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toric structures

C[x ] = C[x1, . . . , xn] a polynomial ring.

Ideal I ⊆ C[x ] is toric if
(a) I is prime and binomial ideal, or equivalently,
(b) I is the kernel of a monomial map C[x1, . . . , xn] → C[θ±1

1 , . . . , θ±1
m ].

ψ : C[x1, x2, x3] → C[θ1, θ2], x1 7→ θ21 , x2 7→ θ1θ2, x3 7→ θ22

ker ψ = ⟨x1x3 − x22 ⟩

V (I) = {x ∈ Cn | f (x) = 0 for f ∈ I} the variety of I.

Toric varieties are isomorphic to solutions sets of toric ideals.

An ideal I may not be toric and its V (I) may be toric. A linear change of variables is useful
for reveling the toric structure of V (I).

Take I = ⟨x1x3 − x22 − x1x2⟩ and x1 = p1, x2 = p2 − p1, x3 = p3 − p2. Then,

I = ⟨p1(p3 − p2)− (p2 − p1)
2 − p1(p2 − p1)⟩ = ⟨p1p3 − p2

2⟩ is toric in C[p1, . . . ,p3]

PROBLEM: Suppose I is not a binomial ideal. Determine when there is no invertible linear
transformation that turns I into a toric ideal.
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Mateusz Michałek, and Bernd Sturmfels. “Invitation to nonlinear algebra.” American
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good story at IMSI last year and follow up
0

21 3

4

5

LT = {Σ =

σ11 σ12 σ13
σ12 σ22 σ13
σ13 σ13 σ33

 | σ11, σ12 · · · , σ33 ∈ R}

L−1
T = {K ∈ Symn|K−1 ∈ LT } = {

k11 k12 k13
k12 k22 k23
k13 k23 k33

 ∈ R3×3 | k12k23 − k13k22 = −(k11k23 − k12k13)}

BMT models are under the reduced graph Laplacian transformation with monomial
parametrization given by shortest paths between leaves in the tree.
1. Tobias Boege, Jane Ivy Coons, Chris Eur, Aida Maraj, Frank Röttger, Reciprocal Maximum Likelihood Degrees of Brownian
Motion Tree Models, Le Matematiche 76 (2), 383-398 (2021)

2. Jane Ivy Coons, Shelby Cox, Aida Maraj, Ikenna Nometa, Maximum Likelihood Degrees of Brownian Motion Tree Models: Star
Tree and Root Invariance, arxiv:2402.10322 (2024)

4. Amer Goel, Aida Maraj, Alvaro Ribot, Halfspace Representations of Path Polytopes of Trees, arxiv:2309.10741 (2025)

3. Emma Cardwell, Aida Maraj, Alvaro Ribot, Toric Multivariate Gaussian Models from Symmetries in a Tree, arxiv:2412.00895
(2024)
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symmetry Lie groups of ideals

Determine the group action of GLn(C) in C[x ] := C[x1, . . . , xn] by

for g =


g1
...
gn

 ∈ GLn(C), f ∈ C[x ], g · f (x) = f (g−1x).

GI = {g ∈ GLn(C) | g · f ∈ I, ∀f ∈ I} is the stabilizer of I.

Example:
I = ⟨f ⟩ ⊂ C[x1, x2] where f = x21 + x22 + x1x2. Take g−1 =

[
g11 g12
g21 g22

]
.

g · f = (g11x1 + g12x2)2 − (g21x1 + g22x2)2 − (g11x1 + g12x2)(g11x1 + g12x2)
=(g2

11 + g2
21 + g11g21)x21 + (g2

12 + g2
22 + g12g22)x22
+ (2g11g12 + 2g21g22 + g11g22 + g12g21)x1x2

GI =⟨g ∈ GLn(C) | g2
11 + g2

21 + g11g21 = g2
12 + g2

22 + g12g22 = 2g11g12 + 2g21g22 + g11g22 + g12g21⟩

dim(GI ) = 2



detecting non-toricness via Lie groups

GI = {g ∈ GLn(C) | g · f ∈ I, ∀f ∈ I} is the stabilizer of I.

Theorem: Let I ⊆ C[x ] be a prime homogeneous ideal with dim(V (I)) = r . If
dim(GI ) < r then there is no linear change of variables that turns I into a toric ideal.

Proof idea:
1. GI is a Lie group as a closed subgroup of GLn(C) (Cartan’s theorem)

2. If I is toric, then the torus Tr acting on V (I) is embedded in GI (diag(Tr ) ⊂ GI ). So,
r ≤ dim(GI )

2’ (contrapositive) If dim(GI ) < dim(V (I)), then I cannot be turned toric under any linear
change of variables

some symmetry Lie groups are investigated in: Fulvio Gesmundo, Young Han, Benjamin
Lovitz, Linear Preservers of Secant Varieties and Other Varieties of Tensors, 2024

————-
Project initiated in conversations with JM Landsberg at 2022 Texas Algebraic Geometry Symposium at Texas A&M



symmetry Lie algebras of ideals
—where there is a Lie group, there is a Lie algebra (with same dimension)

The Lie algebra for GI is
gI = {g ∈ Mn(C) | etg ∈ GI , ∀t ∈ R} = {g ∈ Mn(C) | g ∗ f (x) ∈ I, ∀f (x) ∈ I},

where g ∗ f (x) :=
d
dt (e

gt · f (x))|t=0.

Proposition: The ∗ operation on C[x ] is fully determined by the rules:
1. g ∗ c = 0 for any constant c ∈ C[x ],
2. g ∗ xi = −∑n

j=1 gij · xj for any variable xi ∈ C[x ],

3. g ∗ (p1p2) = (g ∗ p1)p2 + p1(g ∗ p2), for any p1,p2 ∈ C[x ],
extended linearly to C[x ].

g ∗ (x21 + x22 + x1x2) =g ∗ x21 + g ∗ x22 + g ∗ x1x2
=− 2x1(g11x1 + g12x2)− 2x2(g21x1 + g22x2)
− (g11x1 + g12x2)x2 − x1(g21x1 + g22x2)

=− (2g11 + g21)x21 − (2g12 + 2g21 + g11 + g22)x1x2 − (2g22 + g12)x22

gI = {g ∈ M2(C) | 2g11 + g21 = 2g12 + 2g21 + g11 + g22 = 2g22 + g12}

Theorem: Let I = ⟨f1, . . . , fk ⟩ ⊆ C[x ] be a homogeneous prime ideal. Then,

gI = {g ∈ Mn(C) | g ∗ fi ∈ I, for i = 1, . . . , k}.



an algorithm for computing symmetry Lie algebras

Observation: Suppose f (x) is of degree d. Then both g · f (x) and g ∗ f (x) are also
polynomials of degree d.

▶ [C[x ]]d = homogeneous polynomials of degree d in C[x ]
▶ Mon([C[x ]]d ) = monomials of degree d span [C[x ]]d
▶ f⃗ = the vector representation of f with respect to Mon([C[x ]]d )

f = x21 − 3x1x2 + x23 ∈ [I]2 = span(x21 , x1x2, x22 , x1x3, x2x3, x23 ), f⃗ = [1 −3 0 0 1]T

Theorem: Let I ⊆ C[x ] be a homogeneous prime ideal generated by polynomials
of degree at most d. Let B([I]d ) be a basis for [I]d . For each fi ∈ B([I]d ) consider
the matrix

Mi (g) :=
[−→
f1

−→
f2 . . .

−→
fk

−−→
g ∗ fi

]
.

Then gI = {g ∈ Mn(C) | rank(Mi (g)) = k for fi ∈ B([I]d )}.



examples

I = ⟨x21 + x22 + x1x2⟩

g ∗ (x21 + x22 + x1x2) =g ∗ x21 + g ∗ x22 + g ∗ x1x2
=− 2x1(g11x1 + g12x2)− 2x2(g21x1 + g22x2)
− (g11x1 + g12x2)x2 − x1(g21x1 + g22x2)

=− (2g11 + g21)x21 − (2g12 + 2g21 + g11 + g22)x1x2 − (2g22 + g12)x22

M1(g) =

1 2g11 + g21
1 2g12 + 2g21 + g11 + g22
1 2g22 + g12





non-toric structures in algebraic statistics

The following is the first Gaussian graphical model proven to be non-toric.
1

2 3

4
σ23σ14σ24 − σ13σ2

24 − σ22σ14σ34 + σ12σ24σ34 + σ22σ13σ44 − σ12σ23σ44,

σ13σ23σ14 − σ24σ2
13 − σ12σ33σ14 + σ11σ33σ24 + σ12σ13σ34 − σ11σ23σ34

dim(GI ) = 4 < 8 = dim(V (I)).

compare with: Jane Coons, Aida Maraj, Pratik Misra, Stefana Sorea, Symmetrically colored
Gaussian graphical models with toric vanishing ideals. SIAM Journal of Applied Algebra
and Geometry (2023)

The following is the first staged tree model with one stage proven to be non-toric.

p8

p9

p1

p7

p2

p3 p4

p5

p6 P =

p1 + ...+ p7 p1 p3 p4
p8 p2 + ...+ p6 p3 p5
p9 p7 p4 + p5 + p6 p6


I = ⟨2× 2 minors of P⟩. dim(GI ) = 2 < 3 = dim(V (I)).

compare with: Christiane Görgen, Aida Maraj, Lisa Nicklasson, staged tree models with
toric structures. Journal of Symbolic Computation (2022)



principal ideals defined by cycles
work with student Joan Pascual Ribes.

In,m = ⟨
n
∑
i=1

i+m−1
∏
j=i

xjmodn⟩

I5,2 = ⟨x1x2 + x2x3 + x3x4 + x4x4 + x5x1⟩
I5,3 = ⟨x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2⟩

n\m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
3 4 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1
4 10 1 4 1 2 1 4 1 2 1 4 1 2 1 4 1 2 1 4
5 11 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5
6 16 5 2 1 6 1 2 3 2 1 6 1 2 3 2 1 6 1 2
7 22 1 1 1 1 7 1 1 1 1 1 1 7 1 1 1 1 1 1
8 32 1 5 1 2 1 8 1 2 1 4 1 2 1 8 1 2 1 4
9 37 4 1 1 3 1 1 9 1 1 3 1 1 3 1 1 9 1 1
10 46 1 2 5 2 1 2 1 10 1 2 1 2 5 2 1 2 1 10
11 56 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
12 70 3 4 1 6 1 4 3 2 1 12 1 2 3 4 1 6 1 4
13 79 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1 1 1
14 92 1 2 1 2 7 2 1 2 1 2 1 14 1 2 1 2 1 2
15 106 3 1 5 3 1 1 3 5 1 3 1 1 15 1 1 3 1 5
16 124 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4
17 137 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 1 1 1
18 154 3 2 1 6 1 2 9 2 1 6 1 2 3 2 1 18 1 2
19 172 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19 1
20 194 1 4 5 2 1 4 1 10 1 4 1 2 5 4 1 2 1 20

Table: dim(gIn,m )

almost all the time dim(In,m) = gcd(m,n)
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what about positive answers?

I = ⟨x21 + x22 + x23 ⟩ ⊆ C[x1, x2, x3]
Take y1 = x1, y2 = −x2 + ix3 and y3 = x2 + ix3. Then I = ⟨y2

1 − y2y3⟩ ⊆ C[y1, y2, y3] is toric.

B =

1 0 0
0 −1 1
0 i i

 the matrix recording the linear change of variables

The symmetry Lie algebra of I is the 4-dimensional vector space with basis

L =


1 0 0
0 1 0
0 0 1

 ,

 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

Notice that B changes the basis L (so apply B−1AB to each element in the basis) to the list

B−1LB =


 1 0 0

0 1 0
0 0 1

 ,

 0 −1 1
0.5 0 0

−0.5 0 0

 ,

 0 i 1
0.5i 0 0
0.5i 0 0

 ,

 0 0 0
0 −i 0
0 0 i

 ,

which realizes the embedded 2-dimensional torus.



finding the torus Tr in GI

...if we can simultaneously diagonalize r of the basis elements in gI , then a torus lives in GI .
algorithm by Thomas Kahle and Julian Vill:

Cartan sub algebra = nilpotent and self-normalizing. Cartan subgroup is the centralizer of a maximal torus
and their application to Gaussian graphical models:

Conjecture: A Gaussian graphical model has toric structure iff the graph is chordal.

Next: use the algorithm for your favorite model!

Thank you!
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