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Neural network (NN) and its advantages

Neural network
. Wi e s e —> W, .4
* Fully-connected neural network: (-
¢(x;0) = Wyyq hyo-ohy(x), x €R e —> \

« Hidden layer: h,(x) = c(W,x + b,) X .. S

 The o is a nonlinear activation

 Parameter set: 8 = {(W,};21 U {b,};-, - — o —>
Theory and applications

* NN approximation: curse of dimensionality debate (Shen, Y., Zhang, JMLR 2022)

* NN optimization: gap between theory and practice (Na, Y., arXiv:2502.05360)

* Practical applications in high-dimensional problems



Two prototypes for differential equations (DEs)
NN =~ Target

Learn physical laws as descriptor Dynamical system: % =f(x), x€R?

»  Given historical data {xt}I_, and learn a surrogate f ~ f, e.g, NN f(x; 0) = f(x).
|2

 Training: mgin %Z{zluxt — X[, with £t = Integrator(f(;; 8),xt1, At).

* Prediction: x* = Integrator(f(:;0*),x*"1,At),t > T.

. NDu(x) = f(x),x € Q c R?
Solve PDE as parametrization Boundary value problem: Bu(x) = g(x),x € 90

* Approximate the PDE solution with NN, e.g., u(x; 0) = u(x).

2
L?(Q)

2

 Training: meinHZ)u(x; 0) — f(x)ll 12(50)"

+ [|Bu(x; 6) — g(x)||

» Differential operator « auto-differentiation/finite difference.

* [ntegral « Monte Carlo integration.



NN Limitations

O Limited accuracy for engineering applications: O(107%) to
O(107%)
O Expert knowledge needed/ Try-and-error for good architecture

O Poor data efficiency

O Lack of interpretability



Is there an alternative to @k-based methods that offers

High accuracy Interpretability
needed on expert




Modeling & Computing in the Right Space

O Sparse Grids

» “Right Space” - the solution can be approximated well by sparse combinations of
basis functions

O Low-Rank Tensor Methods

* “Right Space” - the solution can be approximated by a sum of products of lower-
dimensional functions

O Neural Network Methods

» “Right Space” - the implicit function space learned by the network during training



Modeling & Computing in the Right Space

Math Framework Numerical Method Problem Structure

v v v

: Approximation or : :
Function Space -> g:presentation -> Computation Efficiency

O Our research is a big search (optimization) process
O Our “search” is in a space of natural language

O Our “optimization” is mixed-integer programming and gradient-free



Modeling & Computing in the Space of Natural Language

New Paradigm for New Investigation, Method, and Application

Two Complementary Approaches: Our vision:
O Symbolic learning (Finite Expression Method)
O Large language model (LLM) Big Data
+  Auto-Differentiation * SciML
Applications: Big GPU
O Search for a solution
O Search for a mathematical model

Big Data

O Search for a computational algorithm | Auto-Search

-

O Search for executable code Big GPU
O ..



Two Complementary Approaches:
O Symbolic learning (Finite Expression Method)

O Large language model (LLM) for modeling and computing assistant



Finite Expression Method (FEX) Methodology

Liang and Y. arXiv:2206.10121

Motivating Problem:

O A structured high-dimensional Poisson equation

—Au=f forxeQ, u=gforxe idQ
d

with a solution u(x) = — Z xl.2 of low complexity O(d), i.e., O(d) operators in this expression

2 =1

Idea:

O Find an explicit expression that approximates the solution of a PDE

O Function space with finite expressions
* Mathematical expressions: a combination of symbols with rules to form a valid function, e.g., sin(2x) + 5
* k-finite expression: a mathematical expression with at most k operators

* Function space in FEX: S, as the set of s-finite expressions with s < k


https://arxiv.org/abs/2206.10121

Finite Expression Method (FEX) Theory

Liang and Y. arXiv:2206.10121

Advantages in Real Analysis: “No” curse of dimensionality in approximation

Theorem (Liang and Y. 2022) Suppose the function space is S; generated with operators including
S X /Y, "max{0,x}, Usin(x)", and 2. Letp € [1, + oo).Forany f inthe Holder

function class #7/([0, 1 %) and € > 0, there exists a k-finite expression ¢ in S . such that

Hf_ ¢HLP S &,
if
2 I
k> O(d“(logd + log —)~).
£


https://arxiv.org/abs/2206.10121

Finite Expression Method (FEX) Practice

Advantages in Practice:

* [everage the power of descriptive structures of problems
Question:

* How to do computation with description?

Answers:

* Symbolic machine learning

* Large language models

* Bayesian perspective



Ildeas: Automatic Trial-and-Error for Structures and
Refinement

Calculus homework

u, = 0.5sin(x) + 0.5xcos(x)
u(0) =1




Ildeas: Automatic Trial-and-Error for Structures and

Refinement
Guess Check
Calculus homework u(x) = sin(x) Equation: X Boundary: X
u, = 0.5sin(x) + 0.5xcos(x)
u(O) — 1 " B E B E B

Guess Check
u(x) = xsin(x) Equation: X Boundary: X

Let me first try to get a
sense of what the

solution looks like. Guess Check

u(x) = 0.5xsin(x) Equation: v/ Boundary: X

Guess Check

Once | figure out the shape u(x) = 05xsin(x) + 1 Equation: v Boundary: v

of the solution, I'll start
adjusting the numbers.



Ildeas: Automatic Trial-and-Error for Structures and
Refinement

Guess Check

Calculus homewo
= sin(x) Equation: X Boundary: X

Check
(x) Equation: X Boundary: X

mm) solution

Let me first try
sense of wh

solution looks

Check
s5xsin(x) Equation: v Boundary: X

Guess Check
u(x) = 0.5xsin(x) + 1 Equation: v Boundary: v

Once | figure out the shape
of the solution, I'll start

adjusting the numbers.



Reinforcement Learning (RL)

* Reinforcement learning: train Al agent to make decision
..
@ /.PHAcO 1@ *0e Y — | e— Agent
e * weel | 00002
: / State Reward Action
IR T T Envi t
AlphaGO (source: bbc.com) nvironmen

 Objectiveistolearn m : max[E,__R(7)
T

m IS a policy, T is an episode, R(7) is cumulative reward

 Methods: Policy gradient, etc.

Playing video James (source: CLVR lab @ USC)



Finite Expression Method for Solving PDEs

Liang and Y. arXiv:2206.10121

Least square based FEX
ceg, DQm)=f inQ and HABu)=g onodQ
* A mathematical expression u™* to approximate the PDE solution via

u* = argmin £ (u) := arg min || Du f\lz + A||Bu — 8”2

UES, UES,

* Or numerically

u* = arg min £ (u) —argmm—Z\@u(x) — f(x) | +/1—2\95’u(x)—g(x)\

S S
l/tek Mek _ ]1

O Question: how to solve this combinatorial optimization problem? Reinforcement learning


https://arxiv.org/abs/2206.10121

Numerical Comparison

Liang and Y. arXiv:2206.10121

O NN method:

* Neural networks with a ReLU?-activation function
* ResNet with depth 7 and width 50

O FEX method:

* Depth 3 binary tree

* BinarysetB={+,—, X }

* Unaryset U = {0,1,Id, (- )% (-)?,(-)* exp, sin, cos}

O The right space: solutions with simple descriptive structures


https://arxiv.org/abs/2206.10121

Solving High-Dimensional PDEs with FEX

Poisson equation Linear conservation law Nonlinear Schrodinger equation

Q= [0,1]¢ TxQ = [0,1]x[-1,1] Q= [-11]¢
—Au=fforx € Qandu=gonadQ ’;—dut— f‘zluxi=0andu(0,x)=sin(% ?zlxi) —Au+t+uP+Vu=fforxeq
. 1 : . .
True solution: u(x) = ;E?=1 xf True solution: u(x) = sin(t + =3, x;) True solution: u(x) = exp(Zi, cos(x;) /d)
10° 0 ~
® P 10 L . ¢ ® € LOF C e ® ® e & e w [
L om W & @ e " o o © 10 e } y
10 o o~ o ‘ $ <« T & 2 ¢ NN
]
107~ — * NN -2 o ) ‘ o o ¢ o NN
o] t ' 10 . ’ ®
S . o3 0» E _ E ® o
5 10 e @ 10 D 0
5 ) 5
(4] [4))
':‘% 10~ % 0™ E
e 2 « 10™ —
10 10'5 ’ .
-5 P -5 ¢ ’ ‘ :
10 107° ; 0" 9 o o &
o
-7 -7 - — - . N - : z
10 o -~ — o T 10 = o ®
10 20 30 40 50 5 11 17 23 29 35 41 47 53 6 12 18 24 30 36 42 48
Dimension Dimension Dimension

® Neural netowork-based PDE solver @ Genetic programming @ TFinite expression method

Liang and Y. arXiv:2206.10121



https://arxiv.org/abs/2206.10121

Poisson Equation

Liang and Y. arXiv:2206.10121

Convergence 'T'est:

1 d
. True solution u(x) = > Z )cl.2
i=1
* BinarysetB={+,—, X }
* Unaryset U = {0,1,1d, ( - ), ()4, exp, sin, cos }
* No expression tree to exactly represent u(x)

Relative L, error

10

10

10

10

20

. ‘ ._
3 -
. -
" 'l .‘ - ..

30
Dimension

40

50

Depth

O P WN


https://arxiv.org/abs/2206.10121

FEX for Partial Integral Differential Equations

Hardwick, Liang, Y., arxiv:2410.00835

o b - Vu+ lTr(aaTH(u)) +Au+f=0
ot 2
u(T,+) = g(-)
Au(t, x) = (u(t,x + G(x,2)) — u(t,x) — G(x,z2) - Vu(t, x))v(dz)
J R

Gx,2) ER*XRY> R? Jand V isa Levy measure associated with a Poisson random measure.

Dimension 2 4 6 8 10 20 30

FEX-PG 2.99e-7 3.17e-7 5.16e-7 T7.26e-7 2.05e-7 8.02e-7 4.49e-7
TD-NN (23] | 0.00954 0.00251 0.00025 0.00671 0.01895 0.00702 0.01221

Dimension 40 00 60 70 80 90 100

FEX-PG 9.05e-7 4.27e-7 4.55e-7 3.54e-7 5.89e-7 6.44e-7  5.64e-7
TD-NN (23] | 0.00956 0.00219 0.00944 0.00044 0.00277 0.00460 0.00548




Committor Function for Rare Events
Song, Cameron, Yang arXiv:2306.12268, SISC, 2025

(LQ)(X) — O for X ¢ A U B g()llgﬁe‘-]’,igf\{l(si()ll Sl)a(.() ' Transition

gx)=0  forxeA | e B
_ ‘ Product

g(x) =1 forx € B. State

where L is the infinitesimal generator of the process

A

Reactant
State

defined as: L g(x) =09

Lg=—-p"'Aq+VV-Vgq
Previous work
* Diffusion map, Coifman et al. (2008), Lai & Lu (2018), Evans et al. (2023)

* Neural network, Khoo et al. (2019), Li et al. (2019), Li et al. (2022)

* Tensor network, Chen et al. (2023)



Committor Function for Rare Events

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025
Difficulty

* Curse of dimensionality: dimension & number of atoms

Physical Structure

* Low-dimensional structure: a small number of collective variables

Machine Learning
* FEX to identify the low-dimensional structure

* Transfer a high-dimensional problem into a low-dimensional one



Committor Function for Rare Events

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025

Example: Double-Well potential .
C
d 2 08
2 O
V(%) = (x,2—1) +0.3 Z x? e
— i=2 E
collective variable £ o4-
=
Wlth 8 0.2

o
o
1

A={xeRi|x;<-1}, B={xeR!|x =1}

10-3

The ground truth solution is g(x) = f(x;) .y
LE 10_5'5

d°f (x,) df (x,) |

4x; (x7 =1 =0, f(-1)=0, f()=1 107°-

i x (xf—1) i J(=1) S .

—— FEX

— Committor function
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Committor Function for Rare Events

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025
FEX identifies the following representation

Eqn 1 Otl,lxl + ... T al,loxl() +ﬁ1
Eqn 2: a, | tanh(x)) + ... + o, ;o tanh(x,() + f,
J(x) = aytanh(Eqn 1 + Egn 2) + f;

where a; =0.5, f; =0.5

a1 g 3 Qa4 a3 Qg Q7 ag a9 o190 P

Egn1 1.6798 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Egn2 19039 00 00 00 00 00 00 0.0 0.0 0.0 0.0

FEX discovers that g(x) = f(x;) and hence transfers a high-dimensional
problem into a low-dimensional one.



FEX for Learning Physical Laws

O Interpretable learning outcomes v.s. blackbox neural networks
O Higher accuracy v.s. existing symbolic regression tools

O A nonlinear approach to generate a large set of expressions from a small collection of
operators

» SINDy': require a large manually designed dictionary

* PDE-Net?: only capable of polynomials of operators

* GP: Genetic programming with poor accuracy

» SPL’: Monte Carlo tree search with poor accuracy

1. Brunton, Proctor, Nathan, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, 2016
2. Long, Lu, Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics 2019
3. Sun et al. Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search. ICLR 2023



FEX for Learning Physical Laws

2D Burgers equation with periodic boundary conditionson (x, y, 1) € [0,27]% % [0,10]:

ou ou ou o‘u  0%u
— =—-y— —v—+v(— +—)
ot Ox oy ox?  0y?
% oV oV 0%y 0%
—=—1Uu V - u( | )
ot ox oy ox?  ody?

M(X, y,O) — MO(xa y)
V(.X, y,O) — VO(xa y)
v =0.1

PDE-Net 2.0  SINDy GP SPL FEX

Mean Absolute Error 1.086 x 1073 3.239 x 10~ 4973 x 10! 21 x10! 2.021 x 104




Finite Expression Method (FEX) Practice

Advantages:

* [everage the power of descriptive structures of problems
Question:

* How to do computation with description?

Answers:

* Symbolic machine learning

* Large language models

* Bayesian perspective



Unraveling Symbolic Structures in FEX with LLMs

Bhatnagar, Liang, Patel, Y., arXiv:2503.09986

PDE 1, Boundary Condition 1 _> Solution 1 and its expression
° o
Fine-tune LLLM & " ’ . . .
. . PDE s, Boundary Conditions =i Solution s and its expression
prompt CNginecring ?
New problem a— L
u(x) Method Binary Size Unary Size Iters Time [m] Error
4 cos(4z” cos(zo)) LLM-informed 1 2 4.25 8.25 0
Uninformed 3 0 167 340 0
4z7 + 4z7 + 2 cos(4z7 cos(zg)) LLM-informed 2 4 102 286 10~8
Uninformed® 3 9 2000+ 2400+ N/A
128 3 + 2 25 €172 LLM-informed 2 4 34.5 405  4x 1077
Uninformed 3 0 90 186 6 x 107
64 2 e2 2 LLM-informed 1 3 15.5 21 3x 1078
Uninformed 3 0 103.5 161 3x 1078




Finite Expression Method (FEX) Practice

Advantages:

* [everage the power of descriptive structures of problems
Question:

* How to do computation with description?

Answers:

* Symbolic machine learning

* Large language models

* Bayesian perspective



Bayesian Symbolic Learning

Huang, Wen, Adusumilli, Choudhary, Y., arXiv:2503.09592

Vertical information(i.e. Pr(s|parent)),

Domain

Horizontal information(i.e.Pr(s|parent,siblings)),
Formulation rules,

Domain

specific Priors

Soft constraint: KL-divergence constraint,
Hard constraint: zero-out probabilities when violating formulation rules

A 4
Controller: Tree-structured
RNN
a; i-th activation
x; . i-th input /
"
Y 1 | |
| | L
all
- Y2 ‘7:2/"\
1 2 [e—{]d )
( > .|I|.. ||I \__/
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J -
} }
3 . » 4 o >
- > >
‘ T /’:> U.I /}{\
—> exp —» [ d
I....ll \‘ ‘I I.l|| -II \‘ _/
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Extract

Scientific|[

expressions
< p

papers

Unary

QBinary

|
_/

Id ( + )

N
7 |@| Id | n\»
N N

Symbols
. Y,

n

=1

n

J=1

'71.(1) expz; + 61) + (02 Z ’7;2) sin T;+ /82) -+ (




Bayesian Symbolic Learning

Huang, Wen, Adusumilli, Choudhary, Y., arXiv:2503.09592

Fluid Dynamics

O
o

O
o

o
IN

Average Reward

o
N

P - ——————————— . —————— — —

RNN

RNN+prior
Tree-RNN with prior
Tree-RNN

FEX

FEX+prior

0.0+ ' ' ! : : : :
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© 0.8 | |
— | |
g : :
© 0.6- 1 |
o : RNN
Q I RNN+prior
8‘ 0.4 i Tree-RNN with prior
O : Tree-RNN
Z 0.2 i FEX
i FEX+prior
0.0 ’ L . T T T T ~ T T
0 25 75 100 125 150 175 200

lterations

Evolution of cell populations

0.975_1 i o
© 0.8 |
— I
S :
Q } —— RNN+prior
% 0.4 i — Tree-RNN with prior
O | —— Tree-RNN
Z 0.2 _— —— FEX
i —— FEX+prior

0O 25 50 75 100 125 150 175 200
_lterations .
Hamiltonian expression

1.000 , :
0.975 //}—H ; ﬂ
© 0.8 |
— |
& :
&) 0.6 1 E RNN
Q . —— RNN+prior
%0-4~ i —— Tree-RNN with prior
O | —— Tree-RNN
Z 0.2 " —— FEX
i —— FEX+prior

O
o

0O 25 50 75 100 125 150 175 200
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Summary & Discussion

Limitations Future
Reproduce true expression Improvement
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Two Complementary Approaches:
O Symbolic learning (Finite Expression Method)

O Large language model (LLM) for modeling and computing assistant



LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

O Our research is a big search (optimization) process
O Our “search” is in a space of natural language
O Our “optimization” is mixed-integer programming and gradient-free

O Example: automatic optimization modeling, solving, and testing



Overview and New Features of OptimAlI

‘

Optimization problem in
natural language

Formulator

sl«

A salesperson needs to visit each of these 51 cities
exactly once and then return to the starting point.
Figure out the shortest possible route!

* Decision variables

* Objective function

* Constraints

* Problem domain

* Expected output format

Formulated math problem 1nc-1ude-sz\ "Objective Function": {"Description"; "Expression"; ...},

"Decision Variables": {“x i"; "d {ij}"; ...},

"Constraints": {"1 Outgoing Constraint”; ...},
"Problem Type": "Mixed-Integer Linear Programming (MILP)"

/T '\

Planner Planner Planner

2

[Plan 2] Plan 3

Reflection

MTZ formulation as the Solver leuristic Methods

j [Use Gurobi With} {Use PyConcorde] [Use OR-Tools forJ
|

def solver():
from concorde.tsp import TSPSolver

O
Code Critic
|

[

Running

. ) ki
Environment Code ] WorKme

Code

WV
4 ) ) ™
Optimization
Result
\. J

impeort numpy as np
cities = np.array([...])

try:
tsp solver = TSPSolver.from data(xs, ys, norm)
solution = tsp solver.solve()

\\; return {optimal sequence, minimized total distance}

|

[‘minimized_total_d.istance': 426.0}

Total Time to solve TSP: 0.07




LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 1: Comparison of Functional Capabilities between OptimAI and Prior Methods.

Functional Capabilities OptiMUS Optibench CoE OptimAl

Natural language input
Planning before coding
Multi-solver support
Switching between plans

Code generation
Distinct LLM collaboration

>*x N X X X X
™® N\ X XX N
X A XX NN
NSNSNSNKNKS




LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 2: Previous work on using LLMs for optimization.

Work Dataset Proposed Size Problem Type(s)
NL4Opt Competition [8| NL4Opt 289 LP
Chain-of-Experts (CoE) |9 ComplexOR 37 LP, MILP
OptiMUS |10, 11, 12| NLP4LP 67 LP, MILP
Optibench [13] Optibench 605 LP, NLP, MILP, MINLP
OR-LLM-Agent|14] OR-LLM-Agent 83 LP, MILP

Abbreviations: LP - Linear Programming, NLP - Nonlinear Programming, MI - Mixed-Integer.



LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 3: Accuracy comparison between OptimAlI and state-of-the-art methods.

Dataset Optibench Linear Optibench Nonlin.
m NLP4LP w/o Tab. w/ Tab. w/o Tab. w/ Tab.

OptiMUS [11] 71.6% - - _ _
Optibench [13] - 75.4%  62.5%  421%  32.0%
Ours w/ GPT-40 79.1% 81.2% 73.8% 72.0% 48.0%

Ours w/ GPT-40+401-mini  88.1% 84.2% 80.0% 77.3% 56.0%
Ours w/ QwQ (by Qwen) 79.1% 86.2% 77.5% 81.6% 50.0%
Ours w/ DeepSeek-R1 82.1% 87.4% 78.8% 79.5% 60.0%

All evaluations were conducted under a zero-shot prompting setting. GPT-40+401-mini refers to using ol-mini as

the planner while employing GPT-40 for all other roles.



LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 4: Generalization of OptimAI across NP-hard combinatorial optimization problems.

Math Programming TSP JSP Set Covering

OptimAlI v v v v
OptiMUS v X X X
Optibench v X X X

Traveling salesman problem (TSP), job shop scheduling problem (JSP), and set covering problem.



LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 5: Synergistic eflfects of combining heterogeneous LLMs.

Remainin
Rolei Llama 3.3 70B DeepSeek-R1 14B Gemma 2 27B

Planner

Llama 3.3 70B 59% 54% 54%
DeepSeek-R1 14B 68% 50% 41%
Gemma 2 27B 7T7% 59% 54%




LILM Agents for Modeling & Computing from Natural Language

OptimAl: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 6: Ablation study of OptimAI design.

Formulator Planner Code Critic Revisions Executability Productivity

v v v 1.7 3.6 6.8
X v v 2.0 3.2 6.3
v X v 7.8 3.1 1.2
v v X 6.2 3.3 2.2




OptimAl Roadmap:
O Non-expert users for LP, NLP, MILP, MINLP
O Bayesian approach with arXiv knowledge
O Reasoning with chain of thoughts
* Algorithm analysis
* Coding analysis

O Optimization Al assistant with human in the loop

.

Optimization problem in
natural language

Formulator

[ Formulated math problem includes: 3

* Decision variables
* Objective function
* Constraints
* Problem domain
\* Expected output format

J

/

Planner

Reflection

Code Critic

Running
Environment

[\

Planner Planner

2

[Plan 2]
Working
Code

v

-

\.

Optimization
Result

N\

‘ Plan 3 \




Optimization problem in
natural language

Formulator

OptimAl Roadma . /—%
P P Formulated math problem includes:

.

* Decision variables
O Non-expert users for LP, NLP, MILP, MINLP * Objective function
* Constraints
O Bayesian approach with arXiv knowledge arXiv * Problem domain
Knowledge \ Ex pected output format )
O Reasoning with chain of thoughts \ lamle mel leer
* Algorithm analysis <Y Plan I plan 2 ‘ Plan 3 \
N o |
* Coding analysis Code Critic Cofle i
. . . . . . Running - .
O Optimization Al assistant with human in the loop ) ot 0 Code | [Working
oac
4 Y N
Optimization
Result

\. J/




Optimization problem in
natural language
I

Formulator

OptimAl Roadmap:
O Non-expert users for LP, NLP, MILP, MINLP

O Bayesian approach with arXiv knowledge

Formulated math problem includes:
* Decision variables

* Objective function

* Constraints

* Problem domain

* Expected output format

nner
e Algorithm analysis = [plan 2] ‘PlanS\

Knowledge
O Reasoning with chain of thoughts

* Coding analysis Code Critic Cofle |
. . . . . Running .
O Optimization Al assistant with human in the loop ot Code ‘Wcor];ng\ -
| odc
4 N\
Optimization
Result

\. J/




()ptimAl R()admap: Optimization problem in

natural language

O Non-expert users for LP, NLP, MILP, MINLP Formmlator

O Bayesian approach with arXiv knowledge (" Formulated math problem includes:
Interaction

* Decision variables

O Reasoning with chain of thoughts * Objective function

* Constraints

. . 1rXiv * Problem domain
° Algorlthm analySls Knowledge \ * Expected output format )

e Coding analysis \ lanner
O Optimization Al assistant with human in the loop Plan | [Plan 2] | Plan 3 \

- 0. - - ) I
T3 —71  Task Task+Algorithm r Code Critic (,(itier |
’f i — or Model b
: P ,K i 4 || Intellegent Running Code Working
"l by ; [ | ¥l Assistant Environment
1| Designer ; /\ .< 1 b Code
[ =3 Algorithm
= or Model /\ \_/ - “
Improved ¢ 1mMi17ati
[ T ﬂ Optimization

e Version
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Take Home Messages

 Modeling and Computing in description
* |everage the power of descriptive structures of challenging problems

e |everage the power of automatic big search



Finite Expression Method

Least square based FEX
ceg, DQm)=f inQ and ABu)=g onod
* A mathematical expression u™ to approximate the PDE solution via

i = arg min #(u) := arg min | Du — f13 + 2| Bu — g3

uESk uESk

* Or numerically

u* = argmin £ (u) ;= arg minl Z | Du(x;) — f(x) \2 + /1% Z | Bu(x;) — g(x) |2

S S,
HESK ST i j=1

O Question: how to solve this combinatorial optimization problem?



Continuous Relaxation of FEX

Expression generation

Tree Expression
Sample ld
> Ly 2P0 | 1d |- . >
< S -
e J e @ _______ %
2 8
B Sample / \
s — Ty _ B
c expr -~ - :
=R Sin
O Sample R *p
EEE i —> [SINf--=cccmm oo A $ -

O Binary Unary |

ag((ay exp(x) + 1) x (s sin(x) + FB2)) + B3




Finite Expression Method

Least square based FEX
ceg, Yw=f inQ and ABu)=g ono
* A mathematical expression u* to approximate the PDE solution via

u* = argmin L(u) := arg min | Du — f||5 + 1| Bu — gl|;

uESk uegk

* Continuous relaxation with k probability distributions for selecting k operators

(PF,....P7)=argmin min E,_p p, [g(u)]
afp Pi,....P,

=argmin min E,_p = p, [H@” — I3 + Al Bu — 8”%]
ap P,...P,

and gradient descent in the space of probability distributions

e Finally,u™ ~ (P*, ..., P¥) with the optimal parameters o™ and f*



