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Motivation: Identifiability of Level-2 Networks

Theorem (Englander-Frohn-Gross-Holtgrefe-Van Iersel-Jones-S)
The network parameter of the displayed tree model under the
Jukes-Cantor substitution is generically identifiable when the network
parameter is an n-leaf binary, triangle-free, strongly tree-child, level-2
semi-directed phylogenetic network.

Proof uses a range of tools.
Matroids, Phylogenetic Invariants/Ideals, Inequalities

Challenges: Stacked reticulations, triangles
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Graphical Models

Graphical models are a flexible framework for building statistical
models on (large) collections of random variables.

Edges of different types represent different types of interactions
between neighboring random variables.

directed edges: i→j
bidirected edges: i ↔ j
undirected edges: i − j

Graph is used to express both
conditional independence structures between random variables
parametric representations of the model.

In this talk: directed acyclic graphs (DAGs) and discrete random
variables.
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Parametrization

Let G = (V ,D) be a directed acyclic graph.
For each v ∈ V , we have a discrete random variable Xv .
For each v ∈ V , pa(v) is the parent set of v :

pa(v) = {u ∈ V : u → v ∈ D}.

DAG Graphical model expresses the joint distribution of
X = (Xv |v ∈ V ) via a recursive factorization:

p(x) =
∏
v∈V

pv (xv |xpa(v)).
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Conditional Independence

DAG models also specified by conditional independence
structures
XA⊥⊥XB|XC holds iff A and B are d-separated given C.
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{1,3} and {4} are d-separated given {2}.
So (X1,X3)⊥⊥X4|X2 holds in this graph.

Theorem (Recursive factorization)
A probability distribution has a recursive factorization according to a
DAG G if and only if it satisfies the global conditional independence
statements of G.
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Example: Directed 4-cycle
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Recursive factorization

p(x1, x2, x3, x4) = p1(x1)p2(x2|x1)p3(x3|x1)p4(x4|x2, x3)

Conditional independence

X2⊥⊥X3|X1 X1⊥⊥X4|(X2,X3)
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Phylogenetic Models

Assuming site independence:
Phylogenetic Model is a latent class graphical model
Leaf v ∈ T is random variable Xv ∈ {A,C,G,T}.
Internal nodes v ∈ T are latent random variables Yv

Y1

Y2

X1 X2 X3

p(x1, x2, x3) =
∑
y1

∑
y2

p1(y1)p2(y2|y1)p3(x1|y1)p4(x2|y2)p5(x3|y2)

Seth Sullivant (NCSU) Networks and Graphical Models July 24, 2025 7 / 25



Substitution Models

Phylogenetic models are typically submodels of the hidden
variable graphical model on a tree.
This is obtained by specifying a structure on the substitution
model/transition matrix structure.

Me =


pe(A|A) pe(A|C) pe(A|G) pe(A|T )
pe(C|A) pe(C|C) pe(C|G) pe(C|T )
pe(G|A) pe(G|C) pe(G|G) pe(G|T )
pe(T |A) pe(T |C) pe(T |G) pe(T |T )


Equivariant models:

Let G be a subgroup of S4, acting on {A,C,G,T}.
Equivariant: for all g ∈ G, pe(x |y) = pe(g(x)|g(y))
a b b b
b a b b
b b a b
b b b a




a b c d
b a d c
c d a b
d c b a




a b c d
e f g h
h g f e
d c b a


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Phylogenetic Networks

Use a more complicated graph than a tree to represent
evolutionary relationships between species.
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Tree vertex: One or fewer incoming edges
Reticulation vertex: Two or more incoming edges
Reticulations vertices are used to represent hybridization, gene
transfer, or other non-tree-like evolution.
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The Displayed Tree Model

Probability distribution for network obtained by weighted sum over
all displayed trees of that network.
Displayed trees: Choose one edge at each reticulation vertex
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Y1

Y2 Y3

Y4

X1 X2 X3

p(x1, x2, x3) = (1 − δ)
∑

y
p1(y1)p2(y2|y1)p3(y3|y1)p4(y4|y3)p6(x1|y2)p7(x2|y4)p8(x3|y3)

+ δ
∑

y
p1(y1)p2(y2|y1)p3(y3|y1)p5(y4|y2)p6(x1|y2)p7(x2|y4)p8(x3|y3)

Note that transition matrices are reused in both trees. Same edge,
same transition matrix.
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The Displayed Tree Model as a DAG

Y1
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X1 X2 X3

p(x1, x2, x3) = (1 − δ)
∑

y
p1(y1)p2(y2|y1)p3(y3|y1)p4(y4|y3)p6(x1|y2)p7(x2|y4)p8(x3|y3)

+ δ
∑

y
p1(y1)p2(y2|y1)p3(y3|y1)p5(y4|y2)p6(x1|y2)p7(x2|y4)p8(x3|y3)

=
∑

y
p1(y1)p2(y2|y1)p3(y3|y1)q(y4|y2, y3)p6(x1|y2)p7(x2|y4)p8(x3|y3)

q(y4|y2, y3) is a restricted version of the general conditional
distribution p(y4|y2, y3).

q(y4|y2, y3) = (1 − δ)p4(y4|y3) + δp5(y4|y2)
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Conditional Distributions from the DTM

Proposition
The displayed tree phylogenetic network model is the submodel of the
DAG model where for each i:

pi(xi |xpa(i)) =
∑

j∈pa(i)

δjpji(xi |xj).

X1 X2

X3

General Markov model
Full conditional distribution: 42(4 − 1) = 48 parameters
Displayed tree conditional distribution: 2 × 4(4 − 1) + 1 = 25
parameters
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Loss of Dimension in Conditional Distributions

The dimension drops even more!

Proposition (Casanellas-Fernández Sánchez-Gross-Hollering-S)
The dimension of the General Markov model κ states, 2 parent
reticulation conditional distribution has 1 + 2κ(κ− 1) parameters but
only dimension

1 + 2κ(κ− 1)− κ

px(x |y , z) = δpyx(x |y) + (1 − δ)pzx(x |z)

cijk = δaij + (1 − δ)bik

cij1k1 + cij2k2 = cij1k2 + cij2k1

δaij1 + (1 − δ)bik1 + δaij2 + (1 − δ)bik2 = δaij1 + (1 − δ)bik2 + δaij2 + (1 − δ)bik1
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Local Structure in a DAG

Definition
Let G = (V ,D) be a DAG. Let A,B,C ⊆ V be disjoint with:

For each vertex b ∈ B, every edge i → b has i ∈ A ∪ B
For each vertex b ∈ B, every edge b → i has i ∈ B ∪ C
For each vertex c ∈ C, every edge i → c has i ∈ A ∪ B ∪ C

We say that the triple of vertices (A,B,C) gives a local structure in G.
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Local structures in DAGs

Proposition
Let G = (V ,D) be a DAG and (A,B,C) a local structure in G. Then

p(xB, xC |xan(B∪C)) = p(xB, xC |xA).
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Local Modifications to DAGs

Definition
Let G be a DAG with a local structure (A,B,C). Let
V ′ = V \ (A ∪ B ∪ C). Let G′ be a new DAG with vertex set
V ′ ∪ A ∪ B′ ∪ C that satisfies the following properties

(A,B′,C) is a local structure in G′.
Let i , j ∈ V ′ ∪ A. Then i → j ∈ G if and only if i → j ∈ G′.
Let i ∈ C and j ∈ V ′. Then i → j ∈ G if and only if i → j ∈ G′.

The graphs G and G′ are called local modifications of each other.
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Local Modifications Theorem

Theorem
Let G1 and G2 be two graphs that are local modifications of each
other with local structures (A,B,C) and (A,B′,C) respectively.
Suppose that the family of conditional distributions in the two
models pG1,C|A(xC |xA) and pG2,C|A(xC |xA) are the same.
Suppose further that each of the other set of distributions
pi|pa(i)(xi |xpa(i)) is the same in both graphs.

Then the family of joint distributions with the variables in XB and XB′

hidden variables are the same in both models.
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Example: Subdividing an edge

G G′

Subdividing an edge in a DAG is a local modification.

pG′,c|a(xc |xa) =
∑
xb

pG′,c|b(xc |xb)pG′,b|a(xb|xa)

Proposition
The phylogenetic network model on G and G′ give the same family of
probability distributions if the set of model transition matrices is

closed under matrix multiplication
splittable.
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Stacked Reticulations

G G′

Contracting a stacked reticulation is a local modification.

Proposition
The phylogenetic network model on G and G′ give the same family of
probability distributions if the set of model transition matrices is

closed under matrix multiplication
closed under convex combinations, and
splittable.
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Stacked Reticulations are Unidentifiable
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All three networks give the same family of probability distributions
on leaves α, β, γ, δ under any equivariant phylogenetic model.
Stacked reticulations are never identifiable under the displayed
trees model.
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Ranks of Flattenings

Theorem (Allman-Rhodes)

Let T be a tree, MT a phylogenetic model on T with κ states. Let A|B
be a bipartition of the leaves of T .

If A|B is a valid split of T , then for P ∈ MT

rank flatA|BP ≤ κ

If A|B is not a valid split of T , then for generic P ∈ MT

rank flatA|BP > κ

flatab|cdP =


p0000 p0001 p0010 p0011
p0100 p0101 p0110 p0111
p1000 p1001 p1010 p1011
p1100 p1101 p1110 p1111


rank flatab|cdP ≤ 2
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Ranks of Flattenings

Theorem (Allman-Rhodes)

Let T be a tree, MT a phylogenetic model on T with κ states. Let A|B
be a bipartition of the leaves of T .

If A|B is a valid split of T , then for P ∈ MT

rank flatA|BP ≤ κ

This result follows from conditional independence in the tree,
given hidden variables.

rank flatab|cdP ≤ 2

(Xa,Xb)⊥⊥(Xc ,Xd)|Xe
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Ranks of Flattenings for Networks

Theorem (Casanellas-Fernández Sánchez-Gross-Hollering-S)

Let N be a network, and MN the phylogenetic model on κ states. Let
A|B be a bipartition of the leaves.

mN(A|B) is the minimum number of edges separating A and B.
ℓN(A|B) is the largest parsimony score of displayed trees in N.

Then for generic P ∈ MN : κℓN(A|B) ≤ rank flatA|BP ≤ κmN(A|B).
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mN(αβγ|δϵζ) = 2

ℓN(αβγ|δϵζ) = 2

This result can be used to
prove identifiability of level-1
networks via flattening ranks.
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Equivariant DAGs?

Equivariant tree models:
Let G be a subgroup of S4, acting on {A,C,G,T}.
Equivariant: for all g ∈ G, P(x |y) = P(g(x)|g(y))

Equivariant DAG models
For all g ∈ G, P(x |y1, . . . , yk ) = P(g(x)|g(y1), . . . ,g(yk ))


a b b b
b a b b
b b a b
b b b a




a b b b d c e e d e c e d e e c
c d e e b a b b e d c e e d e c
c e d e e c d e b b a b e e d c
c e e d e c e d e e c d b b b a


The equivariant displayed tree model is a submodel of the
equivariant DAG model.
Maybe the equivariant DAG model is easier to study?
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Summary and Conclusions

Phylogenetic network models are used when non-tree-like
structures are present in evolutionary histories.
The displayed tree model is a submodel of the directed acyclic
graphical model from the same network.
We used this connection to show:

New nonidentifiability results for the displayed tree model with
stacked reticulations
New ranks of flattening results for networks
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