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Goal: find an estimate ෝ𝑚𝑡 of 𝑢𝑡 

given 𝑦𝑖 𝑖=1
𝑡 .

Challenges:
• High dimensionality.
• Partial observations.
• Nonlinear dynamics.
• Expensive or unknown 

dynamics.

The Ensemble Kalman Filter:
• Widely successful in practical 

applications (NWP).
• Justified in linear-Gaussian 

setting.
• Provably diverges in certain 

setting.

Link to arXiv preprint



1st Main Result: We provide conditions on the dynamics and observations that guarantee 
long-time accuracy of the EnKF with appropriate covariance inflation.

• First EnKF accuracy result for partially-observed nonlinear dynamics.
• Holds for finite ensemble size.
• Ensemble size independent of state dimension.
• Proof proceeds by showing accuracy of “mean-field” EnKF.
• Assumptions hold for Lorenz-63, Lorenz-96, and 2D Navier-Stokes with reasonable observation 

models.

2nd Main Result: We provide conditions on a surrogate model such that using it within the 
EnKF preserves long-time accuracy.

• Only requires short-term accuracy of the surrogate model.
• Agnostic to source of model error.
• Above desiderata also hold.

Link to arXiv preprint



Energetic Variational Neural Network Discretizations of Variational Models

Variational models are model specify by energy-dissipation law  

Examples of Variational model Structure preserving discretization

Such a type of model plays an important role in modeling many problems in physics, material science, biology and machine learning

Discretization and variation are not commutable in general; 
the variation-then-discretize approach may destroy the variational structure in the semi-discrete setting.

Yiwei Wang (University of California, Riverside, email: yiweiw@ucr.edu) 

mailto:yiweiw@ucr.edu


Neural Network Discretization of Minimizing Movement Scheme

Spatial and temporal discretization are commutable for the linear 
Galerkin approximation, but not commutable in general.

t = 0.001, 0.02, 0.05, 0.08, and 1 
(long time stability)



Neural-network-based Lagrangian scheme for diffusions

Hu, Z., Liu, C., Wang, Y., & Xu, Z. (2024). Energetic variational neural network discretizations of gradient flows. SIAM Journal on 
Scientific Computing, 46(4), A2528-A2556.
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What does it take to efficiently scale a direct PDE 
solver on a GPU?

Flatten the 
computational graph 
as much as possible.

Modify algorithms to 
alleviate memory 

bottlenecks.



What does it take to efficiently scale a direct PDE 
solver on a GPU?

What can we do with a GPU-compatible 
implementation of a direct PDE solver?



5 digits of accuracy in 
0.3 seconds!

Implement a very fast and accurate forward model for time-harmonic 
wave scattering problems.



Ground-Truth Reconstruction Errors

Ours

CISOR

Bandlimited 
Projection

Solve inverse scattering problems with experimental data



Solving the Inverse Scattering Problem: 
Leveraging Symmetries for Diffusion Models

Helmholtz equation

Bayesian framework

Borong Zhang, Martin Guerra, Qin Li, and Leonardo Zepeda Núñez

Inverse problem



Solving the Inverse Scattering Problem: 
Leveraging Symmetries for Diffusion Models

Borong Zhang, Martin Guerra, Qin Li, and Leonardo Zepeda Núñez

Intermediate field

Filtering Back-scattering

Filtered back-projection Score-based diffusion models

Score function

Translational 
Equivariance

Rotational 
Equivariance

Conditional score



Rotational 
Equivariance

Translational 
Equivariance

Back-Projection Diffusion

Borong Zhang, Martin Guerra, Qin Li, and Leonardo Zepeda Núñez

rotational equivariance translational equivariance
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Beyond Closure Models: 
Learning Chaotic Systems via 

Physics-Informed Neural Operators

(Chaotic)
PDE Dynamics

Goal: long-term behavior / property of the attractor
Computational constraints: coarse-grid simulations
Coarse-graining (CG) : design a dynamics in the filtered 

space (i.e. coarse-grid system).
Closure Modeling:



Learning-based Closure Models

 Supervised Learning (Single-State Model)

[Advanced Variants]

 [Posterior Training Loss]

 [History-aware Models] Model’s input:

 [Stochastic Closure Models]

Fundamental Limitation of (data-driven) Closure Modeling

The target mapping is not well-defined (a multi-map).

Model learns to predict the mean, not necessarily make sense.

[Theorem-1] 
[Single-State & History-aware Closures] 

Approximation error has a large lower bound regardless 
of model capacity!
[Stochastic Closures]

Cannot derive #
∗ (filtered invariant measure) when 

there is non-zero randomness in the dynamics.
Optimal Closure Model (Improving the results in Langford et al)

Technical Tool: functional Liouville flow- check the evolution of measures 

(of functions 𝑢(𝑥, 𝑡)).

 Suppose the NN closure model ansatz is expressive enough.

 𝑁 snapshots (datapoints) sampled from 𝜇∗ , fully-resolved simulation.

 𝑐𝑙𝑜𝑠ఏ
∗ : the closure model after training (minimizer of training loss).

𝑑଴: intrinsic dimension of the attractor. 𝑑଴ scales with Reynolds number.

[Theorem-2] 



We need nonlinear interaction between different scales (e.g. with Neural Operators)
[Contradiction] If hundreds of thousands of fully-resolved data are available, there is no 

need to train a closure model! Directly estimate the long-term statistics with ି
𝟏

𝟐 error!
Key Takeaway
We need nonlinear interaction between information from different scales (i.e.
resolved part in coarse-grid system and unresolved parts)!

Previous Ansatz: New Ansatz:

The newest version:
arxiv.org/abs/2408.05177

Key Property of FNO:

Naturally support input of different resolution.

 Ensure consistency among different resolutions.

Model weights save the interaction of large- and small-scale
information after trained with fine-grid input functions.



Graph Neural Networks and Non-commuting
Operators
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GNNs and GtNNs

Graph Neural Networks (GNNs):

Graph filter h(A):
linear layer; polynomial of the adjacent matrix A of a graph

h(A) = c0I + c1A+ c2A
2 + c3A

3

Goal of Graph-tuple Neural Networks (GtNNs):
Extend to several similarity relations Aj on the same vertex
set!

Graph filter for GtNNs: non-commutative polynomial

h(A1,A2) = c0I+c1A1+c2A2+c3A
2
1+c4A1A2+c5A2A1+c6A

2
2

Kaiying O’Hare Graph Neural Networks and Non-commuting Operators 2 / 4



Main Result: Stability and Transferability

Graph Tuples: A⃗ = (A1,A2) and B⃗ = (B1,B2)

Stability:
if A⃗ ≈ B⃗, the outputs of the GtNNs are similar

Sequence of Graph Tuples A⃗(n) with different size n,
i.e., A1 and A2 have n vertex

Transferability:
if A⃗(n) → W⃗ as n → ∞, the outputs of the GtNNs converge

⇒ if A⃗(n) ≈ B⃗(m), the outputs are similar via interpolation
and sampling

Kaiying O’Hare Graph Neural Networks and Non-commuting Operators 3 / 4



Reference

Mauricio Velasco, Kaiying O’Hare, Bernardo Rychtenberg, and
Soledad Villar. Graph neural networks and non-commuting
operators. Advances in neural information processing systems,
37:95662–95691, 2024.
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Learning Where to Learn:

Training Distribution Selection for Provable OOD Performance
Nicolas Guerra (Cornell), Nicholas H. Nelsen (MIT), Yunan Yang (Cornell)

Problem: Models trained on a single distribution perform poorly on unseen test domains.
Goal: Find a training distribution that minimizes average test error over a family of
distributions.

Family of Test Distributions.
Ideal: A broad training distribution
(blue) covering all test scenarios.

In practice: constrained.

Formulation:

inf
ν∈P2(U)

{
Eν′∼QEu∼ν′

∥∥∥Ĝ(ν)(u)− G⋆(u)
∥∥∥2 ∣∣∣ Ĝ(ν) ∈ arg min

G∈H
Eu∼ν

∥∥G⋆(u)− G(u)
∥∥2
Y

}
Training distribution ν; Test distributions ν′ ∼ Q; Model Ĝ(ν) trained on ν; True operator G⋆ : U → Y



Theoretical Foundation and Algorithmic Approaches

Problem Recap: We aim to choose a training distribution ν that minimizes either the OOD
error or a generalization upper bound.

inf
ν∈P2(U)

{
Eν′∼QEu∼ν′

∥∥∥Ĝ(ν)(u)− G⋆(u)
∥∥∥2 ∣∣∣ Ĝ(ν) ∈ arg min

G∈H
Eu∼ν

∥∥G⋆(u)− G(u)
∥∥2
Y

}
1. Bilevel Optimization
Idea: Directly minimize empirical OOD loss over test
distributions {ν′i }:

θ(k+1) = θ(k) − tk∇J(θ(k))

Pro: Optimizes the true OOD loss.
Con: Requires access to test distributions ν′i , Requires
computing gradient ∇J.

2. Alternating Minimization Algorithm (AMA)
OOD Upper Bound: OOD error ≤ ID training error +
distribution mismatch
Idea: Iteratively minimize upper bound:

ν
(0)
θ

train−−−→ Ĝ(0) optimize−−−−−→ ν
(1)
θ

train−−−→ · · ·

Pro: Avoids test distribution samples; leverages structure
of meta test distribution Q.
Con: Minimizes a surrogate, not the true OOD loss.

Key Insight: Both approaches optimize the training distribution ν to improve generalization.



Examples

Bilevel Example: Function Approximation
Goal: Optimize C in
x ∼ N (m0,C ) ∈ P2(Rd), with fixed m0 to
learn the function:

g(x) = 10 sin(πx1x2)+20(x3−1/2)2+10x4+5x5
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(Left) Error over 1000 iterations. (Center) Error as sample
size grows. (Right) Error as number of function

evaluations grows.

AMA Example: Darcy Flow
Goal: Optimize the mean function m in
a ∼ GP(m,C ), where C is fixed, to learn the
map G : a 7→ u.{

∇ · (a∇u) = 1 in Ω,

u = 0 on ∂Ω

𝑢𝑎 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 1 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 2 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 3 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 8→

Visual comparison of solution errors over AMA iterations
for Darcy Flow.



What metric to optimize for suppressing instability in a
Vlasov-Poisson system?

Martin Guerra, Qin Li, Yukun Yue and Leonardo Zepeda-Núñez

Statistical and Computational Challenges in Probabilistic SciML
10 June 2025



Motivation:

• Fusion energy promises a limitless, clean, and safe power source for the
future.

• Achieving it requires understanding and stabilizing high-temperature plasma
to prevent turbulence.

PDE-constrained Optimization: ∂tf + v∂xf − (Ef +H) · ∂vf = 0 ,
Ef = ∂xVf ,
∂xxVf = 1− ρf = 1−

∫
f dv .

(1)

min
H

J (f [H])

s.t. (1)
(2)

2 / 3



Given a desired equilibrium feq,

Which objective J would be the best to optimize (2)?

• L2: 1
2∥f [H]− feq∥L2(x,v)

• KL: KL(f [H]||feq)

• Ef :
∫ T

0

∫ Lx

0
[Ef [H](t, x)]

2 dx dt .

H(x) =

N∑
k=1

ak cos

(
2πkx

Lx

)
+ bk sin

(
2πkx

Lx

)
.

Can you tell which landscape corresponds to which objective?

3 / 3



A score-based particle method for homogeneous Landau equation

Yan Huang (joint with Li Wang)

School of Mathematics, University of Minnesota

IMSI, Chicago
June 10, 2025
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Score-based Particle Method

The Landau equation models the density of charged particles undergoing the Coulomb
force in plasmas:

∂t f = ∇v ·
∫
Rd

A(v−v∗) (f (v∗)∇v f (v)−f (v)∇v∗ f (v∗)) dv∗ ,

with the collision kernel A(z) = Cγ |z |γ+2
(
Id − z⊗z

|z|2

)
.

• A “Log” form of continuity equation:

∂t f +∇v · (U[f ]f ) = 0 ,

U[f ] = −
∫
Rd

A(v − v∗)(∇v log f (v)︸ ︷︷ ︸
score

−∇v∗ log f (v∗))f∗dv∗ .

• Learn score via the score-matching loss:

snθ(v) ∈ argmin
θ

1

N

N∑
i=1

|sθ(v n
i )|2 + 2∇ · sθ(v n

i )

• Update particles: v n+1
i = v n

i −∆t 1
N

∑N
j=1 A(v

n
i − v n

j )[snθ(v
n
i )− snθ(v

n
j )].

• Update density (no kernel density estimation):

ln+1
i =−∆t

1

N

N∑
j=1

∇v i ·{A(v
n
i −v n

j )[sθ(v
n
i )−sθ(v n

j )]} , f n+1(v n+1
i ) = f n(v n

i )/ exp (l
n+1
i ) .

Yan Huang (UMN) SBPM for Landau IMSI, Chicago June 10, 2025 2 / 3



Numerical Experiments

(a) Time evolution of the
entropy decay rate.

(b) Density visualization at
particle locations.

(c) Computational time of
obtaining “score” on GPU

Reference: Y. Huang and L. Wang, A score-based particle method for homogeneous
Landau equation, Journal of Computational Physics, (2025), p. 114053.

Yan Huang (UMN) SBPM for Landau IMSI, Chicago June 10, 2025 3 / 3



Adaptive compression for sampling rare events in high dimensions
Time scale problem in molecular 
simulations

E. Wilson et al., 2021 Structure and Function of Membrane 
Proteins vol. 2302

V. Junghare et al., 2023 Markov State Models of Molecular 
Simulations to Study Protein Folding and Dynamics

Alanine dipeptide: 2 relevant collective 
variables (ϕ, ψ Ramachandran angles)

>200 million time steps!

TT-TT-Metadynamics

A. Laio and M. Parrinello 2002 J. Phys. 
Chem. B 99 12562—12566

Periodically fit bias potential 
to a low-rank tensor train 
(using TT sketch algorithm)

Nils Strand—University of Chicago—Lightning Talk—June 10, 2025
Joint work with Siyao Yang, Yuehaw Khoo, and Aaron Dinner

1 ns 2 ns

50 ns10 ns



Why tensor compression matters: ditryptophan (8D) as a test case

Nils Strand—University of Chicago—Lightning Talk—June 10, 2025
Joint work with Siyao Yang, Yuehaw Khoo, and Aaron Dinner

Takeaways:

• Adaptive bias compression

• Linear scaling in dimension

• No grid needed

• Improved stability/smoothness 
over time

Rank = number of possible 
states joining dimensions 
(= correlations)



Quantitative Clustering in Mean-Field
Transformer Models

SciML Workshop, IMSI

June 10, 2025

Joint work with Zhengjiang Lin, Yury Polyanskiy and Philippe Rigollet

Shi Chen
Department of Mathematics

Massachusetts Institute of Technology



Embedding into 

+ positional encoding

: tokens

• Transformers are trained to predict next token:

Output = probability measure on tokens

Input = emprical measure on tokens

Likelihood of token being next

Empirical distribution of tokens in prompt

After the long hike, we finally reached the top and felt very _______.
"tired":                      0.22
  "happy":                  0.20
  "relieved":               0.18
  "exhausted":          0.17
  "accomplished": 0.13
  "satisfied":              0.10

Prob.



Transformer = Flow map
Continuity equationInteracting particle system

Self-attention:
Projection onto the tangent space of unit sphere ( = LayerNorm)

•  

•  

Fréchet derivativeRiemannian gradient 
over sphere

• (Reverse) Wasserstein gradient flow Maximizer of energy: Clustering

Theorem (Łojaciewicz inequality on a small cap, C.-Lin-Polyanskiy-Rigollet)

Cap size =

•  



Continuous Nonlinear Adaptive Experimental Design
Ruhui Jin (presenter), Qin Li, Stephen Mussmann, and Stephen Wright

Motivation? 
Experimental design identifies the most valuable measurements 
and provide guidance prior to experiment procedure. 


What has been done? 
Traditional design approaches assign probability weights to a 
finite set of design options.

In practice, experimental configurations, such 
as when to take snapshots, where to place 
sensors, should be continuously-indexed 
across the domain.



What’s novel in this work?


We aim at 

• Optimal design on continuous probability space.

• Measurements are from nonlinear models.


Optimization thru the lens of dynamics,

1. Outer-loop 

Gradient flow 

2. Inner-loop 

Dynamics translation 


ρ
⇒ ∂tρ
σ*[ρ] ·σ*[ρ] ⇐ ∂tρ

ρ* := arg min
ρ∈Pr2

F [ρ; σ*[ρ]]
pursued design measure design criterion inference solution



Numerical performances
We examine the approach on Lorenz 63 model:

Design results on important observation times



A Sampling Approach to Experimental Design (preprint)
Kathrin Hellmuth, Christian Klingenberg, Qin Li

Inverse problem: Infer p from y = F (p)(+η)
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Sampling Approach to Experimental Design
● Starting point: Observe phenomenon everywhere ⇒ p ∈ RP reconstructible, full

data sensitive
● goal: find small subset of sensitive data points.
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Local sensitivity is encoded in sensitivity matrix J = JpF (p∗), with Random Matrix
Multiplication:

Theorem
Random sampling of data according to a sensitivity informed distribution and
reweighting yields a sensitive design, with high probability.



Application to Schrödinger potential reconstruction

(−∆ + p)up = 104 in X ∶= [−1, 1]2,

up = 0 on ∂X.
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Möbius inversion meets tensors:
inference by Edgeworth series
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The problem

Generative modeling from samples

Formalism of measure transport: seek transport map T
pushing base distribution z ∼ N (0, Id) to data T(z) ∼ X

Previous works: minimize loss over parametric family

This work: approximate transport from sample cumulants

1 / 2



Cumulant matching

Motivation: data scarcity in scientific applications

Modernization of [Cornish and Fisher 1938], [McCullagh 1987]

Separation of combinatorics (sympy) + numerics (jax)

Generalization of methods used in practice (Edgeworth series,
moment closure, 2-point statistics in material microstructures)

2 / 2



• Unsteady aerodynamic phenomena (gusts)

1

• Estimating complex transient aerodynamic using sparse 
pressure sensors

Use online sequential filters with learned models

How can we use noisy sparse pressure to estimate flow response?

• Flow changes are imprinted on pressure sensors

Machine-learning-driven flow reconstruction and uncertainty quantification 
using sparse observables

Hanieh Mousavi, Anya Jones, and Jeff Eldredge
SciML workshop
June, 2025



2

Low-order Representation of Flow

Input Output

Learn forecast and observation operators with surrogate models

Forecast:

Observation:
through



3

Results:

,q Learned surrogates enable efficient, real-time, uncertainty-
aware flow estimation from limited measurements.

q The real-time state estimation in the reduced dimension is 
fast and efficient.

q Useful for control, design, and flight prediction of unsteady 
aerodynamic systems

q Identifies which sensor combinations contribute the most to 
correcting the predicted states



Data Assimilation in a Machine-
Learned Reduced-Order Model 

of a Multiscale Chaotic 
Earthquake Model

6/8/2025 1

Hojjat Kaveh, Andrew Stuart, Jean Philippe Avouac



6/8/2025 Data Assimilation in a Machine-Learned Reduced-Order Model of a Multiscale Chaotic Earthquake Model 2

Behavior of the PDE: chaotic, multiscale, with extreme events

Time-series of (||𝑣||∞) shows chaotic evolution with extreme 

events over different scales.

Empirical distribution of the simulation time step 𝑑𝑡 that ensures 

certain numerical accuracy.



6/8/2025 Data Assimilation in a Machine-Learned Reduced-Order Model of a Multiscale Chaotic Earthquake Model 3

What will I present in this poster?

Find a reduced 
coordinate 

Find a neural ODE for 
time-series that appear 
to be not differentiable 

Solve a data 
assimilation problem 

using the machine 
learned forward model



Error Analysis for Learning Time-stepping

Operators of Evolution PDEs

Statistical and Computational Challenges in Probabilistic

SciML

Meenakshi Krishnan

Joint Work with Ke Chen, Haizhao Yang
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University of Maryland College Park
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Introduction

Classical numerical solvers for time-dependent PDE often suffer from

stability restrictions/require iterative solvers for complex non-linear

systems. Deep Neural Networks (DNNs) potentially offer a fast and

stable alternative by learning time-stepping operators.

• Theoretical analysis for learning numerical solvers is severely lacking.

Current analysis for solution operators of continuous formulations do

not readily extend to their approximations.

Goal: Provide explicit error estimates for learning the time-stepping

operator with feed forward neural networks (FNN), offering guidance for

efficient design of networks for various classes of PDE.

• Study how the network width, depth, and number of training data

impact the learning error.
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Reaction Diffusion Equation

Example: Consider a class of reaction-diffusion equations of the form,

∂tu +∆u = f (u) for x ∈ D ⊆ Rd , t ∈ [0,T ], u(x , 0) = u0(x), x ∈ D (1)

where u0(x) : C(D), the reaction function f ∈ C 1(R). Assume homogeneous

Dirichlet boundary conditions and smooth boundary ∂D.

The semi-discrete form of equation (1) obtained by discretizing in time using

the implicit Euler scheme, with step-size ∆t:

u1 = [1−∆t∆]−1
(
u0 + f (u1)

)
=: ΦBE (u

1, u0, f ). (2)

Use fixed point iterations to approximate the solution to the algebraic equation:

u(0) = u0, u(i) = ΦBE (u
(i−1), u0, f ) for i = 1, . . . ,m, u(m) =: ΦP(u

0, f ). (3)

ΦP : X1 ×X2 → X1 with X1 = (C(D), ∥ · ∥∞), X2 = (C 1(D), ∥ · ∥C1) for

multi-input operator learning.

Use encoder-decoders: E n
X1×X2

(u, f ) =
[
E n
X1
(u),E n

X2
(f )

]
where

E n
Xi

: Xi → RdXi for i = 1, 2. Similarly, define the decoder Dn
X1×X2

.
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Generalization Error

Consider the target operator to be learned ΦP : C(D)×C 1(R) → C(D) defined

in (3). Denote LP = 1/(1− Lr∆t) assuming Lr∆t < 1 for Lr a uniform

Lipschitz constant for reaction function space.

Let ΓNN be the network minimizing training loss among FNN architecture with

width p, depth O(mL), maximum norm bounded by M. Then with:

Lp = Ω
(
(dX1 + dX2)

1
4 n

1
4

)
,M ≥ O(

√
ℓmax) , for ℓmax = (dX2 + 1)dX1 + dX2 ,

Egen ≲ L2
P log(LP)(ℓmax)

5/2n− 1
2 log n + Eproj .

The constants in ≲ solely depend on p, ℓmax and Lipschitz constants of

encoder-decoders.

No Curse of Dimensionality!

• In practice, Newton’s method is used to solve the non-linearity due to the

step-size restriction of Picard’s method.

• Can also extend results to other classes of evolution equations like

parabolic equations with forcing terms, conservation laws.
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Reference measure:                            Target measure:

Brenier potential: There exists a convex potential 

such that                                     and                                     . 

Empirical dual objective: Sample                          and       

Error bound: 

Slow rate: 

Fast rate:

Error Analysis of OT Filters -
Conditional OT



Hidden State:                               Observation:

Posterior: Find the posterior 

Recursive update: 

(Propagation)

(Conditioning)

Conditional OT approach:

OT Filter & Transport Viewpoint



Error bound: 

Slow rate: 

Fast rate:

Numerics: Lorenz 63 model with observing the first and third states.

Filtering Result & Numerics



From Probabilistic Inference to Conditional Generation
Probabilistic Inverse Problem 

Let  be the vector to be inferred 

Let   denote prior information (can be non-Gaussian, samples) 

Let  be the measurement vector  

Let   (can be black-box) denote the composition of the 
measurement and forward map  

Given  and an instance of , characterize  

X ∈ ℝNx

PX

Y ∈ ℝNy

PY|X

PX, PY|X Y = y PX|Y(x |y)

Conditional Generative Problem 

Generate samples  from  

Generate samples  using  - apply the measurement and forward models  

The dataset  is drawn from  

Given , and an instance of , generate samples from  

Develop conditional diffusion models to accomplish this

xi PX

yi PY|X(y |xi)

𝒮 = {xi, yi} PXY

𝒮 = {xi, yi} Y = y PX|Y(x |y)

Unifying and extending Diffusion Models through PDEs for solving Inverse Problems

Authors:  
Agnimitra Dasgupta,  

Alexsander Marciano da Cunh,  
Ali Fardisi,  

Mehrnegar Aminy,  
Brianna Binder,  
Bryan Shaddy,  
Assad A Oberai



Conditional Diffusion Models

Contributions of our work 

1. Provides a unified exposition of variance exploding and variance-preserving diffusion models 

2. Identify and introduce a new class of variance-preserving diffusion formulations 

3. The unified framework also includes a family of sampling strategies — including Langevin Monte Carlo, probability flow 
ODEs, and SDE-based samplers as special cases 

4. Also, by conditioning the diffusion model on both the measurement and a vector parameterizing the measurement operator, we 
enable a single model to solve inverse problems involving multiple measurement operators.

Conditional diffusion models 

• Basic idea: sample from a Gaussian distribution and transform to samples from the desired conditional distribution  

• Existing approaches: DDPM,  NCSN, Stochastic differential equations 

• Our approach: work directly at the probability density function (pdf) level, and use elementary concepts from linear PDEs.



Numerical Example

∇ ⋅ (au) − κ∇2u = 0



Problem Setup

Observations (for eachm = 1, . . . ,M ):{ (
xm
i , um(x

m
i )

)}Nm

i=1 (typically Nm≪ size of a fine mesh)

Assumed governing PDE:
P(um) (x) = fm(x), x ∈ Ω, (1)

B(um) (x) = gm(x), x ∈ ∂Ω (or initial data). (2)

Model parameterisation:
P(um)(x) = P

(
S(x , um)

)
, S(x , um) =

(
x , um(x), (L1um)(x), . . . , (Lkum)(x)

)
.

We fix S , and want to learn the function
P.
Goals

1. Recover the possibly nonlinear
operator P(u)(x) = P(S(x , u)).

2. Reconstruct um on a fine mesh with
high accuracy.

Notes
• If (1) is solved, plug P̂ into a

standard PDE solver to achieve (2).
• If (2) is solved first, (1) reduces to

a (possibly nonlinear) regression
problem on

{
S(xm

i , um), fm(x
m
i )

}
.



Our approach
Two–step (e.g. SINDy):

1. Regress to obtain ûm.

2. Fix ûm and regress for P̂ on
S(x , ûm).

Issue: ignores coupling between state
and operator inference.
Proposed simultaneous scheme:
Estimates should match the observed
data:

ûm(x
m
i ) ≈ um(x

m
i ),

and satisfy the PDE on sampled
collocation points

P̂
(
S(xj , ûm)

)
≈ fm(xj).

Joint optimisation problem

min
P̂∈Q
ûm∈U

1
2
∥P̂∥2

Q +
λ

2

M∑
m=1

∥ûm∥2
U

+
c1

2

∑
m,i

(
ûm(x

m
i )− um(x

m
i )

)2

+
c2

2

∑
m,j

(
P̂
(
S(xj , ûm)

)
− fm(xj)

)2

+
c3

2

∑
m,b

(
B(ûm)(xb)− gm(xb)

)2
.

Algorithmic recipe

• Choose RKHSs U (states) and Q (operators).
• Representer theorem gives a finite basis for ûm, P̂.
• Solve resulting nonlinear least–squares via Levenberg–Marquardt.
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Results on Burgers Equation

ut =
1
2 u ux + 0.01 uxx

June 9, 2025 KEqL 3/3



Yewei Xu, Qin Li

Can we trust Gradient Descent?
in  𝒫2



Can we trust gradient descent in 𝒫2
<latexit sha1_base64="BYRm4e+ksB8Ddck1+P90aAOOrtM=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9SpVkk780kpr7AQ8lCRrCx0kNPMInC8tN5v1hyK+4caJV4GSlBhka/+NUbRCQRVBrCsdZdz42Nn2JlGOF0WuglmsaYjPGQdi2VWFDtp/ODp+jMKgMURsqWNGiu/p5IsdB6IgLbKbAZ6WVvJv7ndRMTXvkpk3FiqCSLRWHCkYnQ7Hs0YIoSwyeWYKKYvRWREVaYGJtRwYbgLb+8SloXFa9Wqd1VS/XrLI48nMAplMGDS6jDLTSgCQQEPMMrvDnKeXHenY9Fa87JZo7hD5zPH9q7j84=</latexit>

min f(x)

<latexit sha1_base64="lYntDzZLukjFI3o6yC54ixCOQM0=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCG8uMSHUjFN24rGAf0A4lk2ba0ExmSO5I61D8FTcuFHHrf7jzb0zbWWjrgQuHc+5N7j1+LLgGx/m2ckvLK6tr+fXCxubW9o69u1fXUaIoq9FIRKrpE80El6wGHARrxoqR0Bes4Q9uJn7jgSnNI3kPo5h5IelJHnBKwEgd+6DdjSAdjvEVPm1L4gvSGQYdu+iUnCnwInEzUkQZqh37yzxDk5BJoIJo3XKdGLyUKOBUsHGhnWgWEzogPdYyVJKQaS+dbj/Gx0bp4iBSpiTgqfp7IiWh1qPQN50hgb6e9ybif14rgeDSS7mME2CSzj4KEoEhwpMocJcrRkGMDCFUcbMrpn2iCAUTWMGE4M6fvEjqZyW3XCrfnRcr11kceXSIjtAJctEFqqBbVEU1RNEjekav6M16sl6sd+tj1pqzspl99AfW5w/MR5TS</latexit>

ẋ = �rxf

<latexit sha1_base64="uqhbMikdJO0k5saj6dKqpq+sRSQ=">AAACBnicbVDLSgMxFL3js9bXqEsRgkWoiGVGpLoRim5cVrAPaMuQSTNtaCYzJBlpGbpy46+4caGIW7/BnX9j+lho64ELJ+fcS+49fsyZ0o7zbS0sLi2vrGbWsusbm1vb9s5uVUWJJLRCIh7Juo8V5UzQimaa03osKQ59Tmt+72bk1x6oVCwS93oQ01aIO4IFjGBtJM8+6HupOHGH6Ar1PXHabQrsc+z1g7x5Hnt2zik4Y6B54k5JDqYoe/ZXsx2RJKRCE46VarhOrFsplpoRTofZZqJojEkPd2jDUIFDqlrp+IwhOjJKGwWRNCU0Gqu/J1IcKjUIfdMZYt1Vs95I/M9rJDq4bKVMxImmgkw+ChKOdIRGmaA2k5RoPjAEE8nMroh0scREm+SyJgR39uR5Uj0ruMVC8e48V7qexpGBfTiEPLhwASW4hTJUgMAjPMMrvFlP1ov1bn1MWhes6cwe/IH1+QOa3Jf1</latexit>

xn+1 = xn � hrxf(xn)

<latexit sha1_base64="MqxrihorHcol/IQbx82eV85oPRY=">AAACDHicbVDLSsNAFJ34rPVVdelmsAiuSlKkuiwK4rKCfUASwmQ6aYdOZsLMRCghH+DGX3HjQhG3foA7/8ZJm4W2Hhg4nHMuc+8JE0aVtu1va2V1bX1js7JV3d7Z3duvHRz2lEglJl0smJCDECnCKCddTTUjg0QSFIeM9MPJdeH3H4hUVPB7PU2IH6MRpxHFSBspqNW9mPIg8+RYeJR7MdJjjFjWyYNmDm/cQvdNym7YM8Bl4pSkDkp0gtqXNxQ4jQnXmCGlXMdOtJ8hqSlmJK96qSIJwhM0Iq6hHMVE+dnsmByeGmUIIyHN4xrO1N8TGYqVmsahSRbbqkWvEP/z3FRHl35GeZJqwvH8oyhlUAtYNAOHVBKs2dQQhCU1u0I8RhJhbfqrmhKcxZOXSa/ZcFqN1t15vX1V1lEBx+AEnAEHXIA2uAUd0AUYPIJn8ArerCfrxXq3PubRFaucOQJ/YH3+ADA/m7U=</latexit>

min
⇢2P2

F [⇢]

<latexit sha1_base64="Q4wCL6zCf+bljEy0Q8heLf2RkZs="></latexit>

@t⇢ = �rW2F = rx · (⇢r�F

�⇢
)

<latexit sha1_base64="7elG30x/VxHw7y6kuxeN+dHoZCg=">AAACH3icbZDLSsNAFIYn9VbrLerSzWARKmJJRKoboehGdxV6gyaEyXTSDp1MwsxEKCFv4sZXceNCEXHXt3GaVtDqDwMf/zmHOef3Y0alsqyJUVhaXlldK66XNja3tnfM3b22jBKBSQtHLBJdH0nCKCctRRUj3VgQFPqMdPzRzbTeeSBC0og31TgmbogGnAYUI6Utz6w5Yhh5KT+xM3gFK06I1FAG6V12OvzmZtbLm7h77DnlGXpm2apaueBfsOdQBnM1PPPT6Uc4CQlXmCEpe7YVKzdFQlHMSFZyEklihEdoQHoaOQqJdNP8vgweaacPg0joxxXM3Z8TKQqlHIe+7sx3XqxNzf9qvUQFl25KeZwowvHsoyBhUEVwGhbsU0GwYmMNCAuqd4V4iATCSkda0iHYiyf/hfZZ1a5Va/fn5fr1PI4iOACHoAJscAHq4BY0QAtg8AiewSt4M56MF+Pd+Ji1Foz5zD74JWPyBZw/osA=</latexit>

⇢n+1 = (I� hT[⇢n])#⇢n



Can we trust gradient descent in 𝒫2
<latexit sha1_base64="MqxrihorHcol/IQbx82eV85oPRY=">AAACDHicbVDLSsNAFJ34rPVVdelmsAiuSlKkuiwK4rKCfUASwmQ6aYdOZsLMRCghH+DGX3HjQhG3foA7/8ZJm4W2Hhg4nHMuc+8JE0aVtu1va2V1bX1js7JV3d7Z3duvHRz2lEglJl0smJCDECnCKCddTTUjg0QSFIeM9MPJdeH3H4hUVPB7PU2IH6MRpxHFSBspqNW9mPIg8+RYeJR7MdJjjFjWyYNmDm/cQvdNym7YM8Bl4pSkDkp0gtqXNxQ4jQnXmCGlXMdOtJ8hqSlmJK96qSIJwhM0Iq6hHMVE+dnsmByeGmUIIyHN4xrO1N8TGYqVmsahSRbbqkWvEP/z3FRHl35GeZJqwvH8oyhlUAtYNAOHVBKs2dQQhCU1u0I8RhJhbfqrmhKcxZOXSa/ZcFqN1t15vX1V1lEBx+AEnAEHXIA2uAUd0AUYPIJn8ArerCfrxXq3PubRFaucOQJ/YH3+ADA/m7U=</latexit>

min
⇢2P2

F [⇢]

<latexit sha1_base64="Q4wCL6zCf+bljEy0Q8heLf2RkZs="></latexit>

@t⇢ = �rW2F = rx · (⇢r�F

�⇢
)

<latexit sha1_base64="7elG30x/VxHw7y6kuxeN+dHoZCg=">AAACH3icbZDLSsNAFIYn9VbrLerSzWARKmJJRKoboehGdxV6gyaEyXTSDp1MwsxEKCFv4sZXceNCEXHXt3GaVtDqDwMf/zmHOef3Y0alsqyJUVhaXlldK66XNja3tnfM3b22jBKBSQtHLBJdH0nCKCctRRUj3VgQFPqMdPzRzbTeeSBC0og31TgmbogGnAYUI6Utz6w5Yhh5KT+xM3gFK06I1FAG6V12OvzmZtbLm7h77DnlGXpm2apaueBfsOdQBnM1PPPT6Uc4CQlXmCEpe7YVKzdFQlHMSFZyEklihEdoQHoaOQqJdNP8vgweaacPg0joxxXM3Z8TKQqlHIe+7sx3XqxNzf9qvUQFl25KeZwowvHsoyBhUEVwGhbsU0GwYmMNCAuqd4V4iATCSkda0iHYiyf/hfZZ1a5Va/fn5fr1PI4iOACHoAJscAHq4BY0QAtg8AiewSt4M56MF+Pd+Ji1Foz5zD74JWPyBZw/osA=</latexit>

⇢n+1 = (I� hT[⇢n])#⇢n

Theorem: for 


                  never converge

F[ρ] = KL(ρ |𝒩(0,1))

•  may exist even if the gradient does not


• If both exist, they coincide

∇
δF
δρ

Forward-Euler time-discretization for W-GF can be wrong. Y. Xu and Q. L, arxiv: 2406.08209
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