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Task of generative modeling

Setting: Collect i.i.d. samples {xg}f\’zl (e.g., images, text) from probability distribution pg

Goal: Generate new samples from pg that are not present in the training dataset
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Diffusion Models Generate High-Quality Images

Machine learning: Prompt-to-image models (Ramesh et al., 2022)
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But Diffusion Models Can Lack Diversity

Memorizing training data (Carlini et al., 2023)

Training Set Generated Image
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Generative Modeling by Learning Score Functions

» Forward process adds noise to map data to noiseat t = T

» Reverse process converts Gaussian noise to data at t =0

Forward SDE (data — n0|se)
dx = f(x,t)dt + g(t 4)@
s?: 1un;in o o -
dx = 1.~ (07 o) + o) @

Reverse SDE (noise — data)
[Song etal., 2021]
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Generative Modeling by Learning Score Functions

» Forward process adds noise to map data to noiseat t = T

» Reverse process converts Gaussian noise to data at t =0

Forward SDE (data — n0|se)
dx = f(x,t)dt + g(t 4)@
s“co 1unc;in o R
dx = 1.~ (07 o) + o) @

Reverse SDE (noise — data)
[Song etal., 2021]

Key ldeas:
» Diffusions rely on the score Vy log p(x, t) of the forward process for each t
» |n practice, the data distribution is prescribed by samples, i.e., pg = % Z,Nzl 6X6
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Learning Score Functions From Data

Goal: Learn the score of p(x, t) = [ p(x, t|xo)dpo(xo) for each t
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Learning Score Functions From Data

Goal: Learn the score of p(x, t) = [ p(x, t|xo)dpo(xo) for each t

Approach: Denoising score-matching (Vincent, 2011)

S

-
arg min / Eyx|s(x, t) — Vy log p(x, t)|?dt
0

T
=arg min / E(x,x0)|5(x- t) — Vx |ng(X, t|X0)|2dt +C
S 0 N~

~
Does not explicitly depend on the data density
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Learning Score Functions From Data

Goal: Learn the score of p(x, t) = [ p(x, t|xo)dpo(xo) for each t

Approach: Denoising score-matching (Vincent, 2011)

S

-
arg min / Eyx|s(x, t) — Vy log p(x, t)|?dt
0

T
=arg min / E(X,X0)|S(X' t) — Vx |ng(X, t|X0)|2dt +C
s 0 N~

~
Does not explicitly depend on the data density

Recipe for sampling:

© Given data {x{}", ~ po, learn score
T .
s* € arg min/ " E Ex|s(x, t) — Vxlog p(x, t|xq)| dt
s 70 i

© Simulate the reverse process to generate new data
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Example for Score Learning

Variance exploding forward process: dx = /g(t)dw
» Conditional distribution: p(x, t|xo) = N (x; X0, 02(t)/q) for o2(t) = [ g(s)ds

_ X—Xp

» Score function: Vlog p(x, t|xo) = o200
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Example for Score Learning

Variance exploding forward process: dx = /g(t)dw
» Conditional distribution: p(x, t|xo) = N (x; X0, 02(t)/q) for o2(t) = [ g(s)ds

_ X—Xp

» Score function: Vlog p(x, t|xo) = o200

Learning problem:

x_
a?(

2
s(x, t) + dt

* . T 1 -
s* € argmin —ZEX
s o M

X0
t)
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Example for Score Learning

Variance exploding forward process: dx = /g(t)dw
» Conditional distribution: p(x, t|xo) = N (x; X0, 02(t)/q) for o2(t) = [ g(s)ds

_ X—Xp

» Score function: Vlog p(x, t|xo) = o200

Learning problem:

i2
X—XO
o?(t)

s(x, t) + dt

* . T 1 -
s* € argmin —ZEX
s o M

Reverse process:
» Reverse-time SDE

dx = —g(t)s*(x, t)dt + \/g(t)dw, x(T) ~N(0,0%(T)ly)

» Reverse-time ODE

X I, (T~ N0
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How Does Memorization Arise?

Consider variance exploding process dx; = \/g(t)dwy, x¢|xo ~ N(xo; 02(t))

Optimal empirical score (Gu et al., 2023; Scarvelis, Borde, and Solomon, 2023)

For pg = ﬁ vazl 5X6' the optimal score is

N
1 :
s*(x, t) = ———— x — xp)w;(x, t),
(x.0) = gy (= 6w, 1
where w;(x, t) € [0, 1] are normalized Gaussian weights

' . \Z/,‘(X, t) ~ R _‘X_Xé)‘z
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How Does Memorization Arise?

Consider variance exploding process dx; = \/g(t)dwy, x¢|xo ~ N(xo; 02(t))

Optimal empirical score (Gu et al., 2023; Scarvelis, Borde, and Solomon, 2023)

For pg = ﬁ vazl 5X6' the optimal score is

s*(x, t) t)z X—XO)W,(X t),
where w;(x, t) € [0, 1] are normalized Gaussian weights
i (x, ) i x - xp[2
wilx,t) = =y~ We(x, t) = exp <——
: SOV (x, t) 202(t)

Takeaway: The optimal score contains all of the training samples
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Limiting Behaviour of the Empirical Score

> For x near x}, weights collapse w;(x, t) — 1, wy(x, t) — 0 for £ # i and score is

R — xh
a3(t)’

» Behavior depends on the Voronoi partitioning into cells of nearest data points

s*(x, t) — t—0.

V(xh) = {x e RYs.t. [x —x{| < |x —x§|,£ # i}
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Limiting Behaviour of the Empirical Score

> For x near x}, weights collapse w;(x, t) — 1, wy(x, t) — 0 for £ # i and score is

R — xh
a3(t)’

» Behavior depends on the Voronoi partitioning into cells of nearest data points

t— 0.

s*(x, t) —

V(xh) = {x e RYs.t. [x —x{| < |x —x§|,£ # i}

30

True score — Gaussian mixture score
®  Training data — Limiting score

20+

-104

-20

-1 0 1 2 3

Rescaled score function and Voronoi partitioning for x}, ~ A(0, 1)
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Reverse-Time Dynamical System

Recall: Variance exploding process dx = /g(t)dw
Today we will consider g(t) = 2t, t € [0, 1] but results generalize to other g(t)
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Reverse-Time Dynamical System

Recall: Variance exploding process dx = /g(t)dw
Today we will consider g(t) = 2t, t € [0, 1] but results generalize to other g(t)

Reverse ODE:
> Integrate x backward-in-time starting from x(1) ~ N(0, /)

N
% = —g(zt)s*(x, t) = %(x —xn(x, 1)), xn(x, t) = IZ:;XBW,'(X, t)
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Reverse-Time Dynamical System

Recall: Variance exploding process dx = /g(t)dw
Today we will consider g(t) = 2t, t € [0, 1] but results generalize to other g(t)

Reverse ODE:
> Integrate x backward-in-time starting from x(1) ~ N(0, /)

ax _ 9(1)

N
e (x,t) = %(x —xn(x, t)), xn(x, t) = iz_;xgw,'(x, t)

Change of variables: s = —log(t)
> integrate y(s) = x(e~*) forward-in-time starting from y(0) ~ A/ (0, /)

N
Dy vlns) =Y xhwily. e )
i=1
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Limiting Behaviour

Limit Points: For any initial condition y(0), there are sequences (sk)ken so that

lim y(sx) =y

Sk—>00
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Limiting Behaviour

Limit Points: For any initial condition y(0), there are sequences (sk)ken so that

lim y(sx) =y

Sk—>00

Main Theorem (Baptista et al., 2025)

The limit points y* are attained at one the data points x{) or on the boundaries of the Voronoi
tesselation {OV/(x5)}Y
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Limiting Behaviour

Limit Points: For any initial condition y(0), there are sequences (sx)ken so that

(sk) =y

lim y
Sk—r00

Main Theorem (Baptista et al., 2025)

The limit points y* are attained at one the data points x{) or on the boundaries of the Voronoi
tesselation {OV/(x5)}Y

Corollary: Exponential Convergence (Baptista et al., 2025)
When the limit point is y* = xé for some i, then for all s > s*

ly(s) —y*| < Ke™®,

for constant K depending on the data pg and initial condition

Main Theorem on Memorization 15 / 31
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Reverse-Time Dynamical System

Lemma: Dynamics live in compact sets

< i
ly(s)| < max<|y(0)|, lrSn’_aSXN |x0|), Vs

Takeaway: We can extract limit points y* = supscg, y(s) from convergent subsequences

*e B(0,R R = J
y" € B(0.R), lgn%XN|Xo|
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Reverse-Time Dynamical System
Lemma: Dynamics live in compact sets

< i
ly(s)| < max<|y(0)|, 12%XN |x0|), Vs

Takeaway: We can extract limit points y* = supscg, Y(s) from convergent subsequences

*e B(0,R R = J
y" € B(0.R), 12%)(/\/')(0'

Lemma: Voronoi cells are invariant

For each § > 0 separation from the boundary, consider subset V9 of each Voronoi cell
VO(xh) = {x € RY, |x — xb| < |x —x§| — 0,£ # i}
If y(s*) € VO(x})) N B(0, R) for some time s*(N, R, §), then
y(s) € VO(x)). Vs > s*
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Collapse Onto the Data Points

Main idea: dynamics are approximately linear within Voronoi cell

d<vd—o> _ % — —(y—yn(y.5))
=—(y —x}) — (x5 — yn(y.5))
~—(y— xi)
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Collapse Onto the Data Points

Main idea: dynamics are approximately linear within Voronoi cell

d<vd—o> _ % — —(y—yn(y.5))
=—(y —x}) — (x5 — yn(y.5))
~—(y— xi)

Reasons: From cell invariance, the weights w;(y, s) oc exp(—e®*|y — xh|?) for y € V9(x}) are

Wf(yi S) ~ 11 We(y, S) ~0
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Collapse Onto the Data Points

Main idea: dynamics are approximately linear within Voronoi cell

dly —xp) _ dy

ds ds ~y—yn(y.s))

=—(y-— x;)) — (xo — yn(y.5))

Reasons: From cell invariance, the weights w;(y, s) oc exp(—e®*|y — xh|?) for y € V9(x}) are

Wf(yi S) ~ 11 We(y, S) ~0

The nonlinear part of dynamics is small:

o —yn(y.s) = (1= wi(y, s))x5 + Y _ we(y, s)x6 ~ 0
i
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Collapse Onto the Data Points

Main idea: dynamics are approximately linear within Voronoi cell

dly —xp) _ dy

ds ds ~y—yn(y.s))

=—(y-— x;)) — (xo — yn(y.5))

Reasons: From cell invariance, the weights w;(y, s) oc exp(—e®*|y — xh|?) for y € V9(x}) are

Wf(yi S) ~ 11 We(y, S) ~0

The nonlinear part of dynamics is small:

o —yn(y.s) = (1= wi(y, s))x5 + Y _ we(y, s)x6 ~ 0
i

Takeaway: Exponential convergence within Voronoi cell V/(x})

ly(s) — xb| < Ke™, for all s > s*

Analysis Underlying Theorem 18 /31



Table of Contents

@ Numerics lllustrating Theorem

Numerics lllustrating Theorem 19 /31



Data with Voronoi Tesslations

Data: N =20 i.i.d. samples from N(0, k)
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ODE Dynamics with Voronoi Tesselations

Integrate ODE with empirical score using N = 20 i.i.d. samples from N(0, )

Numerics lllustrating Theorem 21 /31



ODE Dynamics with Voronoi Tesselations

Integrate ODE with empirical score using N = 20 i.i.d. samples from N(0, )

Takeaway: Dynamics cross boundaries and explore before change in direction and collapse
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Fast Convergence

» Measured the Euclidean distance of each trajectory to its limit point

» Dynamics match the expected exponential convergence rate

ly(s) — "2

00 25 50 75 100 125 150
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Trajectories Can Remain On Hyper-Planes

» Trajectories of the ODE starting from initial conditions along a square around data
» Most trajectories collapse onto the N = 2 data points (red)
» Some trajectories remain on Voronoi boundaries

A

RN

NN

R
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Explicit Regularization

Tikhonov-regularized score matching problem:
T
Steg € g min/ Els(x, t) — Vlog p(x, t)]> + ¥*(t)E|s(x, t)[>dt.
0

S

» Objective can also be minimized via denoising score matching
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Explicit Regularization

Tikhonov-regularized score matching problem:

-
Steg € g min/0 Els(x, t) — Vlog p(x, t)]> + ¥*(t)E|s(x, t)[>dt.

S
» Objective can also be minimized via denoising score matching

Optimal regularized score function

For empirical pg with ¥2(t)a?(t) = c, the score is
N

Z(x — x{))w,-(x, t)

i=1

1

*
)=
St =~y e

The score remains bounded:

v i
shg(x 1) = —(x=xp)

,ast—0
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Memorization Versus Regularization using Tikhonov

» Evaluated the fraction of 2000 generated samples x(0) that match the data samples

» Compared different regularization parameters ¢ € [10*5, 10*1]

< S S o =
o =~ = o0 o
’ ;

Fraction of samples matching data

o
o

1077 104 103 102 10!
Regularization parameter, ¢
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Memorization Versus Regularization using Tikhonov

» Evaluated the fraction of 2000 generated samples x(0) that match the data samples

» Compared different regularization parameters ¢ € [10*5, 10*1]

< S S o =
o =~ = o0 o
’ ;

Fraction of samples matching data

o
o

1077 104 103 102 10!
Regularization parameter, ¢

Takeaway: Increasing Tikhonov regularization on Gaussian mixture prevents memorization
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Regularization and Learned Score using Tikhonov

¢ =0.001 c=0.01

—— GMM score
Learned score

—— GMM score
Learned score

10°
= el
= =
= =
E2l E; 10°
=y =3

10! 10!

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time-dependence of the learned score function s(x*, t) at fixed

Numerics lllustrating Theorem

c=0.1
—— GMM score
Learned score
L
?103
>
10!
0.0 0.2 0.4 0.6 0.8 1.0
x* (disjoint from the data)
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Regularization and Learned Score using Tikhonov

c=10.001 c =0.01 c=0.1

—— GMM score
Learned score

—— GMM score —— GMM score
Learned score

Learned score

S

[V, log p(a*,t)|2
=)

=
2
Y
13 )3
10* 10
=2

[V logp(a*, t)]2

10! 10!

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time-dependence of the learned score function s(x*, t) at fixed x* (disjoint from the data)

Takeaway: Increasing Tikhonov regularization reduces singular behaviour in Gaussian mixture
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Memorization Versus Regularization using Neural Networks

» Parameterized the score using a three-layer feedforward NN

> Evaluated the effect of increasing training iterations and model parameters (NN width)

1.0

Fraction of samples matching data

Numerics lllustrating Theorem

101

10°
Number of training epochs

—
fe=l

Fraction of samples matching data

=
[

=
<)

=
P

=
o

10!

102
Network width

10°
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Memorization Versus Regularization using Neural Networks

» Parameterized the score using a three-layer feedforward NN

> Evaluated the effect of increasing training iterations and model parameters (NN width)

% 1.0 % 1.0

o ©

208 20.81

g g

© ©

Eos E 0.61

3 ]

a [=%

£ £

304 3 0.44

5 s

c f=4

o

= 0.2 2 ]

g ( E 0.2

i i

101 10° 10! 10? 10°
Number of training epochs Network width

Takeaway: Early stopping in training and under-parameterization avoids memorization
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Collapse Is Observed With Images

Imaging example:
» Learned score function using EDM model (Karras et al., 2022) with U-Net architecture
» Training set of N = 2 images of small squares embedded in empty background

» Generated samples after each epoch with fixed noise process

2k epochs

Training data
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Imaging example:
» Learned score function using EDM model (Karras et al., 2022) with U-Net architecture
» Training set of N = 2 images of small squares embedded in empty background
» Generated samples after each epoch with fixed noise process

6k epochs

Training data
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Imaging example:
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Imaging example:
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Collapse Is Observed With Images

Imaging example:
» Learned score function using EDM model (Karras et al., 2022) with U-Net architecture
» Training set of N = 2 images of small squares embedded in empty background
» Generated samples after each epoch with fixed noise process
50k epochs

Training data
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Collapse Is Observed With Images

Imaging example:
» Learned score function using EDM model (Karras et al., 2022) with U-Net architecture
» Training set of N = 2 images of small squares embedded in empty background
» Generated samples after each epoch with fixed noise process
50k epochs

Training data

Takeaway: Early stopping of training is one way to prevent data collapse
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Collapse Is Observed With Images

o 1.0
5
20.81
-=
[)
s
E 0.6
2 57017
£ 4] —— 229705
< —— 880097
° —— 3498045
£ 0.2 —— 13952807
£ - 55725825

0.0 : , , :

0 10000 20000 30000 40000 50000

Optimization steps

—
o

o
o

Fraction of samples matching data

0.0
0

=
0

<
>

=
=

222705
880097
3498945
13952897
55725825

10000

20000 30000
Optimization steps

40000 50000

Fraction of memorized samples. Legend indicates number of parameters in a U-Net model for the score.
The left plot uses N = 2 training samples while the right plot uses N = 8.

Takeaway: Using fewer model parameters also prevents memorization

Numerics lllustrating Theorem
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Summary and Outlook

» Empirical score function has closed form expression
» Limit points of dynamics with empirical score contain data and Voronoi boundaries
» Dynamics converge exponentially fast to training data

» Dynamics with regularized score functions

» Explicit regularization for conditioning
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Summary and Outlook

» Empirical score function has closed form expression
» Limit points of dynamics with empirical score contain data and Voronoi boundaries
» Dynamics converge exponentially fast to training data

» Dynamics with regularized score functions

» Explicit regularization for conditioning

Thank You for your attention
Supported by AFOSR, DoD and von Karman Instructorship
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Similar Behaviour with Conditioning

Consider variance exploding process dx: = 1/g(t)dw;, x¢|xo ~ N(xo; 02(t))
Note that diffusion is in x with y fixed

Optimal empirical score for conditional distributions p(xo|y) (Gu et al., 2023)

-
s* € arg min/ E|s(x,y, t) — Vyxlog p(x, t|xo)|?dt
s Jo
For po = & SV 8(x y7) With paired samples {xg,y’} ~ p(xo,y), the minimizer is

s(x, ¥y t) = Z(x Dywi(x, t),

Iyl

iR
with normalized weights w;(x, t) o exp(—'é—a%)

Takeaway:
» Empirical score has the same form as for unconditioned settings

» We will focus on the unconditioned setting today
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Main Idea Behind Set Invariance

1. For points on the boundary y € oVo(xi) N B(0, R)
and neighboring points x{),

<x6—y,x6—x{)>2a>0

wi(y, s) =~ 1, wy(y, s) = 0
3. The nonlinear part of dynamics behave similar to x6

xh = yu(y. )| < 11— wily, x| + 3 [waly, ) x|
£

[0

< :
2 man’k |XJO — Xk|
4. Inner product of the dynamics with boundary faces xg - xg is bounded from below

RS

> <x6 — ¥, X —X{)> - |<yN(Yv5)_X61X6_x{)>| >a/2>0
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