent Jet
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Convective Boundary Layer

Ground Truth

GenCFD

UViT | N
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Spectrum

10* 4 @ True Spectrum @ True Spectrum
® GenCFD Spectrum ® GenCFD Spectrum
@ UVIT Spectrum ® UVIT Spectrum
1072
107 4
v < 1073
W yp-e w
10—4 -
10—7 -
T T 10-5 1 T
10t 102 10!
K| k|
(c) Nozzle flow (d) Convective boundary layer

Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models
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Conclusions

Lessons learned:
- Good software enables good research

- Stochastic description renders the learning easier
- Trading high-dimension by smoothness

Statistical Downscaling through Optimal Transport and Probabilistic Diffusion Models
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Thank you

Statistical Downscal ling through Optimal Transport and Probabilistic Diffusion Models



