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Motivating example

e Patient has a tumor with 14cm perimeter and we want to classify it as benign/malignant

"Wolberg, Mangasarian, Street (1993). Breast Cancer Wisconsin Diagnostic Dataset.
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Motivating example

e Patient has a tumor with 14cm perimeter and we want to classify it as benign/malignant

e Have data on perimeters of tumors from the Breast Cancer Wisconsin Diagnostic Dataset!
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Motivating example

@ Perimeter of malignant tumors are roughly A/(17.5,3.2) and benign are A/(12.2,1.8)
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Motivating example

@ Perimeter of malignant tumors are roughly A/(17.5,3.2) and benign are A/(12.2,1.8)
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@ More likely tumor is benign (probability 0.65)
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Gaussian discriminant analysis

e Gaussian discriminant analysis (GDA) is a supervised learning algorithm for classification
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Gaussian discriminant analysis

e Gaussian discriminant analysis (GDA) is a supervised learning algorithm for classification

@ Assume each class i € [d] is distributed as N (uj, X;), uj € R”, ;>0 and

f(x|pui, Xi) =

exp (~5 0= i) TE7 0x - ) )

1
V/(2m) det (%)
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Gaussian discriminant analysis

e Gaussian discriminant analysis (GDA) is a supervised learning algorithm for classification

@ Assume each class i € [d] is distributed as N (uj, X;), uj € R”, ;>0 and

f(x|pui, Xi) =

exp (~5 0= i) TE7 0x - ) )

1
V (2m)d det(X;)
@ GDA: Classify new point x € R" as class i if

f(X|ui, i) > f(x|pj, Xj) Vjel[d]
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Gaussian Voronoi cells

@ For X c R" x PD,, the points classified as class i is the Gaussian Voronoi cell of (u;, %;)
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Gaussian Voronoi cells

@ For X c R" x PD,, the points classified as class i is the Gaussian Voronoi cell of (u;, %;)

GVorx (pi, X;) = {x e R" : (x — ;) "X (x — ;) + nlog(det(X;))
< (x - 1) "M (x - py) + nlog(det(%5)) ¥ j€ [d]}.

5/22



Gaussian Voronoi cells

@ For X c R" x PD,, the points classified as class i is the Gaussian Voronoi cell of (u;, %;)

GVorx (pi, X;) = {x e R" : (x — ;) "X (x — ;) + nlog(det(X;))
< (x - 1) "M (x - py) + nlog(det(%5)) ¥ j€ [d]}.

@ The Gaussian Voronoi diagram of X, GVory, is the union of all Gaussian Voronoi cells

5/22



Gaussian Voronoi cells

@ For X c R" x PD,, the points classified as class i is the Gaussian Voronoi cell of (u;, %;)

GVorx (i, i) = {x e R" : (x — ;) T (x - ;) + nlog(det(X;))
< (x - 1) "M (x - py) + nlog(det(%5)) ¥ j€ [d]}.

@ The Gaussian Voronoi diagram of X, GVory, is the union of all Gaussian Voronoi cells
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Gaussian Voronoi cells

@ For X c R" x PD,, the points classified as class i is the Gaussian Voronoi cell of (u;, %;)

GVorx (pi, X;) = {x e R" : (x — ;) "X (x — ;) + nlog(det(X;))

<(x- ,uj)TZj_l(x —pj) + nlog(det(X;)) V jel[d]}.

@ The Gaussian Voronoi diagram of X, GVory, is the union of all Gaussian Voronoi cells

s v wwen X< (5] o 3])-(o} s

e GVorx(ui, ;) is defined by d — 1 quadratic inequalities (quadratic discriminant analysis)
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Example: 2;=1,

e Consider X ={(u1,1n),--.,(tgs In)} c R x {l,}
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Example: 2;=1,

e Consider X ={(u1,1n),--.,(tgs In)} c R x {l,}

@ Direct computation gives

GVorx (pjs In) = {x € R" + |x = pill3 < |x = p;|3 Vje[d]}

@ When X; = I, for all i € [d], then Gaussian Voronoi cells are just standard Voronoi cells

o If X ={(u1,%),...,(pg,X)}, then GVorx(u;,X) is a linear transformation of the Voronoi
cell of p; with respect to the set {u1,...,uq} = linear discriminant analysis (LDA)
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Another example

Consider when n = 2 and the sets Xi, X2, X3, Xa ¢ R? x PDy where each X; has the same means

)

and the variances are as follows:

o2 0B Ok 9 ool 3 [ 6 A
o-fle R A [o il 2
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Figure: Gaussian Voronoi cells of X (left) and standard Voronoi cells of Y (right).
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Figure: Gaussian Voronoi cells of X (left) and standard Voronoi cells of Y (right).

@ Goal: Understand geometry and combinatorics of Gaussian Voronoi cells/diagrams
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Motivation for Gaussian Voronoi diagrams

@ Gaussian Voronoi diagrams give all possible clusterings GMMs are capable of producing

e Standard Voronoi cells (as in LDA) can only give convex clusterings
o Kernel methods embed in high dimensional space then use convex clusterings
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Motivation for Gaussian Voronoi diagrams

Gaussian Voronoi diagrams give all possible clusterings GMMs are capable of producing

e Standard Voronoi cells (as in LDA) can only give convex clusterings
o Kernel methods embed in high dimensional space then use convex clusterings

Using cylindrical algebraic decomposition algorithms from real algebraic geometry, can
compute a point on each connected component of GVorx (u;, ;)

@ Geometry of GVorx gives a priori information on pitfalls with certain models

Question: Which clusterings are GMMs capable of producing?
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Table of Contents

@ Connected components of Gaussian Voronoi diagrams
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Upper bounds on connected components

e The decision boundary of X = {(p1,%1),..., (g, Xq)} cR"x PD, is
Bx = {x e R" : £(x|ui, X;) = €(x|pj, X;) for some i # j € [d],
E(Xpiy £i) 2 O(X|pe, i) ¥ ke [d]}
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Upper bounds on connected components

e The decision boundary of X = {(p1,%1),..., (g, Xq)} cR"x PD, is
Bx = {xeR" : {(x|pi, X;) = €(x|p;,%;) for some i # j € [d],
E(Xpiy £i) 2 O(X|pe, i) ¥ ke [d]}

@ For (uj, X;) € X, the Zariski closure of the boundary of GVorx(u;,¥;) is contained in

d
Bi= [ €(x,pi, i) = €(x, pj, Xj).

j=lzi
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Upper bounds on connected components

e The decision boundary of X = {(p1,%1),..., (g, Xq)} cR"x PD, is
Bx = {xeR" : {(x|pi, X;) = €(x|p;,%;) for some i # j € [d],
E(Xpiy £i) 2 O(X|pe, i) ¥ ke [d]}

@ For (uj, X;) € X, the Zariski closure of the boundary of GVorx(u;,¥;) is contained in

d
Bi = H O(x, iy Xj) — f(X»ijZj)-

J=1,#i
@ The Milnor-Thom Theorem says the number of connected components of the
complement of a degree k hypersurface in R" is k"1
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Upper bounds on connected components

e The decision boundary of X = {(p1,%1),..., (g, Xq)} cR"x PD, is
Bx = {xeR" : {(x|pi, X;) = €(x|p;,%;) for some i # j € [d],
E(Xpiy £i) 2 O(X|pe, i) ¥ ke [d]}

@ For (uj, X;) € X, the Zariski closure of the boundary of GVorx(u;,¥;) is contained in

d
Bi = H E(X,u;,zi)—f(X»ﬂijj)-
Jj=1,j#i

@ The Milnor-Thom Theorem says the number of connected components of the
complement of a degree k hypersurface in R" is k"1

@ Apply Milnor-Thom to B; with deg(B;) =2(d - 1) to see:
# connected components GVorx (ui, ¥;) < (2d —2)"*!
# connected components GVory < d(2d —2)""1
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Tight upper bound

Theorem (L., Kileel)
For X = {(p11,0%),...,(td,03)} SR x Ryg where 0; < 0j41 for i € [d —1]. Then:

2 o
# connected components GVorx (i, 07) <i

# connected components GVorx <2d -1

These bounds are tight.
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Tight upper bound

Theorem (L., Kileel)
For X = {(p11,0%),...,(td,03)} SR x Ryg where 0; < 0j41 for i € [d —1]. Then:

2 o
# connected components GVorx (i, 07) <i

# connected components GVorx <2d -1

These bounds are tight.

o If X ={(0,0%),...,(0,02)} with 62 < 0%, then GVorx has 2d — 1 connected components
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Lower bounds on connected components

@ One difference between Gaussian Voronoi cells and regular Voronoi cells is that Gaussian
Voronoi cells can be empty
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Lower bounds on connected components

@ One difference between Gaussian Voronoi cells and regular Voronoi cells is that Gaussian
Voronoi cells can be empty

o For X ={(-3,1),(5,1),(0,1),(0,2)}, GVorx(0,1) =&

Theorem (L., Kileel)

There exists a collection of Gaussians X = {(p1,X1),...,(ttd, Lg)} € R” x PD,, such that
GVorx has 3 connected components.
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Algorithmic implications

@ For a collection of d Gaussians, d — 3 can have empty Gaussian Voronoi cells
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Algorithmic implications

@ For a collection of d Gaussians, d — 3 can have empty Gaussian Voronoi cells

@ It is possible that GDA will only classify points as 3 classes

@ Also shows shortcomings with Hard EM

Input : unlabeled data {x,...,xy} cR"
Initialize : {(u1,X1),..., (1d, X4)}
Until convergence:
@ Perform GDA to assign each x; toaclass 1,...,d
@ Update (u;,X;) to be the sample mean and covariance of the points classified as /
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Figure: The results from running 100 trials of Hard EM on Gaussians with ground truth means and
weights given and variances in both cases equal to o1 =03 =04 =1 and 0, =1/2. In all cases, we
initialized Hard EM at the ground truth.
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© Combinatorics of 1D Gaussian Voronoi cells
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One dimensional Gaussian Voronoi cells

o Consider X = {(p1,0%),...,(pd,05)} c R xRy

1 1 _
GVorx (i, 07) = {x € R & —5(x = pi)” +log(07) < —5 (x = j1j)* + log(}) ¥j e [d]}
i J
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One dimensional Gaussian Voronoi cells

o Consider X = {(p1,0%),...,(pd,05)} c R xRy

1 1 _
GVorx (i, 07) = {x € R & —5(x = pi)” +log(07) < —5 (x = j1j)* + log(}) ¥j e [d]}
i J

o Ex. X ={(0,1),(1,2)}

Figure: GVorx and the log of the densities in X (left) along with the densities (right).
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Gaussian sequences

o For X ={(p1,09),...,(pa,03)}, with 0% <--- < 03, the Gaussian d-sequence
corresponding to X is a sequence Sx = {i1,..., iy} that records the order in which each
Gaussian component appears
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Gaussian sequences

o For X ={(p1,09),...,(pa,03)}, with 0% <--- < 03, the Gaussian d-sequence
corresponding to X is a sequence Sx = {i1,..., iy} that records the order in which each
Gaussian component appears

e X ={(0,1),(1,2)} has Gaussian 2-sequence {2,1,2}

o X ={(p1,1),...,(ug,1)} with g <...< pg has Gaussian d-sequence {1,2,...,d}

@ Question : Which sequences are Gaussian d-sequences?

18/22



Gaussian sequences

Theorem (L., Kileel)

Let S ={i1,...,in} be a sequence with i; € [d] for all je [N]. Then S is a Gaussian
d-sequence if and only if
Q ij #ij+1 for any j e [N], and

@ for any indices j < { where ij = iy then for any j < m < ¥, iy < ;.
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Gaussian sequences

Theorem (L., Kileel)

Let S ={i1,...,in} be a sequence with i; € [d] for all je [N]. Then S is a Gaussian
d-sequence if and only if
Q ij #ij+1 for any j e [N], and

@ for any indices j < { where ij = iy then for any j < m < ¥, iy < ;.

o If an integer ¢ € [d] appears twice in a sequence S, then any integer that appears between
the two occurrences of £ must be less than or equal to ¢

e {3,2,3,2} can not appear as a part of a larger Gaussian sequence but {3,2,1,2} can
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Counting Gaussian d-sequences

@ We know that if S is a Gaussian d-sequence, |S|<2d -1
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Counting Gaussian d-sequences

@ We know that if S is a Gaussian d-sequence, |S|<2d -1
e S={d,d-1,...,2,1,2,...,d-1,d} is a Gaussian d-sequence with |S|=2d -1
@ Question: How many Gaussian d-sequences, S, are there where |S| =2d — 1?7

e {3,2,1,2,3}, {3,2,3,1,3}, {3,1,3,2,3} are all Gaussian 3 sequences of size 5
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Stirling permutations

Definition

A Stirling permutation of order d is a permutation o of the multiset {1,1,2,2,...,d,d} such
that for every i € o the values between the two copies of / are larger than i.
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Stirling permutations

Definition

A Stirling permutation of order d is a permutation o of the multiset {1,1,2,2,...,d,d} such
that for every i € o the values between the two copies of / are larger than i.

@ There are three Stirling permutations of order 2:
{1,1,2,2}, {2,2,1,1}, {1,2,2,1}

@ Stirling permutations of order d are in bijection with plane recursive trees on d vertices

Theorem (L., Kileel)

There is a bijection between Gaussian d-sequences of size 2d — 1 and Stirling permutations of
order d — 1. Moreover, the number of Gaussian d-sequences of size 2d — 1 is (2d — 3)!l.
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@ Gave bounds on the number of connected components of Gaussian Voronoi diagrams
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Conclusion

@ Gave bounds on the number of connected components of Gaussian Voronoi diagrams

o Classified which sequences are Gaussian sequences and counted the number of
such sequences

@ More details and additional results on decision boundaries and discriminants of Gaussian
Voronoi diagrams in forthcoming paper

Thank you! Questions?
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