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Global operators in scientific computing

A key challenge in scientific computing is that many of the operators we seek to model
computationally are global in the sense that every point in the domain talks to every
other point. In consequence, they need to be represented as dense matrices.

Examples:
• Solution operators of elliptic PDEs.
• Boundary-to-boundary operators (e.g. Dirichlet-to-Neumann).
• Time-evolution operators of parabolic PDEs.
• Scattering matrices for many wave propagation problems.
• Schur complements in sparse direct solvers.

Classical methods:
• Methods for applying global operators rapidly are well established in specialized

cases (FFT, Fast Multipole Methods etc). Methods exist for more general operators,
but this remains a topic of research (e.g. H-matrices, randomized compression).

• Techniques for inverting, factorizing, exponentiating, . . . such operators exist, with
progress ongoing. “Fast Direct Solvers”.



Global operators in scientific computing

A key challenge in scientific computing is that many of the operators we seek to model
computationally are global in the sense that every point in the domain talks to every
other point. In consequence, they need to be represented as dense matrices.

Examples:
• Solution operators of elliptic PDEs.
• Boundary-to-boundary operators (e.g. Dirichlet-to-Neumann).
• Time-evolution operators of parabolic PDEs.
• Scattering matrices for many wave propagation problems.
• Schur complements in sparse direct solvers.

Possible connections to Machine Learning:
• Exploit the knowledge we have about multiresolution representations of linear

operators to find effective ways to represent global operators in ML models.
• Extend existing capabilities to non-linear problems.
• Provide compressed representations (“reduced models”) for linear sub systems in

multiscale or multiphysics simulations.



Global operators in scientific computing

A key challenge in scientific computing is that many of the operators we seek to model
computationally are global in the sense that every point in the domain talks to every
other point. In consequence, they need to be represented as dense matrices.

Examples:
• Solution operators of elliptic PDEs.
• Boundary-to-boundary operators (e.g. Dirichlet-to-Neumann).
• Time-evolution operators of parabolic PDEs.
• Scattering matrices for many wave propagation problems.
• Schur complements in sparse direct solvers.

Objectives of this talk:
• Describe key properties of global operators of mathematical physics.
• Review key ideas from the classical literature (FMM, H-matrices, etc).
• Describe recent work on randomized algorithms for efficiently computing

compressed representations of global operators. “Operator learning”?
Starting point for discussions during the workshop. (No ML in this talk. . . )



Outline of talk

(1) The role of global operators in scientific computing.

(2) Interaction ranks – why are they small?

(3) Introduction to rank structured matrices.

(4) Randomized method for compressing global operators.



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Examples of problems:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Examples of problems:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Standard numerical recipe for (BVP): (1) Discretize via FD/FEM. (2) Iterative solver.
Our point of interest: The solution operator for (BVP).



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Linear solution operators: As a warmup, let us consider the Poisson equation

−∆u(x) = g(x) x ∈ R2

(with suitable decay conditions at infinity to ensure uniqueness). The solution is given by

(SLN) u(x) =
∫
R2

ϕ(x − y)g(y)dy , x ∈ R2.

where the “fundamental solution” of the Laplace operator −∆ on R2 is defined by

ϕ(x) = − 1
2π log |x|.

In principle very simple. Numerically non-trivial, however: The operator is global, so
discretizing it leads to a dense matrix. (There is also the singular kernel to worry about!)



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Linear solution operators: A general solution operator for (BVP) takes the form

(SLN) u(x) =
∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω,

where G and F are two kernel functions that depend on A, B, and Ω.

Good: The operators in (SLN) are friendly and nice.
Bounded, smoothing, often fairly stable, etc.

Bad: The kernels G and F in (SLN) are generally unknown.
(Other than in trivial cases — constant coefficients and very simple domains.)

Bad: The operators in (SLN) are global.
Dense matrices upon discretization. O(N2) cost? O(N3) cost?



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Recurring idea: Upon discretization,
(SLN) leads to a matrix with off-diagonal
blocks of low numerical rank.

This property can be exploited to attain
linear or close to linear complexity for
operations such as matrix-vector multi-
ply, matrix-matrix multiply, LU factoriza-
tion, matrix inversion, forming of Schur
complements, etc.

All gray blocks have low rank.



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

Strong connections to Calderón-Zygmund theory for singular integral operators.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H2-matrices (Hackbusch et al); Hierarchically Block Separable matrices; Hierarchically Semi Separable

matrices (Xia et al); HODLR matrices (Darve et al); BLR matrices (Buttari, Amestoy, Mary, . . . ); . . .



Example: Solution operator to an elliptic PDE
Consider a linear boundary value problem of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain (2D or 3D) with boundary Γ, and where A is a linear elliptic
differential operator; possibly with variable coefficients.

In real life, tessellation patterns of rank structured matrices tend to be more complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572



Example: Boundary integral equation

Recall that many boundary value problems can ad-
vantageously be recast as boundary integral equa-
tions. Consider, e.g., (sound-soft) acoustic scatter-
ing from a finite body:

(2)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The BVP (2) has an alternative mathematical formulation in the BIE

(3) − πiσ(x) +
∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |

|x − y |

)
σ(y)dS(y) = f (x), x ∈ ∂Ω.

The integral equation (3) has several advantages over the PDE (2), including:
• The domain of computation ∂Ω is finite.
• The domain of computation ∂Ω is 2D, while R3\Ω is 3D.
• Equation (3) is inherently well-conditioned (as a “2nd kind Fredholm equation”).

The integral operator (3) is global, and a matrix resulting from discretizing it is dense.
But both this matrix and its inverse are rank structured → O(N) solvers possible.



Example: Poincaré-Steklov operators (Dirichlet-to-Neumann, etc)

Consider a well posed linear boundary value problem

(BVP)

Au(x) = 0, x ∈ Ω,

Bu(x) = f (x), x ∈ Γ.

For x ∈ Γ, let n(x) denote the normal derivative of the solution u at x. Then the map

T : f 7→ n

is known as the Dirichlet-to-Neumann (DtN) map.

The DtN is a powerful tool in many areas of scientific computing:
• It provides a compressed representation that “hides” interior dynamics in a

subdomain from the rest of the model. A mathematically “ideal” reduced model.
• Essential tool for understanding domain decomposition methods.
• The basis of many methods for inverse problems where you seek to reconstruct

variable coefficients in A by observing input-output pairs.
• Etc etc.



Example: Poincaré-Steklov operators (Dirichlet-to-Neumann, etc)

Let us consider a boundary value problem with Dirichlet data on a rectangular domain Ω

partitioned into two subdomains Ω = Ωα ∪ Ωβ:

Γ1 Γ2Γ3Ωα Ωβ

We partition the boundary of Ω as ∂Ω = Γ1 ∪ Γ2, and let Γ3 denote the interior boundary.
We know the Dirichlet data f1 and f2 on Γ1 and Γ2, but we do not know it on the “artificial”
boundary Γ3. However, if we know the DtN maps Tα and Tβ for Ωα and Ωβ, then we can
decompose these as[

Tα
11 Tα

13
Tα

31 Tα
33

][
f1
f3

]
=

[
n1
nα3

]
and

[
Tβ

22 Tβ
23

Tβ
32 Tβ

33

][
f2
f3

]
=

[
n2
nβ3

]
where nα3 and nβ3 represent the boundary fluxes through Γ3 from Ωα and Ωβ, respectively.
Since nα3 + nβ3 = 0, we can now form an equation for the unknown quantity f3 as(

Tα
33 + Tβ

33
)
f3 = −Tα

31f1 − Tβ
32f2.



Example: Poincaré-Steklov operators (Dirichlet-to-Neumann, etc)

Illustration of how the DtN map can be used to weld together six subdomains in a
domain decomposition problem.

Γ1 Γ4 Γ7

Γ3 Γ6

Γ2 Γ5

The domain. The sparsity pattern of the linear system
that determines the Dirichlet data on the
interior boundaries {Γi}7i=1.



Example: Poincaré-Steklov operators (Dirichlet-to-Neumann, etc)

Consider the free space acoustic scattering problem
−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Introduce an artificial box Ω such that support(b) ⊆ Ω.

On Ω:
• Variable coefficient PDE.

On Ωc:
• Constant coefficient PDE.

• Discretize the PDE. • Use BIE.
• Build DtN for ∂Ω. • Build DtN for ∂Ωc.

Glue the domains together using the DtNs.
(Actually, impedance-to-impedance (ItI) maps are better.)

[Gillman, Barnett, Martinsson, 2015]



Example: Scattering operators

A scattering operator is the linear operator that maps an incoming wave to an scattered
field in acoustic or electromagnetic scattering problems.

Scattering operators are powerful tools for solving multibody scattering problems, as
they break a problem into smaller parts:

• A local computation is used to build a scattering operator for each individual body.
These computations are unconnected, so highly parallelizeable.

• Form a global system that uses the scattering matrices to describe how the bodies
talk to each.

The benefit is that the global system you form this way is far smaller than a global
system that fully resolves all individual scatters. (And often better conditioned too!)



Example: Scattering operators

A scattering operator is the linear operator that maps an incoming wave to an scattered
field in acoustic or electromagnetic scattering problems.

Example: Acoustic scattering on the exterior domain. Each bowl is about 5λ.

A hybrid direct/iterative solver is used (a highly accurate scattering matrix Si is computed for body i) to
form a global system

(4) q̃i + Sii

∑
j ̸=i

Aijq̃j

 = Siiṽi, i = 1,2, . . . , J,

On an office desktop, we achieved an accuracy of 10−5, in about 6h (essentially all the time is spent in
applying the inter-body interactions via the Fast Multipole Method). Accuracy 10−7 took 27h.

[2015, CAMWA, Hao/M./Young]



Example: Schur complements Consider a finite difference discretization on a square
resulting in a linear system Au = b. Let us partition the nodes into three sets as follows:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow construct A−1
11 and A−1

22 . Then

A =


I 0 0
0 I 0

A31A−1
11 A32A−1

22 I




A11 0 0
0 A22 0
0 0 S33




I 0 A−1
11 A13

0 I A−1
22 A23

0 0 I


where S33 = A33 − A31A−1

11 A13 − A32A−1
22 A23 is a Schur complement.

In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−1

11 . size ∼ N/2× N/2
• Invert A22 to form A−1

22 . size ∼ N/2× N/2
• Invert S33 = A33 − A31A−1

11 A13 − A32A−1
22 A23. size ∼

√
N ×

√
N

Notice the obvious recursion!

Ω1 Ω2

Ω3
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Example: Schur complements

It is well known that the dense factorization of the largest Schur complements is the
dominant cost in sparse LU factorization.

For problems in 2D, the asymptotic flop count is O(N1.5).

For problems in 3D, the asymptotic flop count is O(N2).



Example: Schur complements

It is well known that the dense factorization of the largest Schur complements is the
dominant cost in sparse LU factorization.

For problems in 2D, the asymptotic flop count is O(N1.5).

For problems in 3D, the asymptotic flop count is O(N2).

Assertion: These Schur complements very often behave like discretizated integral
operators. (E.g. Dirichlet-to-Neumann.)

They are rank-structured, and are amenable to “fast” matrix algebra. Exploiting this, the
complexity of sparse direct solvers for elliptic PDEs has in the past 10 – 20 years been
decreased dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N



Example: Schur complements

It is well known that the dense factorization of the largest Schur complements is the
dominant cost in sparse LU factorization.

For problems in 2D, the asymptotic flop count is O(N1.5).

For problems in 3D, the asymptotic flop count is O(N2).

Nested dissection solvers with O(N) complexity — Le Borne, Grasedyck, & Kriemann
(2007), Martinsson (2009), J. Xia, Chandrasekaran, Gu, & Li (2009), Gillman &
Martinsson (2011), Schmitz & L. Ying (2012), Darve & Ambikasaran (2013), Ho & Ying
(2015), Amestoy, Ashcraft, et al (2015), Oseledets & Suchnikova (2015), etc.
O(N) direct solvers for integral equations were developed by Martinsson & Rokhlin
(2005), Greengard, Gueyffier, Martinsson, & Rokhlin (2009), Gillman, Young, &
Martinsson (2012), Ho & Greengard (2012), Ho & Ying (2015). Work in 1990’s Y. Chen,
P. Starr, V. Rokhlin, L. Greengard, E. Michielssen. Related to work on H and H2 matrix
methods (1998 and forwards) by Börm, Bebendorf, Hackbusch, Khoromskij, Sauter, etc.



Example: Schur complements

It is well known that the dense factorization of the largest Schur complements is the
dominant cost in sparse LU factorization.

For problems in 2D, the asymptotic flop count is O(N1.5).

For problems in 3D, the asymptotic flop count is O(N2).

Note: Complexity is not O(N) if the nr. of “points-per-wavelength” is fixed as N →∞.
This limits direct solvers to problems of size a couple hundreds of wave-lengths or so.

More complicated rank-structured formats — “butterfly matrices” — offer promise here,
and initial results show great promise.



Outline of talk

(1) The role of global operators in scientific computing.

(2) Interaction ranks – why are they small?

(3) Introduction to rank structured matrices.

(4) Randomized method for compressing global operators.



Interaction ranks: Why are they small?

We have claimed that a wide range of global operators that arise in scientific computing
have rank structure. Specifically, the claim is that the numerical rank of interaction
between two subdomains that are separated in space is low.

Why is this the case?

(One) Answer: It is a consequence of the smoothing effect of elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:
• Rapid convergence of multipole expansions when the region of sources is far away

from the observation point.
• The St Venant principle in mechanics.
• The inaccuracy of imaging at sub-wavelength scales.
• The intractability of solving the heat equation backwards.

Caveat: High-frequency problems present difficulties — no loss of information for
length-scales > λ. Extreme accuracy of optics, high-frequency imaging, etc.
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Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +
∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +
∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The kernels are derived from the corresponding fundamental solutions:

s(x,y) =ϕ(x − y),
d(x,y) =∂n(y)ϕ(x − y),

sκ(x,y) =ϕκ(x − y),
dκ(x,y) =∂n(y)ϕκ(x − y),

where, as before,

ϕ(x) =− 1
2π log |x|,

ϕκ(x) =
i
4H(1)

0 (κ|x|).



Interaction ranks: Boundary integral equations
Let us consider two simple boundary integral equations on a boundary Γ:
The first is a reformulation of a Dirichlet problem involving the Laplace equation:

ασ(x) +
∫
Γ

(
d(x,y) + s(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

The second is a reformulation of a Dirichlet problem involving the Helmholtz equation:

βσ(x) +
∫
Γ

(
dκ(x,y) + iκsκ(x,y)

)
σ(y)ds(y) = f (x), x ∈ Γ.

Let A denote the matrix resulting from discretization of either BIE.

On the next slide, we show the singular values of the off-diagonal block A23.



Interaction ranks: Boundary integral equations
The ranks of an off-diagonal block of A:
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This is all as expected. Somewhat accessible by analysis.

Now the fun part! We set B = A−1, and plot the svds of the off-diagonal block B23.
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(Observe ill-conditioning due to close resonances for the Helmholtz BIE.)
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Remarkable similarity!
(Observe ill-conditioning due to close resonances for the Helmholtz BIE.)



Interaction ranks: Stiffness matrix from finite difference discretization
Recall our example of Laplace’s equation discretized using the 5-point stencil.

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

We build the Schur complement S = A33 − A31A−1
11 A13 − A32A−1

22 A23.
Then split the Schur complement into four parts:

Iα

Iβ

S =
Sαα Sαβ

SββSβα

We explore the svds of Sαβ — encoding interactions between Iα and Iβ.
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Singular values of Sαβ for an 80× 80 grid.
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Interaction ranks: Stiffness matrix from finite difference discretization

Let us try a few different PDEs, and different problem sizes:

Note: The rank decay property is remarkably stable!
Note: The decay continues to ϵmach — regardless of the discretization errors!



Interaction ranks: Stiffness matrix from finite difference discretization

Next, let us consider Helmholtz problems with increasing wave numbers.

Fast decay once oscillations are resolved.
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Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The geometry.
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The singular values.



Interaction ranks: Stiffness matrix from finite difference discretization

Finally, let us consider the analogous 3D problem.

The singular values.

If you make similar plots for Dirichlet-to-Neumann operators, or other Poincaré-Steklov
operators, the general behavior will be the same.



Outline of talk

(1) The role of global operators in scientific computing.

(2) Interaction ranks – why are they small?

(3) Introduction to rank structured matrices.

(4) Randomized method for compressing global operators.



The Fast Multipole Method

A classical method that exploits the rank deficiency of long range interaction is the Fast
Multipole Method, which is an O(N) algorithm for evaluating sums of the form

u = A q
N × 1 N × N N × 1

or, equivalently,

ui =
J∑

j=1
A(i, j)qj, i = 1,2, . . . ,N,

where q is a vector of sources, where u is a vector of potentials, and where A is a
(dense) kernel matrix of the form

A(i, j) = ϕ(xi − xj)

for some set of source locations {xi}Ni=1. The function ϕ is a fundamental solution of one
of the standard elliptic PDEs of mathematical physics. For instance (2D Laplace),

ϕ(x) = − 1
2π log |x|.

The key to the FMM is that the function ϕ is to high precision separable when the source
points and the target points are well separated.



The Fast Multipole Method

Illustration: Consider a simplified summation problem

ui =
n∑

j=1
ϕ(xi − yj)qj, i = 1,2, . . . ,m

where the source locations {yj}nj=1 are well separated from the target locations {xi}mi=1:

Source locations {yj}nj=1 Target locations {xi}mi=1

Ωs Ωt

A classical multipole expansion shows that the kernel is approximately separable:

ϕ(x − y) =
P∑

p=1
Bp(x)Cp(y) + O

(
(
√

2/3)P
)

This means that the sum can be evaluated in ∼ P(M + N) flops rather than ∼ MN flops.
(Multiplication by a matrix of rank P, instead of multiplication by a dense matrix.)



The Fast Multipole Method

For the “real” problem where the sources and the target sets are the same, a quadtree of
boxes is introduced, and then a hierarchical algorithm is deployed:

Image credit: Rio Yokota — https://www.bu.edu/pasi/courses/12-steps-to-having-a-fast-multipole-method-on-gpus/



Instead of describing the details of the FMM, let us tell the story from the point of view of
algebra of rank structured matrices, starting from the most basic problems.



Inversion of structured matrices: Tridiagonal
Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− u′′(x) + p(x)u′(x) + m(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n× n. Then A−1 is dense.

Sparsity pattern of A. Sparsity pattern of A−1.

A is tridiagonal. A−1 is semi-separable.

rank=1

rank=1

A is sparse. A−1 is data-sparse.
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Inversion of structured matrices: Tridiagonal
Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− u′′(x) + p(x)u′(x) + m(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n× n. Then A−1 is dense.

Fun facts:
• If A is invertible and tridiagonal, then A−1 is semi-separable (meaning that the upper

triangular and the lower triangular parts are restrictions of rank 1 matrices).
• If A is invertible and semi-separable, then A−1 is tridiagonal.
• Cost of storage is 3n− 2 floats in either case.
• Cost of inversion is O(n) in either case.

Note: LU factorization is more common: Factors L and U are each bidiagonal.
Note: Without preconditioning, an iterative method needs at least O(n) iterations.



Inversion of structured matrices: Semi-separable plus diagonal
Let us again consider a two point boundary value problem

(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data. Recall that when m = 0, we can solve (BVP) analytically:

u(x) =
∫ 1

0
G(x, y)g(y)dy,

where the Green’s function G (which is semi-separable!) takes the form

G(x, y) =


(b− x)(y − a)

b− a , when x ≥ y (on or below the diagonal),
(x − a)(b− y)

b− a , when x ≤ y (on or above the diagonal).

Multiply (BVP) by G(x, y) and integrate in y over [0,1] to get

u(x) +
∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],

where
h(x) =

∫ 1

0
G(x, y)g(y)dy.

Fact 1: The equation (BVP) is equivalent to

(IE) u(x) +
∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],
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Inversion of structured matrices: Semi-separable plus diagonal
Let us again consider a two point boundary value problem

(BVP) −u′′(y) + m(y)u(y) = g(y), y ∈ (0,1),

now with zero boundary data.
Fact 1: The equation (BVP) is equivalent to

(IE) u(x) +
∫ 1

0
G(x, y)m(y)u(y)dy = h(x), x ∈ [0,1],

where the Green’s function (which is semi-separable!) takes the form

G(x, y) =


(b− x)(y − a)

b− a , when x ≥ y (on or below the diagonal),
(x − a)(b− y)

b− a , when x ≤ y (on or above the diagonal).

Fact 2: Discretizing (IE) using a Nyström method with a uniform grid {xi}n+1
i=0 ⊂ [0,1]

and the basic Trapezoidal rule results in the linear system(
I + GM

)
u = Gg.

The n× n matrix G is semi-separable since it has entries

G(i, j) = h G(xi, xj).

The matrix M is the diagonal matrix whose diagonal entries are {m(xi)}ni=1.



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?
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Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?
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We considered a non-oscillatory problem “(non-osc)” where m(x) = 100(1 + x) cos(x)
and g(x) = 1 + cos(1 + x). We then swapped the sign of m (but kept everything else the
same) to get a problem with an oscillatory solution “(osc)”. The left plot shows the errors
incurred (in max norm), while the right one shows the condition numbers of the
coefficient matrices. The key point here is that the condition numbers of the integral
equation formulation does not grow with n. A secondary point is to show that elliptic
problems with oscillatory solutions are far more challenging.



Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?
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Note: For the IE, the condition number is small and constant!
(Fun fact: The two methods are mathematically equivalent – errors are identical!)
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The conversion to an IE is an example of “analytic preconditioning”.
You do the preconditioning mathematically, before you discretize.
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Inversion of structured matrices: Semi-separable plus diagonal
Observe that we introduced two different approaches for solving 2 point BVPs:

• Finite difference (FD) discretization → sparse linear system.
• Integral equation (IE) discretization → dense linear system.

How do the two methods compare?

What about computational costs?

Cost of computing an inverse is O(n) in either case!

We skip details for the “semi-separable plus diagonal” case, and instead go straight to a
more general class: HODLR.



Inversion of structured matrices: HODLR
Now let us consider a slightly more complex structure:

All gray blocks have low rank.

Let us start with a simple recursive inversion procedure.
The first step is to observe that if we tessellate A as follows

A =

[
A11 A12
A21 A22

]
then

• A12 and A21 each have low numerical rank,
• A11 and A22 each are HODLR themselves.

Note: “Semi-separable + diagonal” is a special case of HODLR.
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Now let us consider a slightly more complex structure:

All gray blocks have low rank.

Let us start with a simple recursive inversion procedure.
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then

• A12 and A21 each have low numerical rank,
• A11 and A22 each are HODLR themselves.

Note: “Semi-separable + diagonal” is a special case of HODLR.



Inversion of structured matrices: HODLR
We seek to invert a matrix A as shown. Each block is of size
n× n, and A12 and A21 have rank k < n.

A =

[
A11 A12
A21 A22

]

We first form low-rank factorizations of A12 and A21 so that

A12 = U1 B12 V∗2 and A21 = U2 B21 V∗1

Then we can write A in the form

A =

[
A11 0

0 A22

]
+

[
U1 0
0 U2

] [
0 B12

B21 0

] [
V∗1 0
0 V∗2

]
.

Applying the Woodbury formula, we get

A−1 =

[
A−1

11 0
0 A−1

22

]
+

[
A−1

11 U1 0
0 A−1

22 U2

] [
D̂1 B12
B21 D̂2

]−1 [
V∗1A−1

11 0
0 V∗2A−1

22

]
,

where D̂1 =
(
V∗1A−1

11 U1
)−1 and D̂2 =

(
V∗2A−1

22 U2
)−1.
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Inversion of structured matrices: HODLR
We seek to invert a matrix A as shown. Each block is of size
n× n, and A12 and A21 have rank k < n.

A =
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,

2n× 2n 2n× 2n 2n× 2k 2k × 2k 2k × 2n

where D̂1 =
(
V∗1A−1

11 U1
)−1 and D̂2 =

(
V∗2A−1

22 U2
)−1.

So to get A−1, we need to:
• Compute A−1

11 and A−1
22 . Two inverses of half the size.

• Form D̂1 and D̂2, and then invert
[

D̂1 B12
B21 D̂2

]
. This is a small (2k × 2k) matrix.

• Form various matrix-matrix products involving at least one “thin” matrix.
Obvious recursion! But: Rank growth.
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Inversion of structured matrices: HODLR

The recursive inversion formula for a HODLR matrix is conceptually simple.
But it is hard to code efficiently, and leads to growth of the numerical ranks.

Luckily, there are better options, including non-recursive exact formulas.
Let us consider a specific example:
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For every sibling pair {α, β} set

Aα,β = A(Iα, Iβ).

Fix a bound k on the rank, and a tol-
erance ε. We then require that each
off-diagonal block (in blue in the figure)
have ε-rank at most k. Define factors

Aα,β = Uα V∗β.
nα × nβ nα × k k × nβ
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Inversion of structured matrices: HODLR
To more formally define the HODLR format, we need to introduce a tree structure on the
index set I = [1, 2, 3, . . . , N].

Let A be an N × N matrix.

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N].

For a node τ in the tree, let Iτ denote the corresponding index vector.

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1
Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

For nodes σ and τ on the same level, set Aσ,τ = A(Iσ, Iτ ).



Inversion of structured matrices: HODLR



Inversion of structured matrices: HODLR
For our 3-level model problem, we will build A−1 in the form

A−1 = B0 B1 B2 B3,

where each Bℓ is block diagonal, with diagonal blocks that are rank-k perturbations of
the identity matrix. Consequently, each Bℓ can be applied to a vector in O(Nk) flops.

In the first step, we form a block diagonal matrix B3 whose diagonal blocks are the
inverses of the diagonal blocks of A. We then apply B3 to A, to form a matrix A3 = B3A
whose diagonal blocks are the identity matrix:

Observe that all the off-diagonal blocks in A3 still have rank at most k.
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Inversion of structured matrices: HODLR
In the second step, let D4, D5, D6, D7 denote the diagonal blocks of A3, as marked in
the figure below. Since each of these matrices are of the form “identity plus low rank”,
they can inexpensively be inverted. We put the inverses D−1

4 , D−1
5 , D−1

6 , D−1
7 into the

diagonal blocks of B2 and apply it to A3 to obtain

Observe again that the off-diagonal blocks of A2 all have rank at most k.



Inversion of structured matrices: HODLR
The third step:

The fourth and final step:



Inversion of structured matrices: HODLR
Once the process completes, we have obtained the factorization

I = B0A0 = B0B1A1 = B0B1B2A2 = B0B1B2B3A.

In other words,

where
“L” means “low rank”
“D” means “dense”

All updates are multiplicative.

Overall complexity is O(N(logN)2) for inversion.
Very fast in practice. (Numerical examples shortly.)

Next: Let us get rid of the log-factors!
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Let us generalize from a matrix with 2× 2 blocks to p× p :

Suppose A is a “block-separable” matrix consisting of p× p blocks of size n× n:

A =


D1 A12 A13 A14
A21 D2 A23 A24
A31 A32 D3 A34
A41 A42 A43 D4

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗j
n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n.

The critical part of the assumption is that all off-diagonal blocks in the i ’th row use the
same basis matrices Ui for their column spaces (and analogously all blocks in the j ’th
column use the same basis matrices Vj for their row spaces).



Recall A =


D1 U1 Ã12 V∗2 U1 Ã13 V∗3 U1 Ã14 V∗4

U2 Ã21 V∗1 D2 U2 Ã23 V∗3 U2 Ã24 V∗4
U3 Ã31 V∗1 U3 Ã32 V∗2 D3 U3 Ã34 V∗4
U4 Ã41 V∗1 U4 Ã42 V∗2 U4 Ã43 V∗3 D4

 .

Then A admits the factorization:

A =


U1

U2
U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24
Ã31 Ã32 0 Ã34
Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã


V∗1

V∗2
V∗3

V∗4


︸ ︷︷ ︸

=V∗

+


D1

D2
D3

D4


︸ ︷︷ ︸

=D
or

A = U Ã V∗ + D,
p n× p n p n× p k p k × p k p k × p n p n× p n



Lemma: [Variation of Woodbury] If an N × N matrix A admits the factorization
A = U Ã V∗ + D,

p n× p n p n× p k p k × p k p k × p n p n× p n

then
A−1 = E (Ã + D̂)−1 F∗ + G,

p n× p n p n× p k p k × p k p k × p n p n× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1 U

)−1
, E = D−1 U D̂, F = (D̂ V∗D−1)∗, G = D−1 − D−1 U D̂ V∗D−1.

Note: All matrices set in blue are block diagonal.



Before compression, we have a pn× pn linear system
p∑

j=1
Aijqj = fi, i = 1,2, . . . ,p.

After compression, we have a pk × pk linear system

Diiq̃i +
∑
i ̸=j

Ãijq̃j = f̃i, i = 1,2, . . . ,p.

Recall that k is the ε-rank of Ai,j for i ̸= j.
The point is that k < n.

The original 4n× 4n matrix.

The reduced 4k × 4k matrix.

The compression algorithm needs to execute the following steps:
• Compute Ui, Vi, Ãij so that Aij = Ui Ãij V∗j .

• Compute the new diagonal matrices D̂ii =
(
V∗i A−1

ii Ui
)−1.

• Compute the new loads q̃i = D̂ii V∗i A−1
ii qi.

For the algorithm to be efficient, it has to be able to carry out these steps locally.
To achieve this, we use interpolative decompositions, then Ãi,j = A(̃Ii, Ĩj).



The Interpolative Decomposition (ID):
Let B be an m× n matrix of (precise) rank k. Then B admits a factorization

B = U B(skel) V∗,
m× n m× k k × k k × n

where
1. B(skel) = B(Irow, Icol) is a submatrix of B
2. U and V both contain a k × k identity matrix.
3. No entry of U or V has magnitude greater than 1 (so U and V are well-conditioned).

How do you construct an ID in practice?
• Computing an ID that satisfies (3) is (in general) very hard.
• If we relax condition (3) slightly, and require only that, say, max

ij
|V(i, j)| ≤ 1.1, then it

can be done efficiently [1996, Gu & Eisenstat].
• In practice, simply performing Gram-Schmidt on the columns works great.
• When B has approximate rank k, the accuracy is excellent as long as the singular

values of B decay rapidly. (They do in our applications.)



We have built a scheme for reducing a system of size pn× pn to one of size pk × pk.

→

Important: The black blocks are submatrices. No need to compute them!

The computational gain is (k/n)3. Good, but not earth-shattering.

Question: How do we get to O(N)?

Answer: It turns out that the reduced matrix is itself compressible. Recurse!



A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress
Cluster Cluster



Formally, one can view this as a telescoping factorization of A:

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3).

Expressed pictorially, the factorization takes the form
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The inverse of A then takes the form

A−1 = E(3)(E(2)(E(1) D̂(0)
(F(1))∗ + D̂(1))

(F(2))∗ + D̂(2))
(V(3))∗ + D̂(3)

.

All matrices are block diagonal except D̂(0), which is small.

Important: The inversion is exact up to floating point arithmetic!
(When we move to strong admissibility, no such formulas exist.)



Note:

The formulas we use in this talk were chosen because they are particularly clean and
simple.

There is a slight reformulation of the scheme that is both more computationally efficient,
and more numerically stable. The key is to never form the diagonal blocks explicitly.
Recall:

D̂τ =
(
V∗A−1

τ Uτ
)−1

You can instead assemble just the “scattering matrix”

Sτ = V∗A−1
τ Uτ .

Chapter 18, “Fast Direct Solvers for Elliptic PDEs”, P.G. Martinsson, 2019



Inversion of an HBS matrix

loop over all levels, finer to coarser, ℓ = L, L− 1, . . . , 1
loop over all boxes τ on level ℓ,

if τ is a leaf node
X = Dτ

else
Let σ1 and σ2 denote the children of τ .

X =

[
Dσ1 Bσ1,σ2

Bσ2,σ1 Dσ2

]
end if
Dτ =

(
V∗τ X−1 Uτ

)−1.
Eτ = X−1 Uτ Dτ .
F∗τ = Dτ V∗τ X−1.
Gτ = X−1 − X−1 Uτ Dτ V∗τ X−1.

end loop
end loop

G1 =

[
D2 B2,3

B3,2 D3

]−1

.



Example: 2D Boundary integral equation for Helmholtz equation (HODLR)

The domain is about 20λ so ranks are now higher at the top levels.



Example: Lippmann-Schwinger With Abi Gopal
Consider the free space acoustic scattering problem

(9)


−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support in a domain Ω, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

In the figure, v = uin.



Example: Lippmann-Schwinger With Abi Gopal
Consider the free space acoustic scattering problem

(9)


−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support in a domain Ω, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Let us now use an integral equation formulation. It is well known that (9) has an
alternative formulation in the Lippmann-Schwinger integral equation

(10) σ(x) + κ2b(x)
∫
Ω
ϕκ(x − y)σ(y)dy = −κ2b(x)v(x), x ∈ Ω,

where ϕκ is the free space fundamental solution of the Helmholtz equation.

We discretize (7) using the trapezoidal rule on a uniform grid, with Duan-Rokhlin
quadrature corrections of order 10.



Example: Lippmann-Schwinger

The scattering potential κ = 50

κ = 201 κ = 804



Example: Lippmann-Schwinger
Fixed 10 points per wavelength.
Direct solver is run at accuracy 10−3 and used as a preconditioner.
Weak admissibility is used.

N κ Tbuild Tinv Tgmres mem iter res
6400 50.27 0.23 0.24 0.20 0.04 4 6.97e-11
25600 100.53 0.65 0.99 0.62 0.21 5 6.16e-12
102400 201.06 2.26 4.36 2.49 1.01 6 1.04e-12
409600 402.12 14.91 20.06 9.78 4.67 6 3.23e-11
1638400 804.25 99.01 91.37 56.13 21.16 9 8.12e-12
6553600 1608.50 430.60 398.88 330.91 94.63 13 3.93e-11
26214400 3216.99 3102.09 2024.16 2698.53 418.37 22 3.30e-11

The largest experiment is over 500λ in diameter: Less than 3h total run time.

Hardware: Workstation with dual Intel Xeon Gold 6254 (18 cores at 3.1GHz base
frequency).

A. Gopal & P.G. Martinsson, Adv. in Comp. Mathematics, 48(4), 2022



Example: Lippmann-Schwinger

Recently extended to time-harmonic Maxwell.

Optimal design problem, so many solves required.

Largest experiment involved a lens of diameter 20 000λ.



Example: Lippmann-Schwinger

Recently extended to time-harmonic Maxwell.

Optimal design problem, so many solves required.

Largest experiment involved a lens of diameter 20 000λ.



Key point: Some types of rank structured matrices (HODLR, HSS, HBS, . . . ) can be
inverted using formulas that are:

• Exact.
• Very fast in practice.
• Simple to implement (no recursions, in particular).

Problem: While these methods work well for 2D problems and medium scale 3D
problems, they do not scale correctly in 3D, and quickly become impractical as the
problem size grows.

The key problem is that in 3D, the interaction ranks grow with the problem size.
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Versions of fast direct solvers: “strong” versus “weak” admissibility
Weak admissibility: Compress directly adjacent patches.

The geometry The matrix

Left: Points in a box Ω = [0,1]2.
Red sources induce potentials on
blue points. Average rank=13.9 at
ε = 10−8.

Right: Magenta blocks are dense.
Cyan blocks low rank. Many low
rank blocks, but high ranks.

Strong admissibility: Compress only “far-field” interactions.
The geometry The matrix

Left: Points in a box Ω = [0,1]2.
Red sources induce potentials on
blue points. Average rank=7.7 at
ε = 10−8.

Right: Magenta blocks are dense.
Cyan blocks low rank. More dense
blocks, but lower ranks.
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Versions of fast direct solvers: “flat” versus “hierarchical” tessellations
Flat tessellations Hierarchical tessellations

Use a single tessellation of the domain. Use a hierarchy of tessellations.



Versions of fast direct solvers: “flat” versus “hierarchical” tessellations
Flat tessellations Hierarchical tessellations

Use a single tessellation of the domain. Use a hierarchy of tessellations.
The resulting matrix: The resulting matrix:

Easy to work with. More complicated to code and analyze.
Sometimes “good enough”. Better asympt. complexity (can be linear).



Versions of fast direct solvers: “nested” versus “general” bases
General bases: Let us consider a basic rank structured matrix:

Question: How much storage is required?



Versions of fast direct solvers: “nested” versus “general” bases
General bases: Let us consider a basic rank structured matrix:
Observe that you can view the matrix as a sum over different “levels”:

Let k denote the rank of the off-diagonal blocks.

At each level, the cost to store the factors is ∼ Nk.

There are ∼ log(N) levels, so total storage ∼ kN log(N).



Versions of fast direct solvers: “nested” versus “general” bases
Nested bases: These were introduced to eliminate log-factors, and improve efficiency.

The idea is to define the low rank factors for the off-diagonal blocks recursively
— the bases on one level are defined in terms of the bases on the next finer level.

Formally, this leads to a multiplicative representation, rather than an additive one.
For instance, it could take the form

A = U(3)(U(2)(U(1) B(0) (V(1))∗ + B(1))(V(2))∗ + B(2))(V(3))∗ + D(3),

where pictorially, the shapes of the factors are as follows:
U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

The cost to store level ℓ is now 2−ℓNk → geometric sum and O(kN) total storage.
Note: The classical Fast Multipole Method relies on nested bases.
This is in contrast to Barnes-Hut which (implicitly) uses general bases.



Versions of fast direct solvers:

We can now loosely organize some common rank-structured matrix “formats”:

Flat Hierarchical
General bases Nested bases

Weak
admissi-
bility

Block Separable Hierarchically off-diagonal
low rank (HODLR)

Hierarchically Block Sep-
arable (HBS/HSS); recur-
sive skeletonization

Strong
admissi-
bility

Block Low Rank H-matrices; Barnes-Hut H2-matrices; Fast Multi-
pole Method; strong recur-
sive skeletonization

Complexity of implementation increases as you go down and to the right in the table.
Asymptotic flop count decreases as you go down and to the right in the table.
The higher the dimension, the more complex scheme you need to use.

Recommendation: Use the simplest format that gives acceptable computational cost.

Note: In principle, the term “H-matrix” is extremely broad — every other format is a special case.

However, the table reflects the standard usage of the term.



Example: Boundary integral equation solver based on recursive skeletonization
Acoustic scattering (for now, objective is electro-magnetics, of course):

50λ× 50λ× 14λ
Results from sequential (except for dense linear algebra) Matlab code:

N = 1.2M. Factorization time = 4h. Solve time = 30s. Memory req = 460GB. Precision = 10−3.
D. Sushnikova, L. Greengard, M. O’Neil, M. Rachh; arXiv:2201.07325.

Current work: (C. Chen, P.G. Martinsson, M. O’Neil, M. Rachh)
HPC implementation; full parallelization; GPU acceleration; efficient skeletonization.



Versions of fast direct solvers: selection of references

• H- and H2-matrices: Hackbusch (1999); Khoromskij, Hackbusch (2000); Börm,
Grasedyck, Hackbusch (2003); . . .

• Recursive skeletonization: Lee, Greengard, (1992); Starr, Rokhlin (1994);
Michielssen, Boag, Chew (1996); Martinsson, Rokhlin (2005); Greengard, Gueyffier,
Martinsson, Rokhlin (2009); Ho, Greengard (2012); Ho, Ying (2016); . . .

• HSS matrices: Xia, Chandrasekaran, Gu, and Li (2009); Xia (2012); Wang, Li, Xia,
Situ, De Hoop (2013); Xi, Xia (2016); . . .

• Hierarchically off-diagonal low rank (HODLR) matrices: Aminfara, Ambikasaran,
Darve (2016); Massei, Robol, Kressner (2020); . . .

• Block low rank (BLR) matrices: Amestoy, Ashcraft, Boiteau, Buttari, l’Excellent,
Weisbecker (2015); Amestoy, Buttari, l’Excellent, Mary (2017); . . .

Survey: Ballani & Kressner (2016).

Monographs: Bebendorf (2008). Börm (2010). Martinsson (2019).



Outline of talk

(1) The role of global operators in scientific computing.

(2) Interaction ranks – why are they small?

(3) Introduction to rank structured matrices.

(4) Randomized method for compressing global operators.
“Operator learning”?



Compression of a matrix discretizing a continuum operator

Question: How do you obtain the data sparse representation of a dense matrix
discretizing a continuum operator?

• In some standard environments (convolution with a known fundamental solution,
say), there exist analytic techniques that work very well. “Abramowitz & Stegun” or
“proxy surface method”. Classical FMM environment

• In some cases where the kernel is known explicitly, heuristic techniques such as
“adaptive cross approximation” are often used. These are fast, but not 100%
reliable. Ok for building pre-conditioners. H-matrix environment

• In more general cases, randomized algorithms are very competitive. These methods
require that you have some means of applying the operator (e.g. a legacy PDE
solver), so that you can observe input-output pairs.

In the next several slides, we will discuss two cases:

(1) Warm-up: The global low rank case.

(2) Current research: Full Calderón-Zygmund operator.
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Compression of a matrix of global low rank: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k ≪ min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.
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m× n m× k k × k k × n
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(A) Randomized sketching:
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B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

The objective of Stage A is to compute an ON-basis that approximately spans the
column space of A. The matrix Q holds these basis vectors and A ≈ QQ∗A.

Stage B is exact: ∥A−Q Q∗A︸︷︷︸
=B
∥ = ∥A−Q B︸︷︷︸

=ÛDV∗
∥ = ∥A− QÛ︸︷︷︸

=U
DV∗∥ = ∥A− UDV∗∥.



Compression of a matrix of global low rank: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k ≪ min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

We claim that the columns of Y form a good approximate basis for ran(A).
Observe that ran(Y) ⊆ ran(A) automatically.
Loss of accuracy can happen if ran(Y) does not capture important directions.
To avoid this, we draw p extra samples, for, say, p = 5 or p = 10.



Compression of a matrix of global low rank: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal. (We assume k ≪ min(m,n).)

(A) Randomized sketching:
A.1 Draw an n× k Gaussian random matrix ΩΩΩ. Omega = randn(n,k)

A.2 Form the m× k sample matrix Y = AΩΩΩ. Y = A * Omega

A.3 Form an m× k orthonormal matrix Q such that ran(Q) = ran(Y). [Q, ∼] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the k × n matrix B = Q∗A. B = Q’ * A

B.2 Form the full SVD of the small matrix B: B = ÛDV∗. [Uhat, Sigma, V] = svd(B,’econ’)

B.3 Form the matrix U = QÛ. U = Q * Uhat

Important: You only need to ensure that you do not undersample.

Over-sampling is unproblematic, since excess data gets “filtered out” in Stage B.



Compression of a matrix of global low rank: Randomized SVD

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.
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Key points:
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• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).
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• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).
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(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).
The key is to use a Fast Johnson-Lindenstrauss transform.
• Randomized trigonometric transforms (FFT, Hadamard, etc). Cost is O(mn log(k)).
• Chains of Given’s rotations (“Kac’s random walk”). Cost is O(mn log(k)).
• “Sparse sign matrix”. Place r random entries in each row of ΩΩΩ. (Say r = 2 or r = 4.)

Cost is now O(mn)!

Practical acceleration is achieved at ordinary matrix sizes.
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(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
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Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).

A ΩΩΩ AΩΩΩ

The matrix ΩΩΩ is a sparse random matrix. Two nonzero entries are placed randomly
in each row. In consequence, each column of A contributes to precisely two
columns of the sample matrix Y = AΩΩΩ. This structured random map has O(mn)
complexity, is easy to work with practically, and often provides good accuracy.
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• Single pass algorithms have been developed for streaming environments.
The idea is that you are allowed to observe each matrix element only once.
You cannot store the matrix. Not possible with deterministic methods!



Compression of a matrix of global low rank: Randomized SVD

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix ΩΩΩ. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AΩΩΩ. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QR. (6) Form U = QÛ.

Key points:

• High practical speed — interacts with A only through matrix-matrix multiplication.

• Order of magnitude acceleration for data stored out-of-core.

• Highly efficient for GPU computing, or mobile computing (phones, etc).

• Consider the problem of computing the dominant k eigenvectors/eigenvalues of a
dense matrix of size m× n. Reduction in complexity from O(mnk) to O(mnlog k).

• Single pass algorithms have been developed for streaming environments.
The idea is that you are allowed to observe each matrix element only once.
You cannot store the matrix. Not possible with deterministic methods!

• Works exceptionally well for discretized continuum operators due to the very fast
decay of their singular values. Spectral vs. Frobenius norm.



Compression of a rank-structured matrix

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Sample the column space of the matrix:

If A ̸= A∗, then sample the row space too:



Compression of a rank-structured matrix

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

The low rank case: In the particularly simple case where A has global rank k, we revert
to the case we considered in the first part of the talk.

In the current framework, the randomized SVD takes the form:
• Set s = k and draw a “test matrix” ΩΩΩ ∈ RN×s from a Gaussian distribution.
• Form the “sample matrix” Y = AΩΩΩ.
• Build ΨΨΨ to hold an ON basis for ran(Y), e.g., [ΨΨΨ,∼] = qr(Y,0).
• Form Z = A∗ΨΨΨ.

Then A = ΨΨΨ
(
ΨΨΨ∗A

)
= ΨΨΨZ∗ with probability 1.

In the more typical case where A is only approximately of rank k, some oversampling is
required to get a reliable scheme. (Say s = k + 10, or s = 2k, or some such.)

Rank structured case: Extract all the low-rank matrices, and all the dense blocks, from
a very limited set of global “probes”. How do you disentangle the mixed samples?



Compression of a rank-structured matrix

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Why generalize from “global low rank” to “rank-structured”:
• Integral operators from classical physics. If you have a legacy method for the

matrix-vector multiple (e.g. the Fast Multipole Method), then we could enable a
range of operations – LU factorization, matrix inversion, etc.

• Compute Dirichlet-to-Neumann (or Impedance-to-Impedance) operators explicitly
whenever you have access to a fast PDE solvers.

• Compression of Schur complements that arise in the LU or Cholesky factorization of
sparse matrices. This overcomes the key computational bottleneck, and for instance
admits the acceleration of the LU factorization of a “finite element” matrix from
O(N2) to near linear complexity.

• Multiplication of operators. → Multiphysics, multi-modal discretizations, etc.



Compression of a rank-structured matrix

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

For the most general structured matrix formats (e.g. H-matrices), the problem has been
solved in principle, and close to linear complexity algorithms exist:

• L. Lin, J. Lu, L. Ying, JCP, 230(10), pp. 4071–4087, 2011.
• P.G. Martinsson, SISC, 38(4), pp. A1959-A1986, 2016.

However, existing methods require ∼ k log(N) matvecs, and do not have great practical
speed. For instance, as dimension d increases, the bound on flops has an 8d factor . . .

Recently proposed algorithms have reduced the pre-factors by constructing bespoke
random matrices that are designed to be optimal for any given tessellation pattern. The
key technical idea is to formulate admissibility criteria that form a graph, and then exploit
powerful graph coloring algorithms. This technique also enables compression of kernel
matrices that arise in ML. [J. Levitt & P.G. Martinsson, JCAM 451(1), 2024.]



Compression of a rank-structured matrix

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

Related work:

Randomized compression of butterfly matrices: Path towards medium/high frequency
problems. [Y. Liu, X. Xing, H. Guo, E. Michielssen, P. Ghysels, X.S. Li. 2021], [Y. Li, H. Yang, E. Martin,

K. Ho, and L. Ying, 2015].

Tagging of random matrices: Highly efficient technique for building bases for
off-diagonal blocks in the strong admissibility case. [K. Pearce, A. Yesypenko, J. Levitt,

P.G. Martinsson arXiv:2501.05528]

Randomized strong recursive skeletonization: Do inversion and compression
simultaneously→ order of magnitude reduction in memory requirements. [Anna

Yesypenko PhD thesis, UT-Austin, Nov. 2023. Arxiv:2311.01451]



Compression of a rank-structured matrix

Environment: We are given a rank-structured matrix A ∈ RN×N. We assume that we
can evaluate x 7→ Ax and x 7→ A∗x fast.

Objective: Construct thin matrices ΩΩΩ and ΨΨΨ such that A can be completely
reconstructed in O(N) work from the set {Y,ΩΩΩ,Z,ΨΨΨ} where Y = AΩΩΩ and Z = A∗ΨΨΨ?

Available techniques for the rank structured case:

Good news is that in the context of numerical PDEs, more specialized rank structured
formats are often sufficient — hierarchically semi-separable matrices, hierarchically
block-separable matrices, “H-matrices with weak admissibility”, etc.

For these matrices, algorithms with true linear complexity and high practical speed exist.

First generation algorithms were not fully black box, as they required the ability to
evaluate a small number of matrix entries explicitly.

• P.G. Martinsson, SIMAX, 32(4), 2011.
• Later improvements by Jianlin Xia, Sherry Li, and others. Widely used.

Recent: Fully black box algorithm with true linear complexity and high practical speed:
• J. Levitt & P.G. Martinsson, SISC, 46(3), 2024.



Compression of a rank-structured matrix – A naive approach
Consider the task of finding a basis matrix U4 for node 4 using randomized sampling.
We seek a sample of A(I4, Ic4), the HBS row block of node 4.

The naive approach is to sample with a random matrix ΩΩΩ ∈ RN×r , r = k + 10, that has a
block of zeros in rows indexed by I4. Then Y(I4, :) will contain a sample of A(I4, Ic4).

Y = A ΩΩΩ

This scheme requires taking a separate set of r samples for each leaf node, for a total of
∼ rN/m samples. There is a lot of wasted information in Y.
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Compression of a rank-structured matrix – the “almost” black-box case
Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)



Compression of a rank-structured matrix – the “almost” black-box case
Sample A with fixed dense random matrices ΩΩΩ ∈ RN×r and ΨΨΨ ∈ RN×r :

Y = A ΩΩΩ

and

Z = A∗ ΨΨΨ

Assumption: You can do matvecs and entry evaluation. (More general soon.)
In this case, we can explicitly form the diagonal blocks, and subtract their contributions:

Y′ = Y − D ΩΩΩ =
(
A− D

)
ΩΩΩ

Processing Z analogously, we obtain basis matrices Yj and Zj for j ∈ {4,5,6,7} such that

Ai,j ≈ Yi Bi,j Z∗j , i ̸= j,

for some small matrices Bi,j.
In a final step, use the ID to build the matrices Bi,j via entry evaluation.



Compression of a rank-structured matrix – fully black box
Sample A with a completely dense random matrix ΩΩΩ ∈ RN×(r+m), where m is the leaf
node size. (Think m ≈ 2k and r = k + 10.)

Y = A ΩΩΩ

Let us consider the problem of finding a basis matrix U4 for the block A(I4, Ic4).

Since ΩΩΩ(I4, : ) is of size m× (r + m), it has a nullspace of dimension at least r. Let

Q4 = nullspace(ΩΩΩ(I4, : ), r)

be an (r + m)× r orthonormal basis of the nullspace of ΩΩΩ(I4, : ).Then

YQ4 = A ΩΩΩQ4.

Orthonormalizing the sample gives basis matrix U4,

U4 = qr(Y(I4, :)Q4).
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Compression of a rank-structured matrix – fully black box
• For each leaf node τ , we compute

Qτ = nullspace(ΩΩΩ(Iτ , :), r)
Uτ = qr(Y(Iτ , :)Qτ ).

• Uτ only depends on ΩΩΩ(Iτ , :) and Y(Iτ , :).
• We only need r + m samples to find Uτ for every leaf node τ .
• ΩΩΩQτ is a Gaussian random matrix, except for the block intentionally zeroed out.



Compression of a rank-structured matrix – fully black box
Recall the telescoping factorization A = U(L)Ã(L)

(V(L))∗ + D(L).
Steps:
1. Find U(L),V(L).
2. Find D(L).
3. Compress Ã(L)

recursively.

Compute randomized samples of A and A∗.
1: Form Gaussian random random matrices ΩΩΩ and ΨΨΨ of size N × s.
2: Multiply Y = AΩΩΩ and Z = A∗ΨΨΨ.

Compress level by level from finest to coarsest.
3: for level ℓ = L,L− 1, . . . ,0 do
4: for node τ in level ℓ do
5: if τ is a leaf node then

6: ΩΩΩτ = ΩΩΩ(Iτ , :), ΨΨΨτ = ΨΨΨ(Iτ , :)

Yτ = Y(Iτ , :), Zτ = Z(Iτ , :)
7: else
8: Let α and β denote the children of τ .

9:
ΩΩΩτ =

[
V∗αΩΩΩα

V∗βΩΩΩβ

]
, ΨΨΨτ =

[
U∗αΨΨΨα

U∗βΨΨΨβ

]

Yτ =

[
U∗α(Yα − DαΩΩΩα)

U∗β(Yβ − DβΩΩΩβ)

]
, Zτ =

[
V∗α(Zα − D∗αΨΨΨα)

V∗β(Zβ − D∗βΨΨΨβ)

]

10: if level ℓ > 0 then

11: Qτ = nullspace(ΩΩΩτ , r), Pτ = nullspace(ΨΨΨτ , r)

Uτ = qr(YτQτ , r), Vτ = qr(ZτPτ , r)
12: Dτ = (I− UτU∗τ)YτΩΩΩ

†
τ + UτU∗τ

(
(I− VτV∗τ)ZτΨΨΨ

†
τ

)∗
13: else
14: Dτ = YτΩΩΩ

†
τ



Compression of a rank-structured matrix – Finding D
From the telescoping factorization

A = U(L)Ã(L)
(V(L))∗ + D(L)

we define Ã(L) and D(L) as follows.

A = U(L)
Ã(L)︷ ︸︸ ︷

(U(L))∗AV(L)(V(L))∗ +

D(L)︷ ︸︸ ︷
A− U(L)(U(L))∗AV(L)(V(L))∗

Block Dτ of D(L) is given by

Dτ = Aτ,τ − UτU∗τAτ,τVτV∗τ
= . . .

= (I− UτU∗τ )YτΩΩΩ
†
τ + UτU∗τ

(
(I− VτV∗τ )ZτΨΨΨ

†
τ

)∗
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Compression of a rank-structured matrix – Compressing Ã(L)

To compute randomized samples of Ã(L), we multiply the telescoping factorization with ΩΩΩ

to obtain
Y = AΩΩΩ = (U(L)Ã(L)

(V(L))∗ + D(L))ΩΩΩ,

and rearrange to obtain

(U(L))∗(Y− D(L)ΩΩΩ)︸ ︷︷ ︸
sample matrix

= Ã(L)
(V(L))∗ΩΩΩ︸ ︷︷ ︸
test matrix

.



Compression of a rank structured matrix: RSRS

Suppose you have extracted samples

Y = AΩΩΩ and Z = A∗ΨΨΨ.

We use the set {Y,ΩΩΩ,Z,ΨΨΨ} to extract the information to compress the first block using
“block nullification” and “block extraction”.

Then do one step of strong recursive skeletonization to obtain a partial factorization

A = LÃR,

where L and R each consists of two block elimination steps, and Ã is a matrix where
some blocks have been zeroed out, and some have been modified.

We next seek a sample of Ã. To do this, we form

Ỹ := L−1Y = L−1AΩΩΩ = L−1(LÃR
)
ΩΩΩ = ÃΩ̃ΩΩ,

where we defined
Ω̃ΩΩ := RΩΩΩ.

Analogously, form {Z̃, Ψ̃ΨΨ}.

Proceed to the next box using the set {Ỹ, Ω̃ΩΩ, Z̃, Ψ̃ΨΨ} in place of {Y,ΩΩΩ,Z,ΨΨΨ}.
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At level 0, we seek to factorize the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Now: Y2 = A2,3R3 and Y3 = A3,2R2.
The columns of Yτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = qr(Yτ ).

How determine Ã2,3, Ã3,2, V2 and V3?
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At level 0, we seek to factorize the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Now: Y2 = A2,3R3 and Y3 = A3,2R2.
The columns of Yτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = qr(Yτ ).
How determine Ã2,3, Ã3,2, V2 and V3?
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We know U2 and U3, and seek to determine Ã2,3, Ã3,2, V2 and V3.
Put U2 and U3 into the probing matrix.
Then: Z2 = A∗3,2U3 = V2A∗3,2 and Z3 = A∗2,3U2 = V3A∗2,3.
We then get [V2, Ã

∗
3,2] = qr(Z2) and [V3, Ã

∗
2,3] = qr(Z3).
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At level 1, we seek to determine the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Subtract the contributions from the known gray blocks to get new sample matrices Zτ .
The columns of Zτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = orth(Yτ , ε).
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Put the matrices {Uτ}τ is on level 1 into the probing matrix.
Then, e.g., Z4 = A∗5,4U5 = V4A∗5,4.
We get, e.g., [V4, Ã

∗
5,4] = qr(Z4,0).



The “Peeling algorithm” — level 2
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At level 2, we seek to determine the red blocks.
Green blocks are random matrices, yellow blocks are sample matrices Yτ .
Subtract the contributions from the known gray blocks to get new sample matrices Zτ .
The columns of Yτ span A(Iτ , Iσ), where σ is the sibling of τ , so Uτ = orth(Yτ , ε).
By sampling A∗, we determine Vτ and Ãτ,σ.
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Once you reach the finest level, simply use small identity matrices as probing matrices.

The diagonal blocks Dτ are obtained by subtracting contributions from the off-diagonal
blocks from Yτ .



Build compressed representations of all off-diagonal blocks.
loop over levels ℓ = 0 : (L− 1)

Build the random matrices R1 and R2.
R1 = zeros(n, r)
R2 = zeros(n, r)
loop over boxes τ on level ℓ

Let {α, β} denote the children of box τ .
R1(Iα, :) = randn(nα, r)
R2(Iβ, :) = randn(nβ, r)

end loop

Apply A to build the samples for the
incoming basis matrices.
Y1 = AR2 − A(ℓ)R2

Y2 = AR1 − A(ℓ)R1

Orthonormalize the sample matrices to build
the incoming basis matrices.
loop over boxes τ on level ℓ

Let {α, β} denote the children of box τ .
Uα = qr(Y1(Iα, :)).
Uβ = qr(Y2(Iβ, :)).
R1(Iα, :) = Uα

R2(Iβ, :) = Uβ

end loop

Apply A∗ to build the samples for the outgoing basis matrices.
Z1 = A∗R2 −

(
A(ℓ)
)∗R2

Z2 = A∗R1 −
(
A(ℓ)
)∗R1

Take local SVDs to build incoming basis matrices and
sibling interaction matrices.
loop over boxes τ on level ℓ

Let {α, β} denote the children of box τ .
[Vα,Bβα, Ûβ] = svd(Z1(Iα, :), ε).
[Vβ,Bαβ, V̂α] = svd(Z2(Iβ, :), ε).
Uβ ← UβÛβ.
Uα ← UαÛα.

end loop
end loop

Extract the diagonal matrices.
nmax = max {nτ : τ is a leaf}
R = zeros(N,nmax)

loop over leaf boxes τ

R(Iτ ,1 : nτ) = eye(nτ).
end loop
Y = AR− A(L)R
loop over leaf boxes τ

Dτ = Y(Iτ ,1 : nτ).
end loop

The matrix A(ℓ) consists of all blocks on level ℓ or coarser.



Complication 1: Strong admissibility
Recall that in many applications, we want to avoid compressing boxes that are directly
adjacent. This leads to a matrix patterned as follows:

Low rank on level 2. Low rank on level 3. Low rank on level 4. Dense blocks.

Say we know the green and yellow blocks, and seek to compress the blue blocks.



Complication 1: Strong admissibility
Recall that in many applications, we want to avoid compressing boxes that are directly
adjacent. This leads to a matrix patterned as follows:

Low rank on level 2. Low rank on level 3. Low rank on level 4. Dense blocks. Gaussian blocks.

Say we know the green and yellow blocks, and seek to compress the blue blocks.

Key fact: At each level, we now need 6 block columns in R, rather than just two.



Complication 2: Dimension two (and strong admissibility)
For a problem in two dimensions, the tessellation of the matrix gets more complicated:

Low rank on level 2. Low rank on level 3. Dense blocks.

Lin, Li, Ying (2011): Build R that contains 64 blocks of k columns each.
If extended to dimension d, the method leads to 8d block columns.
Question: Can these numbers be improved?



A graph coloring problem
The task of finding a close to optimal matrix R can be viewed as finding a solution to a
particular graph coloring problem. Let us revisit the case of strong admissibility in one
dimension:
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Each line represents a “conflict”.



A graph coloring problem
The task of finding a close to optimal matrix R can be viewed as finding a solution to a
particular graph coloring problem. Let us revisit the case of strong admissibility in one
dimension:

Each line represents a “conflict”.
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The task is to color the nodes in such a way that no conflicting nodes share a color.
We solved this task using the “DSatur” graph coloring algorithm of D. Brélaz (1979).



Two dimensions with strong admissibility

Empirical discovery: 36 blocks of columns were sufficient.
Inspecting the computed solutions, we found an explicit way to build R.

New theoretical finding: Need only 6d blocks of columns, instead of 8d, in worst case.

More importantly: The method can be run for any given set of points, to find an R that is
optimized for that particular case. Typically far fewer than 6d colors needed!



Example: Find the “intrinsic dimension”

The geometry is a line in Rd with Gaussian noise added.



Example: Computing the Neumann-to-Dirichlet operator for a 2D domain
Idea is to multiply together two boundary integral operators: T = S

(
1
2I + D∗

)−1
.



Example: FMM on two dimensional surface in 3D (Laplace problem)

Note: This would have required 512×rank matvecs per level in the original scheme.



Example: Frontal matrix in nested dissection sparse direct solvers
Let B be a finite difference matrix arising from discretizing an elliptic PDE.
Then A is a Schur complement: A = B33 − B31B−1

11 B13 − B32B−1
22 B23



Summary

This presentation:

• Global operators form a central role in scientific computing.

• Linear complexity algorithms exist for many tasks:
• Potential evaluation via the FMM. Well established.
• Inversion, exponentiation, spectral decompositions, . . . In progress.
• Randomized algorithms for compression. . . . In progress.

• The work presented relies on linearity in a fundamental way.

Possible connections to Machine Learning:

• Could the methods presented be helpful in understanding how to represent global
operators in ML models? The multiscale representation is designed to exploit that
not much information gets transported between disjoint subdomains.

• Could ML techniques be combined with the methods we have to tackle certain
non-linear problems? Inverse problems perhaps?

• Could these methods be used to provide “reduced models” for linear sub
components in a larger multiphysics model?


