Tropical Toric Maximum Likelihood Estimation

Serkan Hoşten

Mathematics Department San Francisco State University

21 July 2025

Joint Work

Emma Boniface (UC Berkeley) and Karel Devriendt (MPI CBG Dresden)

arXiv:2404.10567

- \triangleright Two independent binary random variables X_1 and X_2
- Data from 100/1000 observations
 ⊳

$$u = \begin{pmatrix} 70 & 9 \\ 20 & 1 \end{pmatrix} \quad \begin{pmatrix} 919 & 16 \\ 63 & 2 \end{pmatrix}$$

ightharpoonup Maximum likelihood estimate \hat{p} maximizes $\prod p_i^{u_i}$ among all rank-one joint distribution matrices p

$$\hat{p} = \begin{pmatrix} 71.1 & 7.9 \\ 18.9 & 2.1 \end{pmatrix} \quad \begin{pmatrix} 918.17 & 16.83 \\ 63.83 & 1.17 \end{pmatrix}$$

2 / 20

Serkan Hosten Tropical Toric MLE

- \triangleright Two independent binary random variables X_1 and X_2
- Data from 100/1000/10000 observations

$$u = \begin{pmatrix} 70 & 9 \\ 20 & 1 \end{pmatrix} \quad \begin{pmatrix} 919 & 16 \\ 63 & 2 \end{pmatrix} \quad \begin{pmatrix} 9834 & 38 \\ 123 & 5 \end{pmatrix}$$

ightharpoonup Maximum likelihood estimate \hat{p} maximizes $\prod p_i^{u_i}$ among all rank-one joint distribution matrices p

$$\hat{p} = \begin{pmatrix} 71.1 & 7.9 \\ 18.9 & 2.1 \end{pmatrix} \quad \begin{pmatrix} 918.1 & 16.8 \\ 63.8 & 1.1 \end{pmatrix} \quad \begin{pmatrix} 9827.8 & 42.4 \\ 129.2 & 6 \end{pmatrix}$$

Serkan Hoşten Tropical Toric MLE

- \triangleright Two independent binary random variables X_1 and X_2
- Data from 100/1000/10000/... observations

$$u = \begin{pmatrix} 70 & 9 \\ 20 & 1 \end{pmatrix} \quad \begin{pmatrix} 919 & 16 \\ 63 & 2 \end{pmatrix} \quad \begin{pmatrix} 9834 & 38 \\ 123 & 5 \end{pmatrix} \quad \approx \textit{N} \begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix} \quad (\textit{small } t)$$

ightharpoonup Maximum likelihood estimate \hat{p} maximizes $\prod p_i^{u_i}$ among all rank-one joint distribution matrices p

$$\hat{p} = \begin{pmatrix} 71.1 & 7.9 \\ 18.9 & 2.1 \end{pmatrix} \quad \begin{pmatrix} 918.1 & 16.8 \\ 63.8 & 1.1 \end{pmatrix} \quad \begin{pmatrix} 9827.8 & 42.4 \\ 129.2 & 6 \end{pmatrix} \quad \begin{pmatrix} 1 & t^2 \\ t & t^3 \end{pmatrix}$$

Serkan Hoşten Tropical Toric MLE

- \triangleright Two independent binary random variables X_1 and X_2
- Data from N observations

$$u = \begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix}$$

ightharpoonup Maximum likelihood estimate \hat{p} maximizes $\prod p_i^{u_i}$ among all rank-one joint distribution matrices p

$$\widehat{p} = \begin{pmatrix} 1 & t^2 \\ t & t^3 \end{pmatrix}$$

- \triangleright Two independent binary random variables X_1 and X_2
- Data from N observations

$$u = \begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix}$$

ightharpoonup Maximum likelihood estimate \hat{p} maximizes $\prod p_i^{u_i}$ among all rank-one joint distribution matrices p

$$\widehat{p} = \begin{pmatrix} 1 & t^2 \\ t & t^3 \end{pmatrix}$$

History:

- 2022 Agostini–BSKFT: tropical ML for linear models
- 2024 Ardila-Eur-Penaguiao: tropical ML for matroids
- 2024 Boniface-Devriendt-H.: tropical ML for toric models
- 2025 Friedman-Sturmfels-Wiesmann: tropical ML for squared lin. models

2 / 20

▶ Toric maximum likelihood estimation:

▶ Toric maximum likelihood estimation:

- 1. Matrix $A \in \mathbb{Z}^{d \times n}$ full rank with $row(A) \ni (1, \dots, 1)$
- \rightarrow Toric variety X_A

$$X_A = V(\langle x^{\alpha} - x^{\beta} : \alpha, \beta \in \mathbb{N}^n \text{ s.t. } A(\alpha - \beta) = 0 \rangle) \subset (\mathbb{C}^*)^n$$

Serkan Hoşten

▶ Toric maximum likelihood estimation:

- 1. Matrix $A \in \mathbb{Z}^{d \times n}$ full rank with $row(A) \ni (1, \dots, 1)$
- \rightarrow Toric variety cX_A

$$cX_A = V(\langle c^{\beta}x^{\alpha} - c^{\alpha}x^{\beta} : \alpha, \beta \in \mathbb{N}^n \text{ s.t. } A(\alpha - \beta) = 0 \rangle) \subset (\mathbb{C}^*)^n$$

▶ Toric maximum likelihood estimation:

- 1. Matrix $A \in \mathbb{Z}^{d \times n}$ full rank with $row(A) \ni (1, \dots, 1)$
- \rightarrow Toric variety cX_A
- 2. Data vector $u \in \mathbb{Q}_{\geqslant 0}^n$ with $\sum u_i = 1$
- \rightarrow Affine subspace $Y_{A,u}$

$$Y_{A,u} = u + \ker(A)$$

- ▶ Toric maximum likelihood estimation:
- 1. Matrix $A \in \mathbb{Z}^{d \times n}$ full rank with $row(A) \ni (1, \dots, 1)$
- \rightarrow Toric variety cX_A
- 2. Data vector $u \in \mathbb{R}^n_{\geqslant 0}$ with $\sum u_i = 1$
- \rightarrow Affine subspace $Y_{A,u}$

Definition (Maximum likelihood estimate (MLE))

The maximum likelihood estimate (if \exists) for the data pair (A, u) is the unique positive real point in $cX_A \cap Y_{A,u}$.

- ▶ Toric maximum likelihood estimation:
- 1. Matrix $A \in \mathbb{Z}^{d \times n}$ full rank with $row(A) \ni (1, \dots, 1)$
- \rightarrow Toric variety cX_A
- 2. Data vector $u \in \mathbb{R}^n_{\geq 0}$ with $\sum u_i = 1$
- \rightarrow Affine subspace $Y_{A,u}$

Definition (Maximum likelihood estimate (MLE))

The maximum likelihood estimate (if \exists) for the data pair (A, u) is the unique positive real point in $cX_A \cap Y_{A,u}$.

$$ho cX_A \cap \Delta_{n-1} =$$
log-affine statistical model

 $ho cX_A \cap Y_{A,u} =$ complex critical points of the log likelihood function

$$Ap = Au$$
 and $p \in cX_A$

- Toric maximum likelihood estimation:
- 1. Matrix $A \in \mathbb{Z}^{d \times n}$ full rank with row $(A) \ni (1, \dots, 1)$
- \rightarrow Toric variety cX_A
- 2. Data vector $u \in \mathbb{R}^n_{>0}$ with $\sum u_i = 1$
- \rightarrow Affine subspace $Y_{A,\mu}$

Definition (Maximum likelihood estimate (MLE))

The maximum likelihood estimate (if \exists) for the data pair (A, u) is the unique positive real point in $cX_A \cap Y_{A,u}$.

$$ho cX_A \cap \Delta_{n-1} =$$
log-affine statistical model

 $ightharpoonup cX_A \cap Y_{A,u} = \text{complex critical points of the log likelihood function}$

$$Ap = Au$$
 and $p \in cX_A$

ho c generic $\Longrightarrow \deg(X_A)$ -many critical points

> Two independent binary random variables

$$X_1 \in \{1, 2\}$$
 and $X_2 \in \{1, 2\}$ w.p. θ_1, θ_2 w.p. ϕ_1, ϕ_2

> Two independent binary random variables

$$X_1 \in \{1, 2\}$$
 and $X_2 \in \{1, 2\}$ w.p. θ_1, θ_2 and ϕ_1, ϕ_2

$$\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} \theta_1 \phi_1 & \theta_1 \phi_2 \\ \theta_2 \phi_1 & \theta_2 \phi_2 \end{pmatrix} \longrightarrow A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

with
$$ker(A) = span(1, -1, -1, 1)$$

Serkan Hoşten Tropical Toric MLE

> Two independent binary random variables

$$X_1 \in \{1, 2\}$$
 and $X_2 \in \{1, 2\}$ w.p. θ_1, θ_2 and ϕ_1, ϕ_2

$$\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} \theta_1 \phi_1 & \theta_1 \phi_2 \\ \theta_2 \phi_1 & \theta_2 \phi_2 \end{pmatrix} \longrightarrow A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

with
$$ker(A) = span(1, -1, -1, 1)$$

 $> X_A = V(\langle p_{11}p_{22} - p_{12}p_{21}\rangle)$ hypersurface of 2 × 2 singular matrices

 $ightharpoonup Y_{A,u} = u + \lambda(1,-1,-1,1)$ with $\lambda \in \mathbb{C}$, an affine line

Serkan Hosten Tropical Toric MLE

> Two independent binary random variables

$$\begin{array}{ccc} \textbf{X}_1 \in \{1,2\} \\ \textbf{w.p.} & \theta_1,\theta_2 \end{array} \quad \text{and} \quad \begin{array}{c} \textbf{X}_2 \in \{1,2\} \\ \textbf{w.p.} & \phi_1,\phi_2 \end{array}$$

$$\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} \theta_1 \phi_1 & \theta_1 \phi_2 \\ \theta_2 \phi_1 & \theta_2 \phi_2 \end{pmatrix} \longrightarrow A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

with
$$ker(A) = span(1, -1, -1, 1)$$

 $> X_A = V(\langle p_{11}p_{22} - p_{12}p_{21}\rangle)$ hypersurface of 2 × 2 singular matrices

 $ightharpoonup Y_{A,u} = u + \lambda(1,-1,-1,1)$ with $\lambda \in \mathbb{C}$, an affine line

 \rightsquigarrow 2 critical points for generic u, c

Serkan Hosten Tropical Toric MLE

Puiseux Series and Valuations

1. Field of Puiseux series $K := \mathbb{C}\{\{t\}\}\$

$$K\ni u(t)=\sum_{k=0}^{\infty}c_kt^{\alpha_k},$$

with $c_k \in \mathbb{C}$ and $\alpha_k \in \mathbb{Q}$ with bounded denominator.

E.g.
$$\begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix} \in K^{2 \times 2}$$

Puiseux Series and Valuations

1. Field of Puiseux series $K := \mathbb{C}\{\{t\}\}\$

$$K \ni u(t) = \sum_{k=0}^{\infty} c_k t^{\alpha_k},$$

with $c_k \in \mathbb{C}$ and $\alpha_k \in \mathbb{Q}$ with bounded denominator.

2. Valuation val : $K^* \to \mathbb{R}$

$$u(t) = \sum_{k=0}^{\infty} c_k t^{\alpha_k} \longmapsto \min(\alpha_k : c_k \neq 0)$$

E.g. val
$$\begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix}$$

Tropical toric maximum likelihood estimation

- 1. Matrix $A \in \mathbb{Z}^{d \times n}$
- ightarrow Toric variety $X_A \subset (K^*)^n$

Tropical toric maximum likelihood estimation

- 1. Matrix $A \in \mathbb{Z}^{d \times n}$
- \rightarrow Toric variety $X_A \subset (K^*)^n$
- 2. Data $u(t) \in K^n$
- \rightarrow Affine subspace $Y_{A,u} = u(t) + \ker(A)$

Tropical toric maximum likelihood estimation

- 1. Matrix $A \in \mathbb{Z}^{d \times n}$
- \rightarrow Toric variety $X_A \subset (K^*)^n$
- 2. Data $u(t) \in K^n$
- \rightarrow Affine subspace $Y_{A,u} = u(t) + \ker(A)$

Definition (Tropical critical points)

The **tropical critical points** for the pair (A, u(t)) are the valuations $val(cX_A \cap Y_{A,u})$ of the critical points, counted with multiplicity.

Serkan Hoşten

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad u(t) = \begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix}$$

> Two independent binary random variables

$$A = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 \end{pmatrix} \qquad u(t) = egin{pmatrix} 1 & t^2 \ t & t^4 \end{pmatrix}$$

Find critical points $cX_A \cap Y_{A,u}$ by solving a quadratic equation

$$\widehat{
ho}_1 = (1 + lpha, -lpha, -lpha, -lpha, -lpha, -lpha, lpha) + \dots$$
 and $\widehat{
ho}_2 = (1, t^2, t, eta \cdot t^3) + \dots$

with α, β some function of c

10 / 20

Serkan Hoşten Tropical Toric MLE

> Two independent binary random variables

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad u(t) = \begin{pmatrix} 1 & t^2 \\ t & t^4 \end{pmatrix}$$

Find critical points $cX_A \cap Y_{A,u}$ by solving a quadratic equation

$$\widehat{p}_1 = (1 + \alpha, -\alpha, -\alpha, \alpha) + \dots$$
 and $\widehat{p}_2 = (1, t^2, t, \beta \cdot t^3) + \dots$

with α, β some function of c

$$\widehat{q}_1 = \mathsf{val}(\widehat{p}_1) = (0, 0, 0, 0)$$
 and $\widehat{q}_2 = \mathsf{val}(\widehat{p}_2) = (0, 2, 1, 3)$

$$ightharpoonup$$
 Let $f = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} x^{\alpha} \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}].$

Then the following two subsets of \mathbb{R}^n coincide:

- 1. $\overline{\{\operatorname{val}(x): x \in V(f) \subset (K^*)^n\}}$
- 2. $\{x \in \mathbb{R}^n : \min_{\alpha \in \mathbb{Z}^n} (\mathsf{val}(c_\alpha) + \alpha^T x) \text{ achieves min at least twice} \}$

This is the **tropical hypersurface** trop(V(f)).

Serkan Hoşten

$$ightharpoonup$$
 Let $f = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} x^{\alpha} \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}].$

Then the following two subsets of \mathbb{R}^n coincide:

- 1. $\overline{\{\operatorname{val}(x): x \in V(f) \subset (K^*)^n\}}$
- 2. $\{x \in \mathbb{R}^n : \min_{\alpha \in \mathbb{Z}^n} (\mathsf{val}(c_\alpha) + \alpha^T x) \text{ achieves min at least twice} \}$

This is the **tropical hypersurface** trop(V(f)).

Example:

$$\begin{aligned} &\operatorname{trop}(V(\langle p_{11}p_{22}-p_{12}p_{21}\rangle)) \\ &= \{x \in \mathbb{R}^4 : \min\{x_{11}+x_{22}, x_{12}+x_{21}\} \text{ achieves min at least twice}\} \\ &= \{x \in \mathbb{R}^4 : x_{11}+x_{22}=x_{12}+x_{21}\} \\ &= \operatorname{row}(A) \end{aligned}$$

Serkan Hoşten

$$ightharpoonup$$
 Let $f = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} x^{\alpha} \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}].$

Then the following two subsets of \mathbb{R}^n coincide:

- 1. $\overline{\{ \operatorname{val}(x) : x \in V(f) \subset (K^*)^n \}}$
- 2. $\{x \in \mathbb{R}^n : \min_{\alpha \in \mathbb{Z}^n} (\mathsf{val}(c_\alpha) + \alpha^T x) \text{ achieves min at least twice} \}$

This is the **tropical hypersurface** trop(V(f)).

ightharpoonup Let $I \subseteq K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then the following two subsets of \mathbb{R}^n coincide:

- 1. $\{\operatorname{val}(x): x \in V(I) \subset (K^*)^n\}$
- 2. $\bigcap \operatorname{trop}(V(f))$.

This is the **tropical variety** trop(V(I)).

$$ightharpoonup$$
 Let $f = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} x^{\alpha} \in K[x_1^{\pm 1}, \dots, x_n^{\pm 1}].$

Then the following two subsets of \mathbb{R}^n coincide:

- 1. $\{\operatorname{val}(x): x \in V(f) \subset (K^*)^n\}$
- 2. $\{x \in \mathbb{R}^n : \min_{\alpha \in \mathbb{Z}^n} (\operatorname{val}(c_\alpha) + \alpha^T x) \text{ achieves min at least twice} \}$

This is the **tropical hypersurface** trop(V(f)).

ightharpoonup Let $I \subseteq K[x_1^{\pm}, \dots, x_n^{\pm}]$. Then the following two subsets of \mathbb{R}^n coincide:

1.
$$\overline{\{\operatorname{val}(x): x \in V(I) \subset (K^*)^n\}}$$

2.
$$\bigcap_{f \in I} \operatorname{trop}(V(f))$$
.

This is the **tropical variety** trop(V(I)).

To remember: Tropical varieties are nice polyhedral complexes.

Tropical intersections

Tropical intersections

Maclagan-Sturmfels: for generic c, this diagram commutes

Corollary

The tropical critical points for data (A, u(t)) are the points in the stable intersection trop(cX_A) \cap_{st} trop($Y_{A,u}$), counted with multiplicity.

Corollary

The tropical critical points for data (A, u(t)) are the points in the stable intersection $\operatorname{trop}(cX_A) \cap_{\operatorname{st}} \operatorname{trop}(Y_{A,u})$, counted with multiplicity.

ightharpoonup Tropical toric variety $\operatorname{trop}(X_A) = \operatorname{row}(A)$

Corollary

The tropical critical points for data (A, u(t)) are the points in the stable intersection trop(cX_A) \cap_{st} trop($Y_{A,u}$), counted with multiplicity.

- \triangleright Tropical toric variety trop(X_A) = row(A)
- \triangleright Tropical affine space $L_{A,w} := \operatorname{trop}(Y_{A,u}) = \operatorname{polyhedral}$ complex, with combinatorics governed by the matroid of A:

$$M(A) = \{ \tau \subseteq [n] : \det(A_{\tau}) \neq 0 \}$$

Corollary

The tropical critical points for data (A, w) are the points in the stable intersection $row(A) \cap_{st} L_{A,w}$, counted with multiplicity.

- ightharpoonup Tropical toric variety trop(X_A) = row(A)
- ightharpoonup Tropical affine space $L_{A,w} := \operatorname{trop}(Y_{A,u}) = \operatorname{polyhedral}$ complex, with combinatorics governed by the matroid of A:

$$M(A) = \{ \tau \subseteq [n] : \det(A_{\tau}) \neq 0 \}$$

► Three definitions (1)

▶ Three definitions (1)

Definition (τ -operator)

To each $\tau \in M(A)$ we associate the τ -operator $(\cdot)^{(\tau)} : \mathbb{R}^n \to \mathbb{R}^n$

▶ Three definitions (1)

Definition (τ -operator)

To each $\tau \in M(A)$ we associate the τ -operator $(\,\cdot\,)^{(\tau)}: \mathbb{R}^n \to \mathbb{R}^n$, defined entrywise as

$$x \longmapsto \begin{cases} x_j^{(\tau)} = \min(x_i \quad \text{s.t. } \tau - j + i \in M(A)) & \text{for } j \in \tau, \\ x_i^{(\tau)} = \max(x_j^{(\tau)} \quad \text{s.t. } \tau - j + i \in M(A)) & \text{for } i \in [n] \setminus \tau \end{cases}$$

Serkan Hoşten Tropical Toric MLE

▶ Three definitions (1)

Definition (τ -operator)

To each $\tau \in M(A)$ we associate the τ -operator $(\cdot)^{(\tau)} : \mathbb{R}^n \to \mathbb{R}^n$, defined entrywise as

$$x \longmapsto \begin{cases} x_j^{(\tau)} = \min(x_i \text{ s.t. } \tau - j + i \in M(A)) & \text{for } j \in \tau, \\ x_i^{(\tau)} = \max(x_j^{(\tau)} \text{ s.t. } \tau - j + i \in M(A)) & \text{for } i \in [n] \backslash \tau \end{cases}$$

Running example: Let $w = \text{val}(1, t^2, t, t^4) = (0, 2, 1, 4)$ and $\tau = 123$

$$\begin{cases} w_1^{(\tau)} = \min(w_1, w_4) \\ w_2^{(\tau)} = \min(w_2, w_4) \\ w_3^{(\tau)} = \min(w_3, w_4) \\ w_4^{(\tau)} = \max(w_1^{(\tau)}, w_2^{(\tau)}, w_3^{(\tau)}) \end{cases} \longrightarrow \begin{cases} w_1^{(\tau)} = 0 \\ w_2^{(\tau)} = 2 \\ w_3^{(\tau)} = 1 \\ w_4^{(\tau)} = 2 \end{cases}$$

▶ Three definitions (1)

Definition (τ -operator)

To each $\tau \in M(A)$ we associate the τ -operator $(\cdot)^{(\tau)} : \mathbb{R}^n \to \mathbb{R}^n$, defined entrywise as

$$x \longmapsto \begin{cases} x_j^{(\tau)} = \min(x_i \text{ s.t. } \tau - j + i \in M(A)) & \text{for } j \in \tau, \\ x_i^{(\tau)} = \max(x_j^{(\tau)} \text{ s.t. } \tau - j + i \in M(A)) & \text{for } i \in [n] \backslash \tau \end{cases}$$

Running example: Let $w = \text{val}(1, t^2, t, t^4) = (0, 2, 1, 4)$ and $\tau = 234$

$$\begin{cases} w_1^{(\tau)} = \max(w_2^{(\tau)}, w_3^{(\tau)}, w_4^{(\tau)}) \\ w_2^{(\tau)} = \min(w_1, w_4) \\ w_3^{(\tau)} = \min(w_1, w_3) \\ w_4^{(\tau)} = \min(w_1, w_4) \end{cases} \longrightarrow \begin{cases} w_1^{(\tau)} = 0 \\ w_2^{(\tau)} = 0 \\ w_3^{(\tau)} = 0 \\ w_4^{(\tau)} = 0 \end{cases}$$

 \triangleright Subdivision of A induced by $h \in \mathbb{R}^n$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet$$

 \triangleright Subdivision of *A* induced by $h \in \mathbb{R}^n$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet$$
 height h_i

Definition (Regular subdivision)

The **regular subdivision** $\Delta(A, h)$ of the point configuration A induced by height function $h \in \mathbb{R}^n$ is the collection of cells $\sigma \subseteq [n]$ for which $\operatorname{conv}(\binom{a_i}{h_i} \mid i \in \sigma)$ is a lower face of $\operatorname{conv}(\binom{a_i}{h_i} \mid i \in [n])$.

 \triangleright Subdivision of *A* induced by $h \in \mathbb{R}^n$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet \qquad \text{height } h_i$$

Definition (Regular subdivision)

The **regular subdivision** $\Delta(A, h)$ of the point configuration A induced by height function $h \in \mathbb{R}^n$ is the collection of cells $\sigma \subseteq [n]$ for which $\operatorname{conv}(\binom{a_i}{h_i} \mid i \in \sigma)$ is a lower face of $\operatorname{conv}(\binom{a_i}{h_i} \mid i \in [n])$.

ightharpoonup Regular triangulation (write Σ) if Δ is simplicial complex

 \triangleright Subdivision of A induced by $h \in \mathbb{R}^n$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet$$
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 0 \end{pmatrix} \bullet$$

Definition (Regular subdivision)

The **regular subdivision** $\Delta(A, h)$ of the point configuration A induced by height function $h \in \mathbb{R}^n$ is the collection of cells $\sigma \subseteq [n]$ for which $conv(\binom{a_i}{b_i} \mid i \in \sigma)$ is a lower face of $conv(\binom{a_i}{b_i} \mid i \in [n])$.

- \triangleright Regular triangulation (write Σ) if Δ is simplicial complex
- $ightharpoonup \operatorname{Kushnirenko:} \operatorname{deg}(X_A) = \operatorname{vol}(\operatorname{conv}(A)) = \sum_{\tau \in \Sigma} \operatorname{vol}(\tau)$

15/20

Tropical Toric MLE

 \triangleright Subdivision of A induced by $h \in \mathbb{R}^n$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet$$
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 0 \end{pmatrix} \bullet$$

Definition (Regular subdivision)

The **regular subdivision** $\Delta(A, h)$ of the point configuration A induced by height function $h \in \mathbb{R}^n$ is the collection of cells $\sigma \subseteq [n]$ for which $\operatorname{conv}(\binom{a_i}{h_i} \mid i \in \sigma)$ is a lower face of $\operatorname{conv}(\binom{a_i}{h_i} \mid i \in [n])$.

- ightharpoonup Regular triangulation (write Σ) if Δ is simplicial complex
- ightharpoonup Kushnirenko: $deg(X_A) = vol(conv(A)) = \sum_{\tau \in \mathcal{T}} vol(\tau)$
- $ightharpoonup Maximal simplex <math>\tau \in \Sigma$ is a basis $\tau \in M(A)$

◆ロト ◆問 ▶ ◆ 差 ▶ ◆ 差 ▶ り へ ○

Definition (Compatible)

A vector $w \in \mathbb{R}^n$ and regular triangulation Σ of A are called **compatible** if for every $\tau \in \Sigma$ we have $\tau \subseteq \sigma \in \Delta(A, -w^{(\tau)})$.

Definition (Compatible)

A vector $w \in \mathbb{R}^n$ and regular triangulation Σ of A are called **compatible** if for every $\tau \in \Sigma$ we have $\tau \subseteq \sigma \in \Delta(A, -w^{(\tau)})$.

Running example: check w = (0, 2, 1, 4) and $\Sigma = \{123, 234\}$

height $-w^{(\tau)}$

$$\Delta(A, -w^{(\tau)})$$

$$\tau = 123 \in \Delta(A, -w^{(\tau)}) \checkmark$$

Definition (Compatible)

A vector $w \in \mathbb{R}^n$ and regular triangulation Σ of A are called **compatible** if for every $\tau \in \Sigma$ we have $\tau \subseteq \sigma \in \Delta(A, -w^{(\tau)})$.

Running example: check w = (0, 2, 1, 4) and $\Sigma = \{123, 234\}$

$$\tau \subset 1234 \in \Delta(A, -w^{(\tau)})$$

Definition (Compatible)

A vector $w \in \mathbb{R}^n$ and regular triangulation Σ of A are called **compatible** if for every $\tau \in \Sigma$ we have $\tau \subseteq \sigma \in \Delta(A, -w^{(\tau)})$.

Running example: w = (0, 2, 1, 4) and $\Sigma = \{123, 234\}$ are compatible

Theorem (Boniface-Devriendt-H)

If Σ and w are compatible, then the tropical critical points for the data pair (A,w) are given by the vectors

$$\widehat{q}(\tau) := A^T (A_\tau^T)^{-1} w_\tau^{(\tau)} \quad \textit{with mult. } \mathsf{vol}(\tau),$$

where τ runs over maximal simplices in Σ .

17/20

Serkan Hoşten Tropical Toric MLE

Theorem (Boniface-Devriendt-H)

If Σ and w are compatible, then the tropical critical points for the data pair (A,w) are given by the vectors

$$\widehat{q}(\tau) := A^{T} (A_{\tau}^{T})^{-1} w_{\tau}^{(\tau)} \quad \textit{with mult. } \mathsf{vol}(\tau),$$

where τ runs over maximal simplices in Σ .

Running example: Since w and Σ are compatible, we get

$$\widehat{q}(\mathbf{N}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}^T \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = (0, 2, 1, 3) \text{ with mult. } 1$$

17/20

Serkan Hoşten Tropical Toric MLE

Theorem (Boniface-Devriendt-H)

If Σ and w are compatible, then the tropical critical points for the data pair (A, w) are given by the vectors

$$\widehat{q}(\tau) := A^{T} (A_{\tau}^{T})^{-1} w_{\tau}^{(\tau)} \quad \textit{with mult. } \mathsf{vol}(\tau),$$

where τ runs over maximal simplices in Σ .

Sanity check:

- 1. $\sum_{\tau \in \Sigma} \operatorname{mult}(\widehat{q}(\tau)) = \deg(X_A)$, by Kushnirenko's theorem
- 2. $\hat{q}(\tau) \in \text{row}(A)$, by definition

> Two independent binary random variables

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad w = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix}$$

> Two independent binary random variables

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad w = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix}$$

• Step 1: For some triangulation Σ check compatibility

> Two independent binary random variables

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad w = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix}$$

- Step 1: For some triangulation Σ check compatibility
- Step 2: If $\Sigma \checkmark$, compute tropical critical points:

$$\widehat{q}(\mathbf{N}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = (0, 2, 1, 3) \quad \text{mult} = 1$$

$$\widehat{q}(\mathbf{N}) = \begin{pmatrix} \frac{1}{0} & \frac{1}{1} & \frac{1}{1} & \frac{1}{0} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}^T \begin{pmatrix} \frac{1}{1} & \frac{1}{0} & 0 \\ \frac{1}{1} & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = (0, 0, 0, 0) \quad \text{mult} = 1$$

Serkan Hoşten Tropical Toric MLE

> Two independent binary random variables

$$V \in \{v_1, v_2\}$$
 and $W \in \{w_1, w_2\}$

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \qquad w = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix}$$

- Step 1: For some triangulation Σ check compatibility
- Step 2: If $\Sigma \checkmark$, compute tropical critical points:

$$\widehat{q}(\mathbf{N}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = (0, 2, 1, 3) \quad \text{mult} = 1$$

$$\widehat{q}(\mathbf{N}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = (0, 0, 0, 0) \quad \text{mult} = 1$$

$$\widehat{q}(\mathbf{N}) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}^{T} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = (0, 0, 0, 0) \quad \text{mult} = 1$$

Serkan Hosten

Theorem (Boniface-Devriendt-H)

For any A and Σ , the compatible tropical data vectors w form a polyhedral fan $\mathcal{F}_{A,\Sigma} \subseteq \mathbb{R}^n$.

Theorem (Boniface-Devriendt-H)

For any A and Σ , the compatible tropical data vectors w form a polyhedral fan $\mathcal{F}_{A,\Sigma}\subseteq\mathbb{R}^n$. Thus, for a given A, the tropical data vectors w for which our theorem finds all critical points is the support of a polyhedral fan $\mathcal{F}_A=\bigcup_\Sigma \mathcal{F}_{A,\Sigma}$. If M(A) is uniform, then this fan contains a full-dimensional cone, but this is not true in general.

Theorem (Boniface-Devriendt-H)

For any A and Σ , the compatible tropical data vectors w form a polyhedral fan $\mathcal{F}_{A,\Sigma}\subseteq\mathbb{R}^n$. Thus, for a given A, the tropical data vectors w for which our theorem finds all critical points is the support of a polyhedral fan $\mathcal{F}_A=\bigcup_\Sigma \mathcal{F}_{A,\Sigma}$. If M(A) is uniform, then this fan contains a full-dimensional cone, but this is not true in general.

- \triangleright We know how to find compatible Σ explicitly if:
- 1. w has many zeroes: zero-set $[n] \setminus \text{supp}(w)$ contains a basis

Theorem (Boniface-Devriendt-H)

For any A and Σ , the compatible tropical data vectors w form a polyhedral fan $\mathcal{F}_{A,\Sigma}\subseteq\mathbb{R}^n$. Thus, for a given A, the tropical data vectors w for which our theorem finds all critical points is the support of a polyhedral fan $\mathcal{F}_A=\bigcup_\Sigma \mathcal{F}_{A,\Sigma}$. If M(A) is uniform, then this fan contains a full-dimensional cone, but this is not true in general.

- \triangleright We know how to find compatible Σ explicitly if:
- 1. w has many zeroes: zero-set $[n] \setminus \text{supp}(w)$ contains a basis
- \rightsquigarrow any regular Σ and get $\hat{q} = 0$ with mult $\deg(X_A)$

Theorem (Boniface-Devriendt-H)

For any A and Σ , the compatible tropical data vectors w form a polyhedral fan $\mathcal{F}_{A,\Sigma} \subseteq \mathbb{R}^n$. Thus, for a given A, the tropical data vectors w for which our theorem finds all critical points is the support of a polyhedral fan $\mathcal{F}_A = \bigcup_{\Sigma} \mathcal{F}_{A,\Sigma}$. If M(A) is uniform, then this fan contains a full-dimensional cone, but this is not true in general.

- \triangleright We know how to find compatible Σ explicitly if:
- 1. w has many zeroes: zero-set $[n] \setminus \text{supp}(w)$ contains a basis
- \longrightarrow any regular Σ and get $\hat{q} = 0$ with mult $\deg(X_A)$
- 2. M(A) is uniform and entries of w are 'not too spread out'

Theorem (Boniface-Devriendt-H)

For any A and Σ , the compatible tropical data vectors w form a polyhedral fan $\mathcal{F}_{A,\Sigma} \subseteq \mathbb{R}^n$. Thus, for a given A, the tropical data vectors w for which our theorem finds all critical points is the support of a polyhedral fan $\mathcal{F}_A = \bigcup_{\Sigma} \mathcal{F}_{A,\Sigma}$. If M(A) is uniform, then this fan contains a full-dimensional cone, but this is not true in general.

- \triangleright We know how to find compatible Σ explicitly if:
- 1. w has many zeroes: zero-set $[n] \setminus \text{supp}(w)$ contains a basis
- \rightsquigarrow any regular Σ and get $\hat{q} = 0$ with mult $\deg(X_A)$
- 2. M(A) is uniform and entries of w are 'not too spread out'
- \rightsquigarrow any Σ that refines $\Delta(A, \chi(\text{supp}(w)))$

▶ Sketch of the proof:

Step 1: Main and most difficult technical result:

For every $\tau \in M(A)$, tropical affine space $L_{A,w}$ contains the cone

$$C_{\tau} = w^{(\tau)} + pos(e_i \mid i \in [n] \setminus \tau).$$

▶ Sketch of the proof:

Step 1: Main and most difficult technical result:

For every $\tau \in M(A)$, tropical affine space $L_{A,w}$ contains the cone

$$C_{\tau} = w^{(\tau)} + pos(e_i \mid i \in [n] \setminus \tau).$$

Step 2: Magical but 'easy' technical result:

The cone C_{τ} intersects row(A) in $\widehat{q}(\tau)$ iff $\tau \subseteq \sigma \in \Delta(A, -w^{(\tau)})$.

► Sketch of the proof:

Step 1: Main and most difficult technical result:

For every $\tau \in M(A)$, tropical affine space $L_{A,w}$ contains the cone

$$C_{\tau} = w^{(\tau)} + pos(e_i \mid i \in [n] \setminus \tau).$$

Step 2: Magical but 'easy' technical result:

The cone C_{τ} intersects row(A) in $\widehat{q}(\tau)$ iff $\tau \subseteq \sigma \in \Delta(A, -w^{(\tau)})$.

Step 3: Rest follows by bookkeeping with Σ

 $\deg(X_A) = \operatorname{vol}(\operatorname{conv}(A)) = \sum_{\tau \in \Sigma} \operatorname{mult}(\widehat{q}(\tau)).$