Tropical Phylogenetics

Tree Data

Phylogenetics

Phylogenetic reconstruction methods convert data from present-day taxa into trees that describe the evolutionary relationships between the taxa.

Phylogenetics

Phylogenetic reconstruction methods convert data from present-day taxa into trees that describe the evolutionary relationships between the taxa.

Problems:

Phylogenetic reconstruction methods often *disagree*, even with the same input data.

Gene trees often *disagree* with each other and with species trees.

Phylogenetics

Phylogenetic reconstruction methods convert data from present-day taxa into trees that describe the evolutionary relationships between the taxa.

Problems: Phylogenetic reconstruction

methods often *disagree*, even with the same input data.

Gene trees often *disagree* with each other and with species trees.

Question: How do we reconcile different reconstructed trees?

Developmental Biology

Cell lineages trace the development of an organism starting from a single cell.

Each node in the tree represents a cell of the organism at a specific time.

Developmental Biology

Cell lineages trace the development of an organism starting from a single cell.

Each node in the tree represents a cell of the organism at a specific time.

Phallusia mammillata developmental lineage trees [L], viewed in Mastodon.

Photo by Diego Delso [D].

"Phylogenetic" Trees

A phylogenetic tree is a rooted, leaf-labeled, \mathbb{R} -weighted tree, with no degree 2 nodes other than the root.

"Phylogenetic" Trees

A **phylogenetic tree** is a rooted, leaf-labeled, \mathbb{R} -weighted tree, with no degree 2 nodes other than the root.

The **topology** of a phylogenetic tree is the underlying unweighted leaf-labeled graph.

"Phylogenetic" Trees

A **phylogenetic tree** is a rooted, leaf-labeled, \mathbb{R} -weighted tree, with no degree 2 nodes other than the root.

The **topology** of a phylogenetic tree is the underlying unweighted leaf-labeled graph.

Key assumption: We assume our trees are equidistant, meaning the distance from the root to each leaf is the same.

In phylogenetics, equidistant trees appear under the *molecular clock hypothesis*, which assumes that each lineage evolves at the same rate.

Tree Metric Embedding

T defines a tree metric: $\forall i, j \in [n]$

 $d_T(i,j) = \text{distance from } i \text{ to } j \text{ in } T.$

Tree Metric Embedding

 $(d_T(i,j))_{1 \le i < j \le n} \in \mathbb{R}^{\binom{n}{2}}$

T defines a tree metric: $\forall i, j \in [n]$

 $d_T(i,j) = \text{distance from } i \text{ to } j \text{ in } T.$

Tree Metric Embedding

T defines a tree metric: $\forall i, j \in [n]$

 $d_T(i,j) = \text{distance from } i \text{ to } j \text{ in } T.$

The set of all tree metrics on *n* leaves forms a polyhedral fan.

 $(d_T(i,j))_{1 \le i < j \le n} \in \mathbb{R}^{\binom{n}{2}}$

Tropical Geometry

Tropical Tree Spaces

```
12 13 14 23 24 34 (2, 3.5, 3.5, 3.5, 3.5, 1)
```

What dependencies do the entries of d_T have?

Tropical Tree Spaces

$$\bigoplus = \max,$$
 $\bigcirc = +$

Three-point condition: A point $d \in \mathbb{R}^{\binom{n}{2}}$ is a tree metric if and only if

$$\max\{d(i,j), d(i,k), d(j,k)\}$$

is achieved at least twice for all $i, j, k \in [n]$.

These are tropical vanishing equations!

Tropical Tree Spaces

$$\bigoplus$$
 = max,

Three-point condition: A point $d \in \mathbb{R}^{\binom{n}{2}}$ is a tree metric if and only if

$$\max\{d(i,j), d(i,k), d(j,k)\}$$

is achieved at least twice for all $i, j, k \in [n]$.

These are tropical vanishing equations!

Theorem (Ardila-Klivans '06) The space of equidistant trees on n leaves is the tropical linear space Trop $M(K_n)$.

The Tropical Projective Torus

 $\mathbb{R}^n/\mathbb{R}\mathbf{1}$

 $x \sim y \iff x = \lambda \odot y, \exists \lambda \in \mathbb{R} \iff x = (\lambda + y_1, ..., \lambda + y_n), \exists \lambda \in \mathbb{R}$ $\mathbb{R}^n/\mathbb{R}\mathbf{1} \cong \mathbb{R}^{n-1}$

12 13 14 23 24 34

12 13 14 23 24 34 $d_T = (2, 3.5, 3.5, 3.5, 3.5, 3.5, 1)$ \sim $d_T = (4, 5.5, 5.5, 5.5, 5.5, 3)$

Tropical Convexity

Tropical linear spaces are **tropically convex**, meaning they are closed under taking tropical linear combinations.

Exercise: the tropical sum (coordinate-wise max) of two equidistant tree metrics is an equidistant tree metric.

Tropical Convexity

Tropical linear spaces are **tropically convex**, meaning they are closed under taking tropical linear combinations.

Exercise: the tropical sum (coordinate-wise max) of two equidistant tree metrics is an equidistant tree metric.

A tropical line segment is a concatenation of Euclidean line segments.

Theorem (Page-Yoshida-Zhang '20)

In the relative interior of each segment, all trees have the same topology.

A tropical line segment in Trop $M(K_4)$, the space of equidistant trees on 4 leaves.

Tropical Line Segments

...in the space of equidistant trees.

Theorem (C. '22)

For sufficiently general edge weights, there are two possible topology changes along the tropical line segment:

- 1. A single NNI (three branches come together)
- 2. A 4-clade rearrangement (four branches come together)

A tropical line segment is a concatenation of Euclidean line segments.

Tropical Line Segments

...in the space of equidistant trees.

A tropical line segment is a concatenation of Euclidean line segments.

Theorem (C. '22)

For sufficiently general edge weights, there are two possible topology changes along the tropical line segment:

- 1. A single NNI (three branches come together)
- 2. A 4-clade rearrangement (four branches come together)

How does this compare to other tree spaces?

BHV

- geodesics in polynomial time same as tropical line segments
- geodesics may pass through cones of arbitrary codimension
 codim ≤ 2 for tropical line segments

NNI (graph)

- shortest path is NP hard to compute
- average distance is $O(n \log n)$ $O(n(\log n)^4)$ NNI moves on a tropical line segment (C. '22)

A long tropical line segment

Not all tropical line segments in tree space are well-behaved...

The tropical line segment takes

$$\binom{n-1}{2}$$
 NNI moves (C. '22).

But in the NNI graph, the trees are n-2 NNI moves apart.

Fermat-Weber Points

Given data $v_1, ..., v_m$ in a metric space (X, d), a **Fermat-Weber point** or **geometric median** is a point x^* minimizing the average distance to the data.

$$x^* \in \underset{x \in X}{\operatorname{argmin}} \sum_{i=1}^m d(v_i, x)$$

$$X = \mathbb{R}, d(x, y) = |x - y|$$
Median

$$X = \mathbb{R}^2$$
, $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$

Fermat-Torricelli point

$$X = \mathbb{R}^3/\mathbb{R}\mathbf{1}, d(x, y) = d_{\Delta}(x, y)$$

Asymmetric tropical FW set

(Symmetric) tropical distance

$$d_{\Delta}(v_i, x) = \max_{j \in [n]} (v_{ij} - x_j) - \min_{j \in [n]} (v_{ij} - x_j)$$

$$v_i, x \in \mathbb{R}^n / \mathbb{R} \mathbf{1}$$

$$v_1 - x_1$$
 $v_3 - x_3$ min-tropical hyperplane
$$\max_{v_2 - x_2} (v_{ij} - x_j)$$
 $j \in [n]$

(Symmetric) tropical distance

$$v_i, x \in \mathbb{R}^n / \mathbb{R} 1$$

$$d_{\Delta}(v_i, x) = \max_{j \in [n]} (v_{ij} - x_j) - \min_{j \in [n]} (v_{ij} - x_j)$$

- Theorem (Lin et al. '17) In general, $FW(v_1, ..., v_m) \nsubseteq tconv(v_1, ..., v_m)$.
- Theorem (Sabol et al. '25+) $FW(v_1, ..., v_m)$ is a region of the min- and max-tropical hyperplane arrangement centered at $v_1, ..., v_m$.
- Theorem (C.-Talbut-Sabol-Yoshida '25+) $FW(v_1, ..., v_m) \cap tconv(v_1, ..., v_m) \neq \emptyset$.

$$v_1 - x_1$$
 $v_3 - x_3$
 $v_1 - x_2$
 $v_2 - x_2$
 $v_3 - x_3$
 $v_3 - x_3$
 $v_1 - x_2$
 $v_2 - x_3$
 $v_3 - x_3$
 $v_3 - x_3$
 $v_2 - x_3$
 $v_3 - x_3$
 $v_4 - x_5$
 $v_2 - x_2$
 $v_3 - x_3$
 $v_4 - x_5$
 $v_5 = [n]$

(Symmetric) tropical distance

$$d_{\Delta}(v_i, x) = \max_{j \in [n]} (v_{ij} - x_j) - \min_{j \in [n]} (v_{ij} - x_j)$$

 Theorem (Lin et al. '17) In general, $FW(v_1, ..., v_m) \nsubseteq tconv(v_1, ..., v_m)$.

 $v_i, x \in \mathbb{R}^n/\mathbb{R}$

metric

- Theorem (Sabol et al. '25+) $FW(v_1, ..., v_m)$ is a region of the min- and max-tropical hyperplane arrangement centered at $v_1, ..., v_m$.
- Theorem (C.-Talbut-Sabol-Yoshida '25+) $FW(v_1, ..., v_m) \cap tconv(v_1, ..., v_m) \neq \emptyset$.

$$v_1 - x_1$$
 $v_3 - x_3$
 $v_1 - x_2$
 $v_2 - x_3$
 $v_3 - x_3$
 $v_1 - x_2$
 $v_2 - x_3$
 $v_3 - x_3$
 $v_2 - x_3$
 $v_3 - x_3$
 $v_3 - x_4$
 $v_4 - x_5$
 $v_2 - x_2$
 $v_5 \in [n]$

(Symmetric) tropical distance

$$v_i, x \in \mathbb{R}^n/\mathbb{R}$$

$$d_{\Delta}(v_i, x) = \max_{j \in [n]} (v_{ij} - x_j) - \min_{j \in [n]} (v_{ij} - x_j)$$

• Theorem (Lin et al. '17) In general, $FW(v_1, ..., v_m) \nsubseteq tconv(v_1, ..., v_m)$.

Median of tree metrics is not always a tree metric

- Theorem (Sabol et al. '25+) $FW(v_1, ..., v_m)$ is a region of the min- and max-tropical hyperplane arrangement centered at $v_1, ..., v_m$.
- Theorem (C.-Talbut-Sabol-Yoshida '25+) $FW(v_1, ..., v_m) \cap tconv(v_1, ..., v_m) \neq \emptyset$.

(Symmetric) tropical distance

$$v_i, x \in \mathbb{R}^n/\mathbb{R}$$

$$d_{\Delta}(v_i, x) = \max_{j \in [n]} (v_{ij} - x_j) - \min_{j \in [n]} (v_{ij} - x_j)$$

• Theorem (Lin et al. '17) In general, $FW(v_1, ..., v_m) \nsubseteq tconv(v_1, ..., v_m)$.

Median of tree metrics is not always a tree metric

• Theorem (C.-Talbut-Sabol-Yoshida '25+) But some median $FW(v_1, ..., v_m) \cap tconv(v_1, ..., v_m) \neq \emptyset$.

Asymmetric tropical distance (Comaneci-Joswig 2024) $v_i, x \in \mathbb{R}^n/\mathbb{R}1$

$$d_{\Delta}(v_i, x) = n \max_{j \in [n]} (v_{ij} - x_j) + \sum_{j \in [n]} x_j - v_{ij}.$$

Asymmetric tropical distance (Comaneci-Joswig 2024) $v_i, x \in \mathbb{R}^n/\mathbb{R}1$

$$d_{\Delta}(v_{i}, x) = n \max_{j \in [n]} (v_{ij} - x_{j}) + \sum_{j \in [n]} x_{j} - v_{ij}. = n \max_{i \in [n]} (v_{ij} - x_{i}), \text{ for }$$

$$x, v_{i} \in \{z \in \mathbb{R}^{n} : z_{1} + \dots + z_{n} = 0\} \cong \mathbb{R}^{n} / \mathbb{R} 1.$$

 $d_{\Delta}(v,x)$ is linear on the regions of the min-tropical hyperplane centred at v.

$$v_1 - x_1$$
 $v_2 - x_2$

Asymmetric tropical distance (Comaneci-Joswig 2024)

$$v_i, x \in \mathbb{R}^n / \mathbb{R} 1$$

$$d_{\Delta}(v_{i}, x) = n \max_{j \in [n]} (v_{ij} - x_{j}) + \sum_{j \in [n]} x_{j} - v_{ij}. = n \max_{i \in [n]} (v_{ij} - x_{i}), \text{ for } x_{i} \in \{z \in \mathbb{R}^{n} : z_{1} + \dots + z_{n} = 0\} \cong \mathbb{R}^{n} / \mathbb{R} 1.$$

Theorem (Comaneci-Joswig '24)

- $FW(v_1, ..., v_m)$ is the *central cell* of the min-tropical hyperplane arrangement centered at $v_1, ..., v_m$.
- $FW(v_1, ..., v_m) \subseteq tconv^{max}(v_1, ..., v_m)$.
- If $v_1, ..., v_m$ represent equidistant trees $T_1, ..., T_m$, then every FW point is also an equidistant tree.

 $d_{\Delta}(v,x)$ is linear on the regions of the min-tropical hyperplane centred at v.

(weighted)

Asymmetric Tropical Fermat-Weber Sets

Weighted Fermat-Weber Points

Given weights
$$w_1, \ldots, w_m > 0$$
, $x^* \in \underset{x \in X}{\operatorname{argmin}} \sum_{i=1}^m w_i \ d_{\Delta}(v_i, x)$.

Theorem (C.-Curiel 2025+)

- $FW(v_1, ..., v_m, \mathbf{w})$ is a bounded cell* of the min-tropical hyperplane arrangement centered at $v_1, ..., v_m$.

 *generically a point
- $FW(v_1, ..., v_m, \mathbf{w}) \subseteq tconv^{max}(v_1, ..., v_m)$.
- If $v_1, ..., v_m$ represent equidistant trees $T_1, ..., T_m$, then every weighted FW point is also an equidistant tree.

 $w \cdot d_{\Delta}(v, x)$ is linear on the regions of the tropical hyperplane centred at v.

$$w(v_1 - x_1)$$
 $w(v_3 - x_3)$ $w(v_2 - x_2)$

Good trees, quickly

Theorem (Comaneci-Joswig '24) Every point in $tconv^{max}(T_1, ..., T_m)$ is Pareto and co-Pareto on rooted triples. The tropical vertices of this set can be computed in strongly polynomial time.

 \longrightarrow Every point in $FW(v_1, ..., v_m, \mathbf{w})$ is Pareto and co-Pareto on rooted triples of $v_1, ..., v_m$.

Every sample tree contains the rooted triple $i \mid jk$.

Pareto

The median tree contains the rooted triple $i \mid jk$.

co-Pareto

At least one sample tree contains the rooted triple $i \mid jk$.

The graph of

$$d_{\Delta}(x, v_1) + d_{\Delta}(x, v_2).$$

 $d_{\Delta}(x, v_1) + d_{\Delta}(x, v_2).$

The tropical hyperplane arrangement.

The graph of

$$d_{\Delta}(x, v_1) + d_{\Delta}(x, v_2).$$

The tropical hyperplane arrangement.

The Newton polytope of $d_{\Delta}(x, v_1) + d_{\Delta}(x, v_2)$.

The graph of

$$d_{\Delta}(x, v_1) + d_{\Delta}(x, v_2).$$

The envelope

$$\mathcal{E}(v_1,\ldots,v_m)\subset\mathbb{R}^m\times\mathbb{R}^n$$

The tropical hyperplane arrangement.

The corresponding Cayley polytope subdivision

The Newton polytope of $d_{\Lambda}(x, v_1) + d_{\Lambda}(x, v_2)$.

(weighted)

 $w_1 = 1/3, w_2 = 2/3$

Tropical Fermat-Weber Points

The graph of

$$\frac{1}{3}d_{\Delta}(x,v_1) + \frac{2}{3}d_{\Delta}(x,v_2).$$

The envelope

$$\mathcal{E}(v_1, ..., v_m, \mathbf{w}) \subset \mathbb{R}^m \times \mathbb{R}^n$$

 $(t,x)\mapsto x$

The tropical hyperplane arrangement.

The corresponding Cayley polytope subdivision

The Newton polytope of $\frac{1}{3}d_{\Delta}(x, v_1) + \frac{2}{3}d_{\Delta}(x, v_2)$.

Back to the Data Weighted data

- Data collected may not align with actual population proportions.
- Some data is higher quality than other data.
 - In phylogenetics, reconstructed trees can be weighted by a function of bootstrap scores on edges [MBX].

From the Wikipedia page on electric eels.

What's Next?

Normal distributions on tropical tree space

Problems:

- If d_T is a tree metric, then $-d_T$ is usually **not** a tree metric.
- If we write down the usual normal distribution formula on a tree space, the normalizing constant depends on the center of the distribution.

What other statistics problems should be explored in tree space?

Thank you!

References

- [AK] Ardila, F., & Klivans, C. J. (2006). The Bergman complex of a matroid and phylogenetic trees. *Journal of Combinatorial Theory, Series B*, 96(1), 38-49.
- [BHV] Billera, L. J., Holmes, S. P., & Vogtmann, K. (2001). Geometry of the space of phylogenetic trees. *Advances in Applied Mathematics*, 27(4), 733-767.
- [BSYM] Barnhill, D., Sabol, J., Yoshida, R., & Miura, K. (2024). Tropical Fermat-Weber Polytopes. arXiv preprint arXiv:2402.14287.
- [C] Cox, S. (2022). Classifying Tree Topology Changes along Tropical Line Segments. Algebraic Statistics.
- [CJ] Comăneci, A., & Joswig, M. (2024). Tropical medians by transportation. Mathematical Programming, 205(1), 813-839.
- [CC] Cox, S., & Curiel, M. (2023). The tropical polytope is the set of all weighted tropical Fermat-Weber points. arXiv preprint arXiv:2310.07732.
- [DS] Develin, M., & Sturmfels, B. (2004). Tropical convexity. *Documenta Mathematica*, 9, 1-27.
- [D] Diego Delso, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons.
- [L] Lemaire, Patrick (2020). Astec-Pm13 (Wild type Phallusia mammillata embryo, live SPIM imaging. figshare. Dataset.
- [MBX] Makarenkov, V., Boc, A., Xie, J. et al. (2010). Weighted bootstrapping: a correction method for assessing the robustness of phylogenetic trees. BMC Evol Biol 10, 250.
- [PYZ] Page, R., Yoshida, R., & Zhang, L. (2020). Tropical principal component analysis on the space of phylogenetic trees. Bioinformatics, 36(17), 4590-4598.