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Task of generative modeling

Setting: Collect i.i.d. samples {xi
0}Ni=1 (e.g., images, text) from probability distribution p0

p0

Goal: Generate new samples from p0 that are not present in the training dataset
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Diffusion Models Generate High-Quality Images

Machine learning: Prompt-to-image models (Ramesh et al., 2022)

Scientific computing: Super-resolution inverse problems (Wan et al., 2023)

⇒
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But Diffusion Models Can Lack Diversity

Memorizing training data (Carlini et al., 2023)

Memorizing subsets of images (Somepalli et al., 2023)

Generated Image

Training Set
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Generative Modeling by Learning Score Functions

▶ Forward process adds noise to map data to noise at t = T
▶ Reverse process converts Gaussian noise to data at t = 0

[Song et al., 2021]

Key Ideas:
▶ Diffusions rely on the score ∇x log p(x, t) of the forward process for each t
▶ In practice, the data distribution is prescribed by samples, i.e., p0 = 1

N
∑N

i=1 δxi
0
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Learning Score Functions From Data

Goal: Learn the score of p(x, t) =
∫

p(x, t|x0)dp0(x0) for each t

Approach: Denoising score-matching (Vincent, 2011)

argmin
s

∫ T

0
Ex|s(x, t)−∇x log p(x, t)|2dt

=argmin
s

∫ T

0
E(x,x0)|s(x, t)−∇x log p(x, t|x0)|2dt︸ ︷︷ ︸
Does not explicitly depend on the data density

+C

Recipe for sampling:
1 Given data {xi

0}Ni=1 ∼ p0, learn score

s∗ ∈ argmin
s

∫ T

0

1
n

n∑
i=1

Ex
∣∣s(x, t)−∇x log p(x, t|xi

0)
∣∣2dt

2 Simulate the reverse process to generate new data
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Example for Score Learning

Variance exploding forward process: dx =
√

g(t)dw
▶ Conditional distribution: p(x, t|x0) = N (x; x0, σ

2(t)Id) for σ2(t) =
∫ t
0 g(s)ds

▶ Score function: ∇ log p(x, t|x0) = − x−x0
σ2(t)

Learning problem:

s∗ ∈ argmin
s

∫ T

0

1
n

n∑
i=1

Ex

∣∣∣∣s(x, t) + x− xi
0

σ2(t)

∣∣∣∣2dt

Reverse process:
▶ Reverse-time SDE

dx = −g(t)s∗(x, t)dt +
√

g(t)dw, x(T ) ∼ N (0, σ2(T )Id)

▶ Reverse-time ODE

dx
dt

= −
g(t)
2

s∗(x, t), x(T ) ∼ N (0, σ2(T )Id)
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How Does Memorization Arise?

Consider variance exploding process dxt =
√

g(t)dwt , xt |x0 ∼ N (x0;σ
2(t))

Optimal empirical score (Gu et al., 2023; Scarvelis, Borde, and Solomon, 2023)

For p0 = 1
N
∑N

i=1 δxi
0
, the optimal score is

s∗(x, t) = −
1
σ2(t)

N∑
i=1

(x− xi
0)wi(x, t),

where wi(x, t) ∈ [0, 1] are normalized Gaussian weights

wi(x, t) =
w̃i(x, t)∑N
l=1 w̃ℓ(x, t)

, w̃ℓ(x, t) = exp

(
−
|x− xi

0|2

2σ2(t)

)

Takeaway: The optimal score contains all of the training samples
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Limiting Behaviour of the Empirical Score

▶ For x near xi
0, weights collapse wi(x, t)→ 1,wℓ(x, t)→ 0 for ℓ ̸= i and score is

s∗(x, t)→ −
x− xi

0
σ2(t)

, t → 0.

▶ Behavior depends on the Voronoi partitioning into cells of nearest data points

V (xi
0) ≡ {x ∈ Rd s.t. |x− xi

0| < |x− xℓ0|, ℓ ̸= i}

−1 0 1 2 3
−20

−10

0

10

20

30
True score

Training data

Gaussian mixture score

Limiting score

Rescaled score function and Voronoi partitioning for xi
0 ∼ N (0, 1)

Main Theorem on Memorization 13 / 31



Limiting Behaviour of the Empirical Score

▶ For x near xi
0, weights collapse wi(x, t)→ 1,wℓ(x, t)→ 0 for ℓ ̸= i and score is

s∗(x, t)→ −
x− xi

0
σ2(t)

, t → 0.

▶ Behavior depends on the Voronoi partitioning into cells of nearest data points

V (xi
0) ≡ {x ∈ Rd s.t. |x− xi

0| < |x− xℓ0|, ℓ ̸= i}

−1 0 1 2 3
−20

−10

0

10

20

30
True score

Training data

Gaussian mixture score

Limiting score

Rescaled score function and Voronoi partitioning for xi
0 ∼ N (0, 1)

Main Theorem on Memorization 13 / 31



Reverse-Time Dynamical System

Recall: Variance exploding process dx =
√

g(t)dw
Today we will consider g(t) = 2t, t ∈ [0, 1] but results generalize to other g(t)

Reverse ODE:
▶ Integrate x backward-in-time starting from x(1) ∼ N (0, I )

dx
dt

= −
g(t)
2

s∗(x, t) =
1
t
(x− xN(x, t)), xN(x, t) :=

N∑
i=1

xi
0wi(x, t)

Change of variables: s = − log(t)
▶ integrate y(s) = x(e−s) forward-in-time starting from y(0) ∼ N (0, I )

dy
ds

= −(y − yN(y, s)), yN(y, s) :=
N∑

i=1

xi
0wi(y, e−s)
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Limiting Behaviour

Limit Points: For any initial condition y(0), there are sequences (sk)k∈N so that

lim
sk→∞

y(sk) = y∗

Main Theorem (Baptista et al., 2025)

The limit points y∗ are attained at one the data points xi
0 or on the boundaries of the Voronoi

tesselation {∂V (xi
0)}Ni=1

Corollary: Exponential Convergence (Baptista et al., 2025)

When the limit point is y∗ = xi
0 for some i , then for all s ≥ s∗

|y(s)− y∗| ≤ Ke−s ,

for constant K depending on the data p0 and initial condition
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Reverse-Time Dynamical System

Lemma: Dynamics live in compact sets

|y(s)| ≤ max

(
|y(0)|, max

1≤i≤N
|xi

0|
)
, ∀s

Takeaway: We can extract limit points y∗ = sups∈R+
y(s) from convergent subsequences

y∗ ∈ B(0,R), R = max
1≤i≤N

|xi
0|

Lemma: Voronoi cells are invariant
For each δ > 0 separation from the boundary, consider subset V δ of each Voronoi cell

V δ(xi
0) := {x ∈ Rd , |x− xi

0| ≤ |x− xℓ0| − δ, ℓ ̸= i}

If y(s∗) ∈ V δ(xi
0) ∩ B(0,R) for some time s∗(N,R, δ), then

y(s) ∈ V δ(xi
0), ∀s ≥ s∗
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Collapse Onto the Data Points

Main idea: dynamics are approximately linear within Voronoi cell

d(y − xi
0)

ds
=

dy
ds

= −(y − yN(y, s))

= −(y − xi
0)− (xi

0 − yN(y, s))

≈ −(y − xi
0)

Reasons: From cell invariance, the weights wj(y, s) ∝ exp(−e2s |y − xi
0|2) for y ∈ V δ(xi

0) are

wi(y, s) ≈ 1, wℓ(y, s) ≈ 0

The nonlinear part of dynamics is small:

xi
0 − yN(y, s) = (1− wi(y, s))xi

0 +
∑
ℓ̸=i

wℓ(y, s)xℓ0 ≈ 0

Takeaway: Exponential convergence within Voronoi cell V (xi
0)

|y(s)− xi
0| ≤ Ke−s , for all s ≥ s∗
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Data with Voronoi Tesslations

Data: N = 20 i.i.d. samples from N (0, I2)
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ODE Dynamics with Voronoi Tesselations

Integrate ODE with empirical score using N = 20 i.i.d. samples from N (0, I2)
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Takeaway: Dynamics cross boundaries and explore before change in direction and collapse
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Fast Convergence

▶ Measured the Euclidean distance of each trajectory to its limit point
▶ Dynamics match the expected exponential convergence rate

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time s
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10−1

|y
(s

)
−
x
∗ | 2

O(e−s)
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Trajectories Can Remain On Hyper-Planes

▶ Trajectories of the ODE starting from initial conditions along a square around data
▶ Most trajectories collapse onto the N = 2 data points (red)
▶ Some trajectories remain on Voronoi boundaries
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Explicit Regularization

Tikhonov-regularized score matching problem:

s∗reg ∈ argmin
s

∫ T

0
E|s(x, t)−∇ log p(x, t)|2 + γ2(t)E|s(x, t)|2dt.

▶ Objective can also be minimized via denoising score matching

Optimal regularized score function

For empirical p0 with γ2(t)σ2(t) = c , the score is

s∗reg(x, t) = −
1

σ2(t) + c

N∑
i=1

(x− xi
0)wi(x, t)

The score remains bounded:

s∗reg(x, t)→
−(x− xi

0)

c
, as t → 0

Numerics Illustrating Theorem 24 / 31
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Memorization Versus Regularization using Tikhonov

▶ Evaluated the fraction of 2000 generated samples x(0) that match the data samples
▶ Compared different regularization parameters c ∈ [10−5, 10−1]
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Takeaway: Increasing Tikhonov regularization on Gaussian mixture prevents memorization
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Takeaway: Increasing Tikhonov regularization on Gaussian mixture prevents memorization
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Regularization and Learned Score using Tikhonov
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Takeaway: Increasing Tikhonov regularization reduces singular behaviour in Gaussian mixture
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Memorization Versus Regularization using Neural Networks

▶ Parameterized the score using a three-layer feedforward NN
▶ Evaluated the effect of increasing training iterations and model parameters (NN width)
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Takeaway: Early stopping in training and under-parameterization avoids memorization
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Collapse Is Observed With Images

Imaging example:
▶ Learned score function using EDM model (Karras et al., 2022) with U-Net architecture
▶ Training set of N = 2 images of small squares embedded in empty background
▶ Generated samples after each epoch with fixed noise process

Training data

2k epochs

Takeaway: Early stopping of training is one way to prevent data collapse
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Collapse Is Observed With Images
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Fraction of memorized samples. Legend indicates number of parameters in a U-Net model for the score.
The left plot uses N = 2 training samples while the right plot uses N = 8.

Takeaway: Using fewer model parameters also prevents memorization

Numerics Illustrating Theorem 29 / 31



Table of Contents

1 Diffusion Model Methodology

2 Main Theorem on Memorization

3 Analysis Underlying Theorem

4 Numerics Illustrating Theorem

5 Conclusions

Conclusions 30 / 31



Summary and Outlook

Main ideas

▶ Empirical score function has closed form expression
▶ Limit points of dynamics with empirical score contain data and Voronoi boundaries
▶ Dynamics converge exponentially fast to training data

Future work

▶ Dynamics with regularized score functions
▶ Explicit regularization for conditioning
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Similar Behaviour with Conditioning

Consider variance exploding process dxt =
√

g(t)dwt , xt |x0 ∼ N (x0;σ
2(t))

Note that diffusion is in x with y fixed

Optimal empirical score for conditional distributions p(x0|y) (Gu et al., 2023)

s∗ ∈ argmin
s

∫ T

0
E|s(x, y, t)−∇x log p(x, t|x0)|2dt

For p0 = 1
N
∑N

i=1 δ(xi
0,y

i ) with paired samples {xi
0, y

i} ∼ p(x0, y), the minimizer is

s∗(x, y∗, t) = −
1
σ2(t)

∑
i :yi=y∗

(x− xi
0)wi(x, t),

with normalized weights wi(x, t) ∝ exp
(
− |x−xi

0|2
2σ2(t)

)
Takeaway:
▶ Empirical score has the same form as for unconditioned settings
▶ We will focus on the unconditioned setting today
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Main Idea Behind Set Invariance
1. For points on the boundary y ∈ ∂V δ(xi

0) ∩ B(0,R)

and neighboring points xj
0,〈

xi
0 − y, xi

0 − xj
0

〉
≥ α > 0

2. After sufficient time, the weights for y ∈ V δ(xi
0) are

wi(y, s) ≈ 1, wℓ(y, s) ≈ 0

3. The nonlinear part of dynamics behave similar to xi
0∣∣xi

0 − yN(y, s)
∣∣ ≤ |1− wi(y, s)||xi

0|+
∑
ℓ̸=i

|wℓ(y, s)||xℓ0|

≤
α

2maxj ,k |xj
0 − xk |

y

xi − y
xi − xj

xk

xl

xm

xn

xo

xp

xj

xi

4. Inner product of the dynamics with boundary faces xi
0 − xj

0 is bounded from below〈
dy
ds
, xi

0 − xj
0

〉
=

〈
xi
0 − y, xi

0 − xj
0

〉
+
〈
yN(y, s)− xi

0, x
i
0 − xj

0

〉
≥

〈
xi
0 − y, xi

0 − xj
0

〉
− |

〈
yN(y, s)− xi

0, x
i
0 − xj

0

〉
| ≥ α/2 > 0
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