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toric structures

C[x] = C[xy, ..., xn] @ polynomial ring.

Ideal I C C[x] is toric if
(a) l'is prime and binomial ideal, or equivalently,
(b) s the kemnel of a monomial map Cx, ..., xa] — C[65', ..., 65].

P C[X},XQ,Xg] — C[Q'\,QQ], X1 — 9%, Xp — 016, X3 — 9%

kerp = (X1X3 — X3)

V(l) ={x e C" | f(x) =0forf €I} the variety of I.

[ Toric varieties are isomorphic to solutions sets of toric ideals. ]

An ideal I may not be foric and its V() may be toric. A linear change of variables is useful
for reveling the toric structure of V/(/).

Take | = (x1X3 — X2 — X1Xp) and X; = Py, Xp = Py — P1, X3 = P3 — P2. Then,

I'={p1(ps —p2) — (P2 —P1)* — P1(P2 — P1)) = (P13 — P3) s toric in C[o, ..., Ps]
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C[x] = C[xy, ..., xn] @ polynomial ring.

Ideal I C C[x] is toric if
(a) l'is prime and binomial ideal, or equivalently,
(b) s the kemnel of a monomial map Cx, ..., xa] — C[65', ..., 65].

¥ C[x1, X2, X3] — C[01,02], X1 = 03, X0 = 616, X3 — 03

kerp = (X1X3 — X3)

V(l) ={x e C" | f(x) =0forf €I} the variety of I.

[ Toric varieties are isomorphic to solutions sets of toric ideals. ]

An ideal I may not be foric and its V() may be toric. A linear change of variables is useful
for reveling the toric structure of V/(/).

Take | = (x1X3 — x5 —X1X2) And x| = P1, Xo = P — P1, X3 = P3 — P2. Then,

I'={p1(ps —p2) — (P2 —P1)* — P1(P2 — P1)) = (P13 — P3) s toric in C[o, ..., Ps]

PROBLEM: Suppose [ is not a binomial ideal. Determine when there is no invertible linear
transformation that turns / info a toric ideal.



In fact, the converse to this proposition also holds, with a slightly more
inclusive definition of toric variety. Informally speaking, toric varieties are
precisely those varieties that become linear spaces under taking logarithms.

8.3. The World is Toric

The occurrence of toric structures in an application can be either obvious or
hidden. A typical example for the former is log-linear models in statistics.
These are obviously toric, as seen around Example 8.26. In this section we
discuss some scenarios where the toric structure is hidden, and it needs to
be unearthed, often by a non-trivial chance of coordinates. Our style in this
section is extremely informal. We briefly visit four fields where toric varieties
arise. Under each header we focus on one concrete instance of a toric variety
X4 C PP1, The broader context is discussed alongside that example.
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Abstract probability distribution to factor according to an undirected graphical model,
or alog-lincar model, or other more general exponential models. For decom-
posable graphical models these conditions are equivalent to a set of condi-
tional tatements similar o the Hammersley-Clifford theorem;
however, we show that for nondecomposable graphical models they are not.
‘We also show that nondecomposable models can have nonrational maximum
likelihood estimates. These results are used to give several novel characteri-

zations of dcwmﬁs&ble irﬁhxcll models.

Statistical models of evolution are algebraie varieties in the space of joint probability distri-
butions on the leaf colorations of a phylogenetic tree. The phylog mvariants of a
are the polynomials which vanish on the variety used models for biological
be diagonalized by means of the Fourier transfon
ic invariants form a toric ideal in the Fo e
Gbner bases for these toric ideals. For the Jukes-Cantor and
Kimura models on a binary tree, our Grobuer bases consist of certain explicitly constructed
polynomials of degree at most four




good story at IMSI last year and follow up

BROWNIAN MOTION TREE MODELS ARE TORIC

BERND STURMFELS, CAROLINE UHLER, AND PIOTR ZWIERNIK
5

ABSTRACT. Felsenstein’s classical model for Gaussian distributions on a phyloge-
netic tree is shown to be a toric variety in the space of concentration matrices. We
present an exact semialgebraic characterization of this model, and we demonstrate

4
how the toric structure leads to exact methods for maximum likelihood estimation.
Our results also give new insights into the geometry of ultrametric matrices.

o o2 o3
Lr={YX= |2 o0 o |on,o2---, 033 €R}
713 013 033
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BMT models are under the reduced graph Laplacian transformation with monomial
parametrization given by shortest paths between leaves in the tree.

1. Tobias Boege, Jane Ivy Coons, Chris Eur, Aida Maraj, Frank Réttger, Reci I Maximum Likelih

P d Degrees of Brownian
Motion Tree Models, Le Matematiche 76 (2), 383-398 (2021)

2. Jane vy Coons, Shelby Cox, Aida Maraj, Ikenna Nometa, Maximum Likelihood Degrees of Brownian Motion Tree Models: Star
Tree and Root Invariance, arxiv:2402.10322 (2024)

4. Amer Goel, Aida Maraj, Alvaro Ribot, Halfspace Representations of Path Polytopes of Trees, arxiv:2309.10741 (2025)

3. Emma Cardwell, Aida Maraj, Alvaro Ribot, Toric Multivariate Gaussian Models from Symmetries in a Tree, arxiv:2412.00895
(2024)



symmetry Lie groups of ideals

Determine the group action of GL,(C) in C[x] := C[xy, ..., Xn] by
9
forg=|: | €GLy(C),feC[x], g f(x)="F(g 'x).
9n
G ={geGLy(C) | g-felVfel}isthe stabilizer of /.

Example:

_ 242 —1_ |9 Gi2
I = (f) C C[x1,x] where f = x? 4+ x5 +x1xp. Take g~ = [92] 922].

g-f=(gnx +gix)? — (gax1 + gz2X2)? — (GnX1 + Gr2Xe) (Gr1X1 + Gi2X2)
=(0} + 5 + 9192)x? + (9F + 9% + 912022)X3
+ (2911912 + 2921922 + 911922 + 912821 )X1 %2

G =(g € GLy(C) | g% + 9% + g1 Ga1 = % + 9% + T12022 = 2911 G2 + 292192 + 1G22 + G12921)



detecting non-toricness via Lie groups

G ={geGLy(C) | g-felVfel}isthe stabilizer of /.

Theorem: Let | C C[x] be a prime homogeneous ideal with dim(V(/)) = r. If
dim(G;) < r then there is no linear change of variables that turns / info a foric ideal.

Proof idea:
1. Gy is a Lie group as a closed subgroup of GL,(C) (Cartan’s theorem)

2. If s toric, then the torus T" acting on V/(/) is embedded in G, (diag(T") C G)). So,
r< dim(G/)

2" (contrapositive) If dim(G;) < dim(V/(/)). then | cannot be turned toric under any linear
change of variables

some symmetry Lie groups are investigated in:  Fulvio Gesmundo, Young Han, Benjamin
Lovitz, Linear Preservers of Secant Varieties and Other Varieties of Tensors, 2024

Project initiated in conversations with JM Landsberg at 2022 Texas Algebraic Geometry Symposium at Texas A&M



symmetry Lie algebras of ideals
—where there is a Lie group, there is a Lie algebra (with same dimension)

The Lie algebra for G, is
g ={geMy(C)|e9ecG,VteR}={geMy(C)|gxf(x)el, Yf(x)ell},

where g x f(x) := %(egf ~F(X))|t=0-

Proposition: The * operation on C[x] is fully determined by the rules:
1. g*c = 0forany constant ¢ € C[x],
2. g*xi=—Y,gj-x forany variable x; € C[x].

3. g*(pP1P2) = (g *P1)P2 +P1(g *P2). for any py, p2 € C[x],
extended linearly fo Cx].

g* (6 +33 +x1%0) =g #X{ +g*X5 +g*x1%
=—2x1(gnX1 + Gi2Xa) — 2x2(921X1 + gaoX2)
—(gnx1 + g12X2) X2 — X1 (G21X1 + Go2Xo)
=~ (2911 + 921)X% = (2912 + 2021 + g1 + Ga2)X1X2 — (2022 + 912)X8

01 =1{9 € Ma(C) | 2911 + Go1 = 2012 + 2921 + 911 + 922 = 2022 + Q12 }

Theorem: Let I = (fy, ..., fy) C C[x] be a homogeneous prime ideal. Then,
g ={g€Mn(C)|gxfiel fori=1,... k}.




an algorithm for computing symmetry Lie algebras

Observation: Suppose f(x) is of degree d. Then both g - f(x) and g « f(x) are also
polynomials of degree d.

> [C[x]]qg = homogeneous polynomials of degree d in C[x]
> Mon([C[x]]¢) = monomials of degree d span [C[x]]q

> 7 = the vector representation of f with respect to Mon([C[x]]4)

f=x2—3xx + X% € [l|2 = span(xZ, XXz, X2, X1 Xs, XoXs, X2),  f=[1 -3 0 0 1]

Theorem: Let | C C[x] be a homogeneous prime ideal generated by polynomials

of degree at most d. Let 2([l]q) be a basis for [/]4. For each f; € %B([l]4) consider
the matrix

M@ =7 % .. 7 &l
Then g, = {g € My(C) | rank(M;(g)) = k for f; € B([l]q)}.




examples
= (X2 + X2 +X1%)

g* (6 +5 +x1x) =g+ xF +g*X5 +g*xx
=—2x(gnx + gizxe) — 2x2(g21%1 + ga2X2)
— (gnx1 + g12X2)Xe — X1 (G21X1 + Go2Xo)
=— (2011 + 921X} — (2012 + 2921 + g1 + G2 )X1 %2 — (2920 + G12)X2

1 2gn + g2
Mi(g) = |1 2g12+2ga1 +gn +0g2
1 2G22 + 012
In [ ]: R = PolynomialRing(QQ,['x', 'y','z'])

R.inject_variables()
Liel = symmalg([x"2+y"2+z"2,x+y],3)

Out[ ]: Defining x, y, 2z
Defining x, y, 2z

pefining x, y, z, gll, gl2, g13, g21, g22, g23, g31, g32, g33

A basis of the Lie algebra consists of the following matrices:

100 0 1 0 00 1 000 000
010 |,{fo-1 of,loo0-1]|,[110]),[000
00 1 0 0 -1 02 0 000 110



non-toric structures in algebraic statistics

The following is the first Gaussian graphical model proven to be non-toric.

023014024 — ‘7'13‘7%4 — 022014034 + 012024034 + 022013044 — 012023044,
013023014 — ‘724‘7]23 — 012033014 + 011033024 + 012013034 — 011023034
dim(G)) = 4 < 8 = dim(V(1)).

compare with: Jane Coons, Aida Maraj, Pratik Misra, Stefana Sorea, Symmetrically colored

Gaussian graphical models with toric vanishing ideals. SIAM Journal of Applied Algebra

and Geometry (2023)

The following is the first staged tree model with one stage proven to be non-toric.

P1 p2
e o
./p\ ~.
—— P8 24 @—— ps
\ \ pP1+...+p7 P P3
P Po P = Ps P2+ ...+ Pe P3
Po p7 P4+ Ps + Pe

I = (2 x 2minors of P). dim(G;) =2 < 3 =dim(V(/)).

Pa
Ps
Po |

compare with: Christiane Gérgen, Aida Maraj, Lisa Nicklasson, staged free models with
toric structures. Journal of Symbolic Computation (2022)
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ged(m, n)

almost all the time dim(/h,m)



what about positive answers?

I = (x?+xZ +x2) C Clx1, %2, X3]
Take yy = X1, Y2 = —Xp +ix3 and y3 = Xp + ixs. Then | = (yf — yay3) C Clyy, ya, y3] is toric.

1 0 0
B= (O -1 1) the matrix recording the linear change of variables
0 i i

The symmetry Lie algebra of | is the 4-dimensional vector space with basis

1 0 O o 1 0 0 0 1 0O 0 O
L= o 1 of,{-r 0 o)J,{0O O O},{0 O 1 .
0 0 1 0 0 O -1 0 O

0o -1 0
Notice that B changes the basis £ (so apply B~ AB to each element in the basis) to the list

1 0 O o -1 1 0o i 1 0O 0 0
B LB = o 1 0|, 0.5 o 0|, 0& 0 O ), O —-i O ,
0 0 1 -0.5 0 O 05 0 O

0 0 i
which realizes the embedded 2-dimensional forus.



finding the torus T’ in G,

...if we can simultaneously diagonalize r of the basis elements in g;, then a torus lives in G;.
algorithm by Thomas Kahle and Julian Vill:

1 Compute the Lie algebra g of the group G C GL,(C) fixing I, ie. G.I C 1.
2 Pick = € g at random and compute ¢ = ker((ad(z))%™9).

3 Check if ¢ is a Cartan subalgebra of g. If not go back to line 2.

4 Decompose ¢ =t dn.

5 Compute an S € GL,(C) that diagonalizes t.

6 Check if S.I is a binomial ideal. If not, return False.

7 Check if the binomial ideal S.I is prime. If not return False.

Cartan sub algebra = nilpotent and self-normalizing. Cartan subgroup is the centralizer of a maximal forus
and their application to Gaussian graphical models:

graph dim model | dim Lie algebra | dim max tori | can be made toric
diamond N 9 30 6 no
paw N 8 52 8 yes
cycle O 8 4 4 no
claw N 7 37 7 yes
path 7 33 7 yes
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Conjecture: A Gaussian graphical model has toric structure iff the graph is chordal.
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[ Next: use the algorithm for your favorite model!
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Thank you!



