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Motivating example

Patient has a tumor with 14cm perimeter and we want to classify it as benign/malignant

Have data on perimeters of tumors from the Breast Cancer Wisconsin Diagnostic Dataset1

1Wolberg, Mangasarian, Street (1993). Breast Cancer Wisconsin Diagnostic Dataset.
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Motivating example

Perimeter of malignant tumors are roughly N(17.5,3.2) and benign are N(12.2,1.8)

More likely tumor is benign (probability 0.65)
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Gaussian discriminant analysis

Gaussian discriminant analysis (GDA) is a supervised learning algorithm for classification

Assume each class i ∈ [d] is distributed as N(µi ,Σi), µi ∈ Rn, Σi ≻ 0 and

f (x ∣µi ,Σi) =
1√

(2π)d det(Σi)
exp(−1

2
(x − µi)TΣ−1i (x − µi))

GDA: Classify new point x ∈ Rn as class i if

f (x ∣µi ,Σi) ≥ f (x ∣µj ,Σj) ∀j ∈ [d]
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Gaussian Voronoi cells

For X ⊂ Rn ×PDn the points classified as class i is the Gaussian Voronoi cell of (µi ,Σi)

GVorX (µi ,Σi) = {x ∈ Rn ∶ (x − µi)TΣ−1i (x − µi) + n log(det(Σi))
≤ (x − µj)TΣ−1j (x − µj) + n log(det(Σj)) ∀ j ∈ [d]}.

The Gaussian Voronoi diagram of X , GVorX , is the union of all Gaussian Voronoi cells

Figure: GVorX when X = {([0
0
] , [1 0

0 1
]) ,([0

0
] , [4 0

0 1
3

])}.

GVorX (µi ,Σi) is defined by d − 1 quadratic inequalities (quadratic discriminant analysis)
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Example: Σi = In

Consider X = {(µ1, In), . . . , (µd , In)} ⊂ Rn × {In}

Direct computation gives

GVorX (µi , In) = {x ∈ Rn ∶ ∥x − µi∥22 ≤ ∥x − µj∥22 ∀j ∈ [d]}

When Σi = In for all i ∈ [d], then Gaussian Voronoi cells are just standard Voronoi cells

If X = {(µ1,Σ), . . . , (µd ,Σ)}, then GVorX (µi ,Σ) is a linear transformation of the Voronoi
cell of µi with respect to the set {µ1, . . . , µd} ⇒ linear discriminant analysis (LDA)
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Another example

Consider when n = 2 and the sets X1,X2,X3,X4 ⊂ R2 ×PD2 where each Xi has the same means

µ1 = [−10 ] , µ2 = [10] , µ3 = [02] , µ4 = [00] ,

and the variances are as follows:

X1 = {[1 0
0 2

] , [4 0
0 1

] , [2 0
0 1

] , [1 0
0 1

]} X2 = {[1 1
1 2

] , [4 1
1 1

] , [ 2 1/2
1/2 1

] , [1 0
0 1

]}

X3 = {[ 1 1/2
1/2 1

] , [ 3 −1
−1 1

] , [2 2
2 4

] , [1 0
0 1

]} X4 = {[1 0
0 1

] , [1 0
0 1

] , [1 0
0 1

] , [1 0
0 1

]}
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Another example

X = {([−1
0
] , [1 0

0 2
]) ,([1

0
] , [4 0

0 1
]) ,([0

2
] , [2 0

0 1
]) ,([0

0
] , [1 0

0 1
])} , Y = {[−1

0
] , [1

0
] , [0

2
] , [0

0
]}

Figure: Gaussian Voronoi cells of X (left) and standard Voronoi cells of Y (right).

Goal: Understand geometry and combinatorics of Gaussian Voronoi cells/diagrams
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Motivation for Gaussian Voronoi diagrams

Gaussian Voronoi diagrams give all possible clusterings GMMs are capable of producing

Standard Voronoi cells (as in LDA) can only give convex clusterings
Kernel methods embed in high dimensional space then use convex clusterings

Using cylindrical algebraic decomposition algorithms from real algebraic geometry, can
compute a point on each connected component of GVorX (µi ,Σi)

Geometry of GVorX gives a priori information on pitfalls with certain models

Question: Which clusterings are GMMs capable of producing?
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Table of Contents

1 Connected components of Gaussian Voronoi diagrams

2 Combinatorics of 1D Gaussian Voronoi cells
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Upper bounds on connected components

The decision boundary of X = {(µ1,Σ1), . . . , (µd ,Σd)} ⊂ Rn ×PDn is

BX = {x ∈ Rn ∶ ℓ(x ∣µi ,Σi) = ℓ(x ∣µj ,Σj) for some i ≠ j ∈ [d],
ℓ(x ∣µi ,Σi) ≥ ℓ(x ∣µk ,Σk) ∀ k ∈ [d]}

For (µi ,Σi) ∈ X , the Zariski closure of the boundary of GVorX (µi ,Σi) is contained in

Bi =
d

∏
j=1,j≠i

ℓ(x , µi ,Σi) − ℓ(x , µj ,Σj).

The Milnor-Thom Theorem says the number of connected components of the
complement of a degree k hypersurface in Rn is kn+1

Apply Milnor-Thom to Bi with deg(Bi) = 2(d − 1) to see:

# connected components GVorX (µi ,Σi) ≤ (2d − 2)n+1

# connected components GVorX ≤ d(2d − 2)n+1

11 / 22
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Tight upper bound

Theorem (L., Kileel)

For X = {(µ1, σ
2
1), . . . , (µd , σ

2
d)} ⊆ R ×R>0 where σi ≤ σi+1 for i ∈ [d − 1]. Then:

# connected components GVorX (µi , σ
2
i ) ≤ i

# connected components GVorX ≤ 2d − 1

These bounds are tight.

If X = {(0, σ2
1), . . . , (0, σ2

d)} with σ2
i < σ2

i+1 then GVorX has 2d − 1 connected components
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Lower bounds on connected components

One difference between Gaussian Voronoi cells and regular Voronoi cells is that Gaussian
Voronoi cells can be empty

For X = {(−1
2 ,1) , (

1
2 ,1) , (0,1), (0,

1
2
)}, GVorX (0,1) = ∅

Theorem (L., Kileel)

There exists a collection of Gaussians X = {(µ1,Σ1), . . . , (µd ,Σd)} ⊂ Rn ×PDn such that
GVorX has 3 connected components.
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Algorithmic implications

For a collection of d Gaussians, d − 3 can have empty Gaussian Voronoi cells

It is possible that GDA will only classify points as 3 classes

Also shows shortcomings with Hard EM

Input : unlabeled data {x1, . . . , xN} ⊂ Rn

Initialize : {(µ1,Σ1), . . . , (µd ,Σd)}
Until convergence:

1 Perform GDA to assign each xj to a class 1, . . . ,d
2 Update (µi ,Σi) to be the sample mean and covariance of the points classified as i
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Hard EM

Figure: The results from running 100 trials of Hard EM on Gaussians with ground truth means and
weights given and variances in both cases equal to σ1 = σ3 = σ4 = 1 and σ2 = 1/2. In all cases, we
initialized Hard EM at the ground truth.
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One dimensional Gaussian Voronoi cells

Consider X = {(µ1, σ
2
1), . . . , (µd , σ

2
d)} ⊂ R ×R>0

GVorX (µi , σ
2
i ) = {x ∈ R ∶

1

σ2
i

(x − µi)2 + log(σ2
i ) ≤

1

σ2
j

(x − µj)2 + log(σ2
j ) ∀j ∈ [d]}

Ex. X = {(0,1), (1,2)}

Figure: GVorX and the log of the densities in X (left) along with the densities (right).
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Gaussian sequences

For X = {(µ1, σ
2
1), . . . , (µd , σ

2
d)}, with σ2

1 ≤ ⋯ ≤ σ2
d , the Gaussian d-sequence

corresponding to X is a sequence SX = {i1, . . . , iN} that records the order in which each
Gaussian component appears

X = {(0,1), (1,2)} has Gaussian 2-sequence {2,1,2}

X = {(µ1,1), . . . , (µd ,1)} with µ1 < . . . < µd has Gaussian d-sequence {1,2, . . . ,d}

Question : Which sequences are Gaussian d-sequences?
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Gaussian sequences

Theorem (L., Kileel)

Let S = {i1, . . . , iN} be a sequence with ij ∈ [d] for all j ∈ [N]. Then S is a Gaussian
d-sequence if and only if

1 ij ≠ ij+1 for any j ∈ [N], and
2 for any indices j < ℓ where ij = iℓ then for any j < m < ℓ, im ≤ ij .

If an integer ℓ ∈ [d] appears twice in a sequence S , then any integer that appears between
the two occurrences of ℓ must be less than or equal to ℓ

{3,2,3,2} can not appear as a part of a larger Gaussian sequence but {3,2,1,2} can
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{3,2,3,2} can not appear as a part of a larger Gaussian sequence but {3,2,1,2} can
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Counting Gaussian d-sequences

We know that if S is a Gaussian d-sequence, ∣S ∣ ≤ 2d − 1

S = {d ,d − 1, . . . ,2,1,2, . . . ,d − 1,d} is a Gaussian d-sequence with ∣S ∣ = 2d − 1

Question: How many Gaussian d-sequences, S , are there where ∣S ∣ = 2d − 1?

{3,2,1,2,3}, {3,2,3,1,3}, {3,1,3,2,3} are all Gaussian 3 sequences of size 5
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Stirling permutations

Definition

A Stirling permutation of order d is a permutation σ of the multiset {1,1,2,2, . . . ,d ,d} such
that for every i ∈ σ the values between the two copies of i are larger than i .

There are three Stirling permutations of order 2:

{1,1,2,2}, {2,2,1,1}, {1,2,2,1}

Stirling permutations of order d are in bijection with plane recursive trees on d vertices

Theorem (L., Kileel)

There is a bijection between Gaussian d-sequences of size 2d − 1 and Stirling permutations of
order d − 1. Moreover, the number of Gaussian d-sequences of size 2d − 1 is (2d − 3)!!.
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Conclusion

Gave bounds on the number of connected components of Gaussian Voronoi diagrams

Classified which sequences are Gaussian sequences and counted the number of
such sequences

More details and additional results on decision boundaries and discriminants of Gaussian
Voronoi diagrams in forthcoming paper

Thank you! Questions?
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