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Motivation:
> Two independent binary random variables Xj and X5

> Data from 100/1000 observations

(70 9 919 16
Y= 20 1 63 2
= Maximum likelihood estimate p maximizes | [ p;" among all rank-one
joint distribution matrices p

. (711 79 918.17 16.83
P=\189 21 63.83 1.17
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Motivation:
> Two independent binary random variables Xj and X5

= Data from 100/1000/10000 observations
b 70 9 919 16 09834 38
- \20 1 63 2 123 5

= Maximum likelihood estimate p maximizes | [ p;" among all rank-one
joint distribution matrices p

. (711 79 918.1 16.8 9827.8 42.4
P=\189 21 638 1.1 1202 6
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Motivation:
> Two independent binary random variables Xj and X5

> Data from 100/1000,/10000/. . . observations
v 70 9 919 16 9834 38 ~ N 1 2 (small £)
S \20 1 63 2 123 5) 7\t t!

= Maximum likelihood estimate p maximizes | [ p;" among all rank-one
joint distribution matrices p

. (711 79 918.1 16.8 9827.8 42.4 1 2
P=\189 21 63.8 1.1 1202 6 t 3
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Motivation:
> Two independent binary random variables X7 and X;

> Data from N observations
St
S\ttt

= Maximum likelihood estimate p maximizes | [ p;" among all rank-one

joint distribution matrices p
(1 £
P=\¢ &
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Motivation:
> Two independent binary random variables X7 and X;
> Data from N observations
St
S\ttt

> Maximum likelihood estimate p maximizes Hp;”' among all rank-one

joint distribution matrices p
(1 £
P=\¢ &
History:

2022 Agostini-BSKFT: tropical ML for linear models

2024 Ardila—Eur—Penaguiao: tropical ML for matroids

2024 Boniface—Devriendt—H.: tropical ML for toric models

2025 Friedman—-Sturmfels—Wiesmann: tropical ML for squared lin. models

Serkan Hosten Tropical Toric MLE 2/20



Problem formulation

» Toric maximum likelihood estimation:
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Problem formulation

» Toric maximum likelihood estimation:

1. Matrix A € Z9*" full rank with row(A) 3 (1,...,1)

— Toric variety X4

=V(<X°‘—X o, BeEN" st Ala— ) =0)) c
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Problem formulation

» Toric maximum likelihood estimation:

1. Matrix A € Z9*" full rank with row(A) 3 (1,...,1)

— Toric variety c X4

cXA—V(<cﬁO‘—cx a,BeN"st. Ala—B)=0)) c
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Problem formulation

» Toric maximum likelihood estimation:

1. Matrix A e Z9*" full rank with row(A) > (1,...,1)
— Toric variety cXu

2. Data vector u e QZ%g with > u; =1
— Affine subspace Yja ,

Yau = u + ker(A)
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Problem formulation

» Toric maximum likelihood estimation:
1. Matrix A € Z9*" full rank with row(A) > (1,...,1)
— Toric variety cXu

2. Data vector u € RZ4 with > ju; =1
— Affine subspace Y4 ,

Definition (Maximum likelihood estimate (MLE))

The maximum likelihood estimate (if 3) for the data pair (A, u) is the
unique positive real point in cXy N Yy .
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Problem formulation

» Toric maximum likelihood estimation:
1. Matrix A € Z9*" full rank with row(A) > (1,...,1)
— Toric variety cXu

2. Data vector u € RZ4 with > ju; =1
— Affine subspace Y4 ,

Definition (Maximum likelihood estimate (MLE))

The maximum likelihood estimate (if 3) for the data pair (A, u) is the
unique positive real point in cXy N Yy .

> cXa N A,_1 = log-affine statistical model
> cXa N Y, = complex critical points of the log likelihood function

Ap=Au and pecXy
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Problem formulation

» Toric maximum likelihood estimation:
1. Matrix A € Z9*" full rank with row(A) > (1,...,1)
— Toric variety cXu

2. Data vector u € RZ4 with > ju; =1
— Affine subspace Y4 ,

Definition (Maximum likelihood estimate (MLE))

The maximum likelihood estimate (if 3) for the data pair (A, u) is the
unique positive real point in cXy N Yy .

> cXa N A,_1 = log-affine statistical model
> cXa N Y, = complex critical points of the log likelihood function

Ap=Au and pecXy

> ¢ generic = deg(Xa)-many critical points
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Running example:
> Two independent binary random variables

X1 € {1,2} Xo € {1,2}
w.p. 01,02 wW.p. @1, %2
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Running example:
> Two independent binary random variables

X1 € {1,2} and Xo € {1,2}
w.p. 01,02 wW.p. @1, %2
1 1 00
1 111
<P11 P12>:<91d>1 019252) A 0 011 wlo 1 0 1
P21 P22 Orp1 0202 1010 00 11
01 01

with ker(A) = span(1,—1,-1,1)
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Running example:
> Two independent binary random variables

X1 € {1,2} and Xo € {1,2}
w.p. 01,02 wW.p. @1, %2
1 1 00
1 111
<P11 P12>:<91d>1 019252) A 0 011 wlo 1 0 1
P21 P22 Orp1 0202 1010 00 11
01 01

with ker(A) = span(1,—1,-1,1)

> Xa = V({(p11p22 — p12p21)) hypersurface of 2 x 2 singular matrices
> Ya, = u+ A(1,-1,-1,1) with A € C, an affine line
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Running example:
> Two independent binary random variables

X1 € {1,2} and Xo € {1,2}
w.p. 01,02 wW.p. @1, %2
1 1 00
1 111
<P11 P12>:<91d>1 019252) A 0 011 wlo 1 0 1
P21 P22 Orp1 0202 1010 00 11
01 01

with ker(A) = span(1,—1,-1,1)

> Xa = V({(p11p22 — p12p21)) hypersurface of 2 x 2 singular matrices
> Ya, = u+ A(1,-1,-1,1) with A € C, an affine line

w~> 2 critical points for generic u, ¢
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Puiseux Series and Valuations

1. Field of Puiseux series K := C{{t}}

e @]
K>su(t) = Z Ct,
k=0

with ¢, € C and oy € Q with bounded denominator.

1t 2%2
E.g. (t t4> eK
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Puiseux Series and Valuations

1. Field of Puiseux series K := C{t}}

a0
Kau(t)= )] at™,
k=0

with ¢, € C and a, € Q with bounded denominator.

2. Valuation val : K* - R

o0

u(t) = Z ckt® —— min(ayg : cx # 0)
k=0

I 02
E.g. val (t t4> = (1 4>
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Tropical toric maximum likelihood estimation

1. Matrix A € 9"
— Toric variety Xa < (K*)"
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Tropical toric maximum likelihood estimation

1. Matrix A € 9"
— Toric variety Xa < (K*)"

2. Data u(t) e K"
— Affine subspace Ya , = u(t) + ker(A)
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Tropical toric maximum likelihood estimation

1. Matrix A e Z9*"
— Toric variety Xa < (K*)"

2. Data u(t) e K"
— Affine subspace Ya , = u(t) + ker(A)

Definition (Tropical critical points)

The tropical critical points for the pair (A, u(t)) are the valuations
val(cXa N Ya ) of the critical points, counted with multiplicity.
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Running example:
> Two independent binary random variables

1111 | e
A=[0 1 0 1 u(t)=<t t4>
0011
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Running example:
> Two independent binary random variables

1111 | e
A=[0 1 0 1 u(t)=<t t4>
0011

Find critical points cX4 N Ya , by solving a quadratic equation

pr=0+4a,—a,—a,a)+... and po=(1,t5t,8-t3)+...

with «, 8 some function of ¢
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Running example:
> Two independent binary random variables

1111 | e
A=[0 1 0 1 u(t)=<t t4)
0011

Find critical points cX4 N Ya , by solving a quadratic equation

pr=0+4a,—a,—a,a)+... and po=(1,t5t,8-t3)+...

with «, 8 some function of ¢

= Tropical critical points:

al = Val(ﬁl) = (0707070> and 62 = Val(ﬁ2> = (0727 173)
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Fundamental theorem of tropical geometry

> Let f =Y oz cax® € K[x, . X1

Then the following two subsets of R” coincide:

1. {val(x):xe V(f) c (K*)"}

2. {xeR": miZn (val(ca) + @ x) achieves min at least twice}
a€EZ"

This is the tropical hypersurface trop(V/(f)).
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Fundamental theorem of tropical geometry

> Let f =3 o0 cax® e K[t xEL.
Then the following two subsets of R" coincide:

1. {val(x) : xe V(f) c (K*)"}

2. {xeR": miZn (val(ca) + a”x) achieves min at least twice}
Q€EZL"
This is the tropical hypersurface trop(V/(f)).
Example:

trop(V/({p11p22 — p12pP21)))

={x¢€ R*: min{x11 + Xx22, X12 + X21} achieves min at least twice}
={x€ R* : xq11 + x00 = x12 + X1}

= row(A)
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Fundamental theorem of tropical geometry

> Let f =Y oz cax® € K[, .. 5.

Then the following two subsets of R” coincide:

1. {val(x):xe V(f) c (K*)"}

2. {xeR": miZn (val(ca) + @ x) achieves min at least twice}
Q€EZ"

This is the tropical hypersurface trop(V/(f)).

> Let | € K[x{",...,xE]. Then the following two subsets of R” coincide:

1. {val(x):xe V() c (K*)"}
2. [trop(V(f)).

fel

This is the tropical variety trop(V/(/)).
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Fundamental theorem of tropical geometry

> Let f =3 o0 cax® e K[xi ... xE1.

rtn

Then the following two subsets of R" coincide:

1. {val(x) : xe V(f) c (K*)"}

2. {xeR": miZn (val(ca) + a”x) achieves min at least twice}
a€eZn

This is the tropical hypersurface trop(V/(f)).

> Let | € K[x{",...,xZ]. Then the following two subsets of R" coincide:

1. {val(x) : xe V(I) c (K*)"}
2. [\trop(V(f)).

fel

This is the tropical variety trop(V/(/)).
To remember: Tropical varieties are nice polyhedral complexes.
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Tropical intersections

(&)"
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Tropical intersections

(K£)" (K)"
Y
o ﬂ ()
H °
l val
RTL
Mst °
_) [ ]
L]

Maclagan—Sturmfels: for generic c, this diagram commutes

i = — = = Ty
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(I(*)‘Il (K*)n

L]

N

— °
[ ]
l val
R?’L

mst °

_> L ]
L ]
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(K*)‘Il (K*)n

The tropical critical points for data (A, u(t)) are the points in the stable
intersection trop(cXa) Nt trop(Ya,u), counted with multiplicity.
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The tropical critical points for data (A, u(t)) are the points in the stable
intersection trop(cXa) Nt trop(Ya,,), counted with multiplicity.

= Tropical toric variety trop(Xa) = row(A)
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The tropical critical points for data (A, u(t)) are the points in the stable
intersection trop(cXa) Nt trop(Ya,,), counted with multiplicity.

= Tropical toric variety trop(Xa) = row(A)
> Tropical affine space L, := trop(Ya, ) = polyhedral complex, with
combinatorics governed by the matroid of A:

M(A) = {r < [n] : det(A;) # 0}
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The tropical critical points for data (A, w) are the points in the stable
intersection row(A) N La ., counted with multiplicity.

= Tropical toric variety trop(Xa) = row(A)
= Tropical affine space L, := trop(Ya ) = polyhedral complex, with
combinatorics governed by the matroid of A:

M(A) = {r < [n] : det(A,) # 0}
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Main result

» Three definitions (1)
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Main result

» Three definitions (1)

Definition (7-operator)

To each 7 € M(A) we associate the T-operator (- )7 : R” — R”
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Main result

» Three definitions (1)

Definition (7-operator)
To each 7 € M(A) we associate the T-operator (-)(7) : R” — R", defined
entrywise as

XJ.(T) =min(x; st.7—j+ieM(A) forjer,
X ——>
o _ max(Xj(T) st.7T—j+ieM(A) forie[n]\r
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Main result

» Three definitions (1)

Definition (7-operator)

To each 7 € M(A) we associate the T-operator (-)(™) : R” — R", defined
entrywise as

XJ.(T) =min(x; st.7—j+ieM(A) forjer,
X —>
7 = max(x7 st.7—j+ i€ M(A) forie[n]\r

Running example: Let w = val(1, t?,t,t*) = (0,2,1,4) and 7 = 123

(

wy ' = min(wi, wy) WlT) =0
WZ(T) = min(wa, wg) WZ(T) =2
W?ET) = min(ws, wy) 7 wng) =1
WLET) = max(wl(T), W2(T), W3(T)) WZET) =2
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Main result

» Three definitions (1)

Definition (7-operator)

To each 7 € M(A) we associate the T-operator (-)(™) : R” — R", defined
entrywise as

XJ.(T) =min(x; st.7—j+ieM(A) forjer,
X —>
7 = max(x7 st.7—j+ i€ M(A) forie[n]\r

Running example: Let w = val(1, t?,t,t*) = (0,2,1,4) and 7 = 234

(1)

wy = max(wz(T), W:,ET), WiT)) Wl(T) =0
WZ(T) = min(w1, wa) WZ(T) =0
W?ET) = min(wy, w3) 7 wng) =

WLET) = min(wg, wg) WZET) =0
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» Three definitions (2)
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» Three definitions (2)
= Subdivision of A induced by h e R"

Qe (e s
Qe (e s e P ae
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» Three definitions (2)
= Subdivision of A induced by h e R"”

Ge (e o o

Definition (Regular subdivision)

The regular subdivision A(A, h) of the point configuration A induced by
height function h € R” is the collection of cells o < [n] for which
conv((3) | i € o) is a lower face of conv((}) | i € [n]).
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» Three definitions (2)
= Subdivision of A induced by h e R"”

Ge (e o o

Definition (Regular subdivision)

The regular subdivision A(A, h) of the point configuration A induced by
height function h € R” is the collection of cells o < [n] for which
conv((3) | i € o) is a lower face of conv((}) | i € [n]).

> Regular triangulation (write X) if A is simplicial complex
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» Three definitions (2)
= Subdivision of A induced by h e R"”

Ge (e o o

Definition (Regular subdivision)

The regular subdivision A(A, h) of the point configuration A induced by
height function h € R” is the collection of cells o < [n] for which
conv((3) | i € o) is a lower face of conv((}) | i € [n]).

> Regular triangulation (write X) if A is simplicial complex
> Kushnirenko: deg(Xa) = vol(conv(A)) = > s vol(T)
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» Three definitions (2)
= Subdivision of A induced by h e R"”

Ge (e o o

Definition (Regular subdivision)

The regular subdivision A(A, h) of the point configuration A induced by
height function h € R” is the collection of cells o < [n] for which
conv((3) | i € o) is a lower face of conv((}) | i € [n]).

> Regular triangulation (write X) if A is simplicial complex
> Kushnirenko: deg(Xa) = vol(conv(A)) = > s vol(T)
> Maximal simplex 7 € ¥ is a basis 7 € M(A)
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» Three definitions (3)

Definition (Compatible)
A vector w € R” and regular triangulation ¥~ of A are called compatible if
for every 7 € ¥ we have 7 € o € A(A, —w(7)).
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» Three definitions (3)

Definition (Compatible)
A vector w € R" and regular triangulation X of A are called compatible if
for every 7 € ¥ we have 7 € o € A(A, —w(7)).

Running example: check w = (0,2,1,4) and ¥ = {123,234}

) —w(™)
T=123 =123 € A(A, —w()
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» Three definitions (3)

Definition (Compatible)
A vector w € R" and regular triangulation X of A are called compatible if
for every 7 € ¥ we have 7 € o € A(A, —w(7)).

Running example: check w = (0,2, 1,4) and ¥ = {123,234}

helght — —w(™)
T=234 T C 1234 € A(A, —w™)
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» Three definitions (3)

Definition (Compatible)
A vector w € R" and regular triangulation X of A are called compatible if
for every 7 € ¥ we have 7 € o € A(A, —w(7)).

Running example: w = (0,2,1,4) and ¥ = {123,234} are compatible
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» Main result

Theorem (Boniface-Devriendt-H)
If X and w are compatible, then the tropical critical points for the data
pair (A, w) are given by the vectors

4(r) == AT(AD) 72w with mult. vol(r),

T

where T runs over maximal simplices in ¥.
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» Main result

Theorem (Boniface-Devriendt-H)

If X and w are compatible, then the tropical critical points for the data
pair (A, w) are given by the vectors

4(r) == AT(AD)"*w)  with mult. vol(r),

where T runs over maximal simplices in ¥.

Running example: Since w and X are compatible, we get

~ 1111\7/100\"1/0 -
as) = (3491) (189) (3) = ©2:1,3) with mute. 1
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» Main result

Theorem (Boniface-Devriendt-H)

If X and w are compatible, then the tropical critical points for the data
pair (A, w) are given by the vectors

G(r) == AT(AD) 72w with mult. vol(7),

where T runs over maximal simplices in ¥.

Sanity check:
1. > oy mult(g(7)) = deg(Xa), by Kushnirenko's theorem
2. q(7) € row(A), by definition
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Running example:
> Two independent binary random variables

1111
A=10 1 0 1 Wz(cl) i)
0 011
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Running example:
> Two independent binary random variables

01 W:((l) i)
11

e Step 1: For some triangulation X check compatibility

) height —w (™) A(A, w(T))
N -‘
T=123 . T= 123 € A(A —w(™)
v height —w(™) _w(T))

0

I_SI@'

T C 1234 € A(A, —w™)
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Running example:
> Two independent binary random variables

1111
A=|0 1 0 1 w = <(1) i)
0 011
e Step 1: For some triangulation ¥ check compatibility
e Step 2: If ¥ v/, compute tropical critical points:
) (139
-1

i i (‘21)):(0,2,1,3) mult=1
i)T(i ) (§)=(0,0,0,0) mult=1

00
10
01
10
01
11
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Running example:
> Two independent binary random variables

Vel{vi,w} and W e {w,w}
1111

A=10 1 0 1 Wz(cl) i)

0011

e Step 1: For some triangulation X check compatibility

e Step 2: If ¥ //, compute tropical critical points:

0

Serkan Hosten Tropical Toric MLE

)71(%) =(0,2,1,3) mult=1

) (8)=(0,0,0,0) mult=1

18/20



» When does our approach work?

Theorem (Boniface-Devriendt-H)
For any A and ¥, the compatible tropical data vectors w form a
polyhedral fan Fay < R".

Serkan Hosten Tropical Toric MLE 19/20



» When does our approach work?

Theorem (Boniface-Devriendt-H)

For any A and ¥, the compatible tropical data vectors w form a
polyhedral fan Fas < R". Thus, for a given A, the tropical data vectors
w for which our theorem finds all critical points is the support of a
polyhedral fan Fa = Js Fax. If M(A) is uniform, then this fan contains
a full-dimensional cone, but this is not true in general.
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» When does our approach work?

Theorem (Boniface-Devriendt-H)

For any A and ¥, the compatible tropical data vectors w form a
polyhedral fan Fas < R". Thus, for a given A, the tropical data vectors
w for which our theorem finds all critical points is the support of a
polyhedral fan Fa = Js Fax. If M(A) is uniform, then this fan contains
a full-dimensional cone, but this is not true in general.

> We know how to find compatible X explicitly if:
1. w has many zeroes: zero-set [n]\ supp(w) contains a basis
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» When does our approach work?

Theorem (Boniface-Devriendt-H)

For any A and ¥, the compatible tropical data vectors w form a
polyhedral fan Fas < R". Thus, for a given A, the tropical data vectors
w for which our theorem finds all critical points is the support of a
polyhedral fan Fa = Js Fax. If M(A) is uniform, then this fan contains
a full-dimensional cone, but this is not true in general.

> We know how to find compatible X explicitly if:
1. w has many zeroes: zero-set [n]\ supp(w) contains a basis
v any regular ¥ and get g = 0 with mult deg(Xa)
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» When does our approach work?

Theorem (Boniface-Devriendt-H)

For any A and ¥, the compatible tropical data vectors w form a
polyhedral fan Fas < R". Thus, for a given A, the tropical data vectors
w for which our theorem finds all critical points is the support of a
polyhedral fan Fa = Js Fax. If M(A) is uniform, then this fan contains
a full-dimensional cone, but this is not true in general.

> We know how to find compatible X explicitly if:

1. w has many zeroes: zero-set [n]\ supp(w) contains a basis
v any regular ¥ and get g = 0 with mult deg(Xa)

2. M(A) is uniform and entries of w are 'not too spread out’
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» When does our approach work?

Theorem (Boniface-Devriendt-H)

For any A and ¥, the compatible tropical data vectors w form a
polyhedral fan Fas < R". Thus, for a given A, the tropical data vectors
w for which our theorem finds all critical points is the support of a
polyhedral fan Fa = Js Fax. If M(A) is uniform, then this fan contains
a full-dimensional cone, but this is not true in general.

> We know how to find compatible X explicitly if:

1. w has many zeroes: zero-set [n]\ supp(w) contains a basis
v any regular ¥ and get g = 0 with mult deg(Xa)

2. M(A) is uniform and entries of w are 'not too spread out’
v any X that refines A(A, x(supp(w)))
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» Sketch of the proof:

Step 1: Main and most difficult technical result:

For every 7 € M(A), tropical affine space La, contains the cone

C. = w™ + pos(e; | i € [n]\7).
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» Sketch of the proof:

Step 1: Main and most difficult technical result:

For every 7 € M(A), tropical affine space La, contains the cone

C. = w™ + pos(e; | i € [n]\7).

Step 2: Magical but ‘easy’ technical result:

The cone C; intersects row(A) in g(7) iff 7 € o € A(A, —w().
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» Sketch of the proof:

Step 1: Main and most difficult technical result:

For every 7 € M(A), tropical affine space La, contains the cone

C. = w™ + pos(e; | i € [n]\7).

Step 2: Magical but ‘easy’ technical result:

The cone C; intersects row(A) in g(7) iff 7 € o € A(A, —w().

Step 3: Rest follows by bookkeeping with *

deg(Xa) = vol(conv(A)) = > s mult(q(7)).

Serkan Hosten Tropical Toric MLE

20/20



