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Overview







NN Limitations

Limited accuracy for engineering applications:  to 
 

Expert knowledge needed/Try-and-error for good architecture 

Poor data efficiency 

Lack of interpretability

O(10−2)
O(10−4)





Sparse Grids 

• “Right Space” - the solution can be approximated well by sparse combinations of 
basis functions 

Low-Rank Tensor Methods  

• “Right Space” - the solution can be approximated by a sum of products of lower-
dimensional functions 

Neural Network Methods  

• “Right Space” - the implicit function space learned by the network during training

Modeling & Computing in the Right Space



Modeling & Computing in the Right Space

Function Space

Math Framework

Approximation or 
Representation

Numerical Method

Computation Efficiency

Problem Structure

Our research is a big search (optimization) process 

Our “search” is in a space of natural language 

Our “optimization” is mixed-integer programming and gradient-free



Modeling & Computing in the Space of Natural Language
New Paradigm for New Investigation, Method, and Application  

Two Complementary Approaches: 

Symbolic learning (Finite Expression Method) 

Large language model (LLM) 

Applications: 

Search for a solution 

Search for a mathematical model 

Search for a computational algorithm 

Search for executable code 

…

Our vision: 

Big Data

Big GPU
+ Auto-Differentiation SciML

Big Data

Big GPU
+ Auto-Search ?



Two Complementary Approaches: 

Symbolic learning (Finite Expression Method) 

Large language model (LLM) for modeling and computing assistant



Finite Expression Method (FEX) Methodology

Motivating Problem: 

A structured high-dimensional Poisson equation  

                                                                       

     with a solution  of low complexity , i.e.,  operators in this expression 

Idea: 

Find an explicit expression that approximates the solution of a PDE 

Function space with finite expressions 

• Mathematical expressions: a combination of symbols with rules to form a valid function, e.g.,  

• -finite expression: a mathematical expression with at most  operators 

• Function space in FEX:  as the set of -finite expressions with 

−Δu = f  for x ∈ Ω, u = g for x ∈ ∂Ω

u(x) =
1
2

d

∑
i=1

x2
i O(d) O(d)

sin(2x) + 5

k k

𝕊k s s ≤ k

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX) Theory

Advantages in Real Analysis: “No” curse of dimensionality in approximation 

Theorem (Liang and Y. 2022) Suppose the function space  is  generated with operators including  
``+", ``-", `` ", ``/",  `` ", ``sin(x)", and `` ". Let . For any      in the Holder 
function class  and , there exists a k-finite expression  in  such that 

 ,  

if  

.

𝕊k

× max{0,x} 2x p ∈ [1, + ∞) f
ℋα

μ([0,1]d) ε > 0 ϕ 𝕊k

∥f − ϕ∥Lp ≤ ε

k ≥ 𝒪(d2(log d + log
1
ε

)2)

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX) Practice

Advantages in Practice:  

• Leverage the power of descriptive structures of problems  

Question:  

• How to do computation with description?  

Answers:  

• Symbolic machine learning 

• Large language models 

• Bayesian perspective











Finite Expression Method for Solving PDEs
Least square based FEX 

• e.g.,            and         

• A mathematical expression  to approximate the PDE solution via 

                                                        

• Or numerically 

 

Question: how to solve this combinatorial optimization problem? Reinforcement learning

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

1
n

n

∑
i=1

|𝒟u(xi) − f(xi) |2 + λ
1
m

m

∑
j=1

|ℬu(xj) − g(xj) |2

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Numerical Comparison

NN method: 
•  Neural networks with a ReLU -activation function 
• ResNet with depth 7 and width 50 

FEX method: 
• Depth 3 binary tree 
• Binary set  
• Unary set  

The right space: solutions with simple descriptive structures

2

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )2, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Poisson Equation

Convergence Test: 

• True solution  

• Binary set  
• Unary set  
• No expression tree to exactly represent u(x)

u(x) =
1
2

d

∑
i=1

x2
i

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


FEX for Partial Integral Differential Equations
Hardwick, Liang, Y., arxiv:2410.00835

∂u
∂t

+ b ⋅ ∇u +
1
2

Tr(σσTH(u)) + Au + f = 0

u(T, ⋅ ) = g( ⋅ )

Au(t, x) = ∫ℝn

(u(t, x + G(x, z)) − u(t, x) − G(x, z) ⋅ ∇u(t, x))ν(dz)

G(x, z) ∈ ℝd × ℝd → ℝd , and ν is a Levy measure associated with a Poisson random measure. 



Committor Function for Rare Events

(Lq)(x) = 0  for x ∉ A ∪ B
q(x) = 0  for x ∈ A
q(x) = 1  for x ∈ B .

Lq = − β−1Δq + ∇V ⋅ ∇q

where  is the infinitesimal generator of the process 


defined as:

L

Previous work


• Diffusion map, Coifman et al. (2008), Lai & Lu (2018), Evans et al. (2023)


• Neural network, Khoo et al. (2019), Li et al. (2019), Li et al. (2022)


• Tensor network, Chen et al. (2023)

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



Difficulty 

• Curse of dimensionality: dimension  number of atoms∝

Physical Structure 

• Low-dimensional structure: a small number of collective variables

Machine Learning 

• FEX to identify the low-dimensional structure


• Transfer a high-dimensional problem into a low-dimensional one

Committor Function for Rare Events
Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



V(x) = (x12 − 1)2

collective variable

+ 0.3
d

∑
i=2

x2
i

Example: Double-Well potential

A = {x ∈ ℝd ∣ x1 ≤ − 1}, B = {x ∈ ℝd ∣ x1 ≥ 1}

with

d2f (x1)
dx2

1
− 4x1 (x2

1 − 1)
df (x1)

dx1
= 0, f(−1) = 0, f(1) = 1

The ground truth solution is q(x) = f(x1)

Committor Function for Rare Events
Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



Eqn 1: α1,1x1 + … + α1,10x10 + β1

Eqn 2: α2,1 tanh(x1) + … + α2,10 tanh(x10) + β2

𝒥(x) = α3 tanh(Eqn 1 + Eqn 2) + β3

FEX identifies the following representation

α3 = 0.5, β3 = 0.5where

FEX discovers that  and hence transfers a high-dimensional 
problem into a low-dimensional one.


q(x) = f(x1)

Committor Function for Rare Events

Eqn 1
Eqn 2

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



FEX for Learning Physical Laws
Interpretable learning outcomes v.s. blackbox neural networks 

Higher accuracy v.s. existing symbolic regression tools 

A nonlinear approach to generate a large set of expressions from a small collection of 
operators 

• SINDy : require a large manually designed dictionary 

• PDE-Net : only capable of polynomials of operators 

• GP: Genetic programming with poor accuracy 

• SPL : Monte Carlo tree search with poor accuracy

1

2

3

1. Brunton, Proctor, Nathan, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, 2016 
2. Long, Lu, Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics 2019 
3. Sun et al. Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search. ICLR 2023



2D Burgers equation with periodic boundary conditions on : 

 

 

 

 

(x, y, t) ∈ [0,2π]2 × [0,10]
∂u
∂t

= − u
∂u
∂x

− v
∂u
∂y

+ ν(
∂2u
∂x2

+
∂2u
∂y2

)

∂v
∂t

= − u
∂v
∂x

− v
∂v
∂y

+ ν(
∂2v
∂x2

+
∂2v
∂y2

)

u(x, y,0) = u0(x, y)

v(x, y,0) = v0(x, y)

ν = 0.1

FEX for Learning Physical Laws



Finite Expression Method (FEX) Practice

Advantages:  

• Leverage the power of descriptive structures of problems  

Question:  

• How to do computation with description?  

Answers:  

• Symbolic machine learning 

• Large language models 

• Bayesian perspective



Unraveling Symbolic Structures in FEX with LLMs
Bhatnagar, Liang, Patel, Y., arXiv:2503.09986

PDE 1, Boundary Condition 1 Solution 1 and its expression

…

PDE s, Boundary Condition s Solution s and its expression

LLM

New problem ?
Fine-tune LLM &  

prompt engineering



Finite Expression Method (FEX) Practice

Advantages:  

• Leverage the power of descriptive structures of problems  

Question:  

• How to do computation with description?  

Answers:  

• Symbolic machine learning 

• Large language models 

• Bayesian perspective



Bayesian Symbolic Learning
Huang, Wen, Adusumilli, Choudhary, Y., arXiv:2503.09592



Bayesian Symbolic Learning
Huang, Wen, Adusumilli, Choudhary, Y., arXiv:2503.09592





Two Complementary Approaches: 

Symbolic learning (Finite Expression Method) 

Large language model (LLM) for modeling and computing assistant



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918

Our research is a big search (optimization) process 

Our “search” is in a space of natural language 

Our “optimization” is mixed-integer programming and gradient-free 

Example: automatic optimization modeling, solving, and testing



Overview and New Features of OptimAI



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918

Traveling salesman problem (TSP), job shop scheduling problem (JSP), and set covering problem.



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 6: Ablation study of OptimAI design.



OptimAI Roadmap:  

Non-expert users for LP, NLP, MILP, MINLP 

Bayesian approach with arXiv knowledge 

Reasoning with chain of thoughts 

• Algorithm analysis 

• Coding analysis 

Optimization AI assistant with human in the loop
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arXiv 
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OptimAI Roadmap:  

Non-expert users for LP, NLP, MILP, MINLP 

Bayesian approach with arXiv knowledge 

Reasoning with chain of thoughts 

• Algorithm analysis 

• Coding analysis 

Optimization AI assistant with human in the loop

arXiv 
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Math 
Reasoning



OptimAI Roadmap:  

Non-expert users for LP, NLP, MILP, MINLP 

Bayesian approach with arXiv knowledge 

Reasoning with chain of thoughts 

• Algorithm analysis 

• Coding analysis 

Optimization AI assistant with human in the loop

arXiv 
Knowledge

Math 
Reasoning

Human 
Interaction



Take Home Messages

• Modeling and Computing in description  

• Leverage the power of descriptive structures of challenging problems 

• Leverage the power of automatic big search 



Finite Expression Method
Least square based FEX 

• e.g.,            and         

• A mathematical expression  to approximate the PDE solution via 

                                                        

• Or numerically 

 

Question: how to solve this combinatorial optimization problem?

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

1
n

n

∑
i=1

|𝒟u(xi) − f(xi) |2 + λ
1
m

m

∑
j=1

|ℬu(xj) − g(xj) |2



Continuous Relaxation of FEX



Finite Expression Method
Least square based FEX 

• e.g.,            and         

• A mathematical expression  to approximate the PDE solution via 

                            

• Continuous relaxation with  probability distributions for selecting  operators 

 

and gradient descent in the space of probability distributions 

• Finally,  with the optimal parameters  and 

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2

k k
(P*1 , …, P*k ) = arg min

α,β
min

P1,…,Pk

𝔼u∼(P1,…,Pk) [ℒ(u)]
= arg min

α,β
min

P1,…,Pk

𝔼u∼(P1,…,Pk) [∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2]

u* ∼ (P*1 , …, P*k ) α* β*


