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Bayesian Framework

Observations Yn = (Y1, . . . ,Yn)

Hidden variables Wn = (θ, Zn)
▶ θ collects all parameters in the model
▶ Zn = (Z1, . . . ,Zn) collects all latent variables

Statistical model:
▶ Observed-data likelihood function: p(Yn |Zn, θ)
▶ Latent variable distribution: p(Zn | θ)
▶ Prior distribution on parameters: π(θ)

Conduct inference via the joint posterior distribution

P
[
dθ, Zn

∣∣Yn] = p(Yn |Zn, θ) p(Zn | θ)π(θ)∫
Θ×Zn p(Yn |Zn, θ) p(Zn | θ)π(dθ)

∫
Θ×Zn p(Yn |Zn, θ) p(Zn | θ)π(dθ) difficult to obtain beyond simple

conjugate settings or low dimensional problems.



How does one compute posterior quantities?

Markov Chain Monte Carlo (MCMC) sampling avoids computing
the denominator

mixing and scalability issues for “big” data

Approximate Bayesian inference: Laplace approximation,
expectation propagation and variational inference



Variational inference
Feynman (1972), David Mackay (1992, 1995), Hinton and van Camp (1993)

Let Γ denote a pre-specified family of distributions on [Θ, supp(Zn)]

Idea: approximate the posterior p(Wn |Yn) by a closest member of
this family in Kullback-Leibler (KL) divergence

q̂Wn : = argmin
qWn∈Γ

DKL
[
qWn(·)

∣∣∣∣ p(· |Yn)
]



Another perspective: ELBO decomposition

log p(Yn) =

∫
Wn

qWn(wn) log
qWn(wn)

p(wn |Yn)
dwn︸ ︷︷ ︸

KL[ qWn (·) || p(· | Yn) ]

+

∫
Wn

qWn(wn) log
p(Yn |wn) pWn(wn)

qWn(wn)
dwn︸ ︷︷ ︸

L(qWn )

≥ L(qWn)

L(qWn) is called the evidence lower bound (ELBO), since it
provides a lower bound to the log evidence log p(Yn)

DKL
[
qWn(·)

∣∣∣∣ p(· |Yn)
]

describes the Jensen gap

KL minimization ≡ ELBO maximization

Avoids needing to evaluate p(Yn).



Some commonly used variational families

Mean-field variational family: consider all joint distribution over
θ = (θ1, θ2, . . . , θd) that factorizes as q(θ) =

∏d
j=1 qj(θj)

Coordinate ascent: With F(q) := D(q ∥πn), each sub-problem
argmin qj

F(qj ⊗ q(t)−j) is convex (however, not jointly)
Explicit form exploiting the tensorization property of KL divergence

q(t+1)
j ∝ exp

(∫
X−j

q(t)−j log πn

)
.



Other variational families

Parametric family such as the exponential family

qΘ(θ; κ) = h(θ) exp
{
⟨η(κ), T(θ)⟩ − A(κ)

}
Normalizing flows (Rezende and Mohamed, 2015)

Blackbox VI (Ranganath et al 2014)
Implicit VI (Huszár, 2017 )
Variational Auto-Encoders (Kingma and Welling 2013)
Mixture of Gaussians (e.g. Zobay, 2014), Implemented using
variational boosting (Guo et al 2016, Locatello et al 2017, Miller et al 2019,

Campbell and Li, 2019 )



Questions of interest

Statistical Accuracy: Is q̂Θ a good proxy for the posterior
distribution? Does q̂Θ inherit the good frequentist properties of the
posterior?
P., Bhattacharya and Yang, 2017; Yang, P., Bhattacharya 2019; Wang & Blei, 2019a,

2019b; Zhang and Gao, 2020, Alquier and Ridgeway, 2020, Huggins et al, 2019

Computational guarantee: Does q̂init
Θ converge to q̂Θ? Known in

specific cases, also in the case of (mean-field) Wasserstein
gradient flows Zhang and Zhou, 2017; Mukherjee et al 2018; Locatello et al 2017;

Plummer, P and Bhattacharya 2020; Garcia-Trillos and Sanz Alonso, 2020, Lambert et al

2024+, Yao and Yang 2024+, Bhattacharya, P and Yang 2025



Theory for mean-field VB: what to expect
Mean-field VB ignores dependence between parameter blocks. Can
not expect full posterior approximation.

Picture credit: Bishop, PMLR



Theory for VB: what to expect

Statistical Accuracy:
▶ The spread of the variational distribution is typically “too small” (e.g.

Wang and Titterington, 2005 )
▶ VB traditionally used for rapidly obtaining point estimates
▶ Basic question: Is there any loss of statistical accuracy in terms of

convergence rates in using VB?
▶ Do point estimates obtained from VB have the same convergence

rate as that of the true posterior mean?
▶ For non-identifiable models, is ELBO a “good surrogate” for

marginal likelihood?
Computational guarantee (mean-field):

▶ Convergence guarantee of a non-convex optimization problem
▶ Does initialization play a role?
▶ How does the algorithmic convergence rate scale with dimensions?



Example 1: Illustration in sparse regression (Positive result)



Example 1: High-dimensional sparse linear regression

High-dimensional linear model (d ≫ n),

Y = Xβ + w, w ∼ Nn(0, σ2 In)

Spike and slab mixture prior on β:

π(βj) =
(

1 − 1
d

)
δ0 +

1
d
N (0, σ2

β)

Mean field variational family to approximate posterior.

q(β) =
d∏

j=1

qβj(βj)



Fitted regression coefficients (n = 100, d = 200)

Y = Xβ∗ + w, w ∼ N(0, σ2)

Variational estimate: β̂ in Red and β∗ in Black.
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Fitted regression coefficients (n = 100, d = 200)
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Fitted regression coefficients (n = 100, d = 200)
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Fitted regression coefficients (n = 100, d = 200)
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Fitted regression coefficients (n = 100, d = 200)
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Example 2: Illustration in linear Gaussian state-space models
(Negative result)



Linear Gaussian state space models
Consider a scalar LGSSM

Yt | Zt ∼ N (bZt, σ
2
H), Zt | Zt−1 ∼ N (aZt−1, σ

2
V).

Denote θ = (a, b, σ2
H, σ

2
V) with a ∼ N (0, σ2

A), b ∼ N (0, σ2
B),

σ2
H ∼ IG(dH1 , dH2), σ

2
V ∼ IG(dV1 , dV2).

Let Wn = (θ,Zn) and consider the mean-field family of the form

qWn(Wn) =

[ n∏
t=1

qZt(Zt)

]
qθ(θ).

Theorem

If the true a∗ ∈ (0, 1), then with θ̂ =
∫
θq̂(dθ)

lim
n→+∞

∥θ̂ − θ∗∥ > c

for some constant c > 0.



Example 3: Illustration in model selection in singular models



Model selection in Bayesian inference

Observations Yn = (Y1, . . . ,Yn)

k models Mj, j = 1, . . . , k where Mj := {φj(θ
j), pj(Yn | θj)}

Mj := {φj(θ
j), pj(Y(n) | θj)}

Marginal likelihood or evidence for Mj,
mj(Y(n)) =

∫
Θj

pj(Yn | θj)φj(dθj) difficult to obtain beyond simple
conjugate settings or low dimensional problems.



Laplace approximation

Marginal likelihood or evidence for Mj,
mj(Yn) =

∫
Ωj

pj(Yn | θj)φj(dθj) difficult to obtain beyond simple
conjugate settings or low dimensional problems.

In regular parametric models, the Laplace approximation is

logm(Yn) = ℓn(θ̂n)−
d log n

2︸ ︷︷ ︸
BIC penalty

+Rn,

where θ̂n is the m.l.e. for parameter ξ based on Yn, d is the
parameter dimension, and the remainder term Rn = OP⋆(1).

Regularity: DGP f (x) and model p(· | θ). If K(θ) := DKL{f ∥ p(· | θ)}
has a minimized at a singleton θ⋆ and −θ2/∂θ2 log p(X | θ) is
positive definite around θ∗.



Singular models

The Laplace approximation localizes the integral to a
neighborhood of the m.l.e. & applies a 2nd-order Taylor expansion
of the log-likelihood to reduce to a Gaussian integral.

Regularity crucially exploited.

Singular statistical models: the regularity conditions are not met.

Mixture models, factor models, hidden Markov models, latent
class models, reduced rank regression, neural networks etc. Many
of these models routinely appear in economics / econometrics.



Modified approximation for singular models

In a series of foundational articles, Sumio Watanabe and
co-authors (Book: mathematical theory for Bayesian statistics )showed that in
singular settings, a more general version of the Laplace
approximation is

logm(Yn) = ℓn(θ
⋆)− λ log n + (m − 1) log(log n) + Rn.

assuming the data is generated from f (y) = p(y | θ⋆).

The quantity λ ∈ (0, d/2] is called the real log-canonical threshold
(RLCT) and the integer 1 ≤ m ≤ d its multiplicity.

When λ = d/2 and m = 1 ⇒ usual Laplace approximation.

Numerous examples of λ < d/2 in singular settings (Drton &
Plummer, 2017; Watanabe (2009, 2018))



Simple Example

Singular Model

p(y, x | a, b, c)=
1

2
√

2π
exp

{
−1

2
[y − {aS(bx) + cx}]2

}
1[−1,1](x)

φ(a, b, c)= 1

where S(x) := x + x2 and (a, b, c) ∈ [0, 1]3.
If the true parameter is (0, 0, 0),

K(a, b, c) =
1
2
(ab + c)2 +

1
6

a2b4

For this example λ = 3/4, m = 1.



Mean-field in Original Coordinates (a, b, c)

Compute the MF approximation to the posterior
q(a, b, c) = q(a)q(b)q(c)

For this example the true RLCT and multiplicity are λ = 3/4,
m = 1.

The ELBO recovers

ELBOMF ≍ −0.9763 log(n) + 2.6084

This is wrong!!!



Back to the drawing board
Let θ∗ denote the (pseudo-)true parameter.
Variational risk bounds: with high probability under the
data-generating distribution, we would want to show

∫
d2(θ, θ∗)q̂(dθ) ≤ Cε2

n

where d is a distance/divergence measure on the parameter
space, and ε2

n typically corresponds to the minimax rate (up to a
logarithmic term) for the statistical problem.'

&

$

%"!
# 

θ∗

��ϵn

Θ q̂(d(θ, θ∗) > ϵn) → 0.

If d2 is convex and θ̂ =
∫
Θ θq̂(dθ), then with high prob.

d(θ̂, θ∗) ≲ εn.



A simplified setting - no latent variables

A key requirement: The posterior itself should be well behaved.

πn(θ) :=
{p(Yn | θ)}π(θ)∫
Θ{p(Yn | θ)}π(dθ)

=
eℓn(θ,θ∗) π(θ)∫

Θ eℓn(θ,θ∗) π(dθ)

where ℓn(θ, θ
∗) = log{p(Yn | θ)/p(Yn | θ∗)}.

Does the posterior itself concentrate around the (pseudo)-true
parameter θ∗?

'

&

$

%"!
# 

θ∗

��ϵn

Θ Π(d(θ, θ∗) > ϵn | Yn) → 0.

Ghosal and van der Vaart, 2017 lists a few sufficient conditions:
1 The model should be identifiable in the parameter θ.
2 The prior should assign enough mass around the θ∗.



First order variational risk bound

Fix q ≪ π any probability measure

Consider

DKL(q, πn) = −
∫
ℓn(θ, θ

∗) q(dθ) + DKL(q, π)︸ ︷︷ ︸
-ELBO

+ logm(Yn).

Define

Ψ(q) = −
∫
ℓn(θ, θ

∗) q(dθ)︸ ︷︷ ︸
model fit

+DKL(q, π)︸ ︷︷ ︸
penalty



Main result

h2(θ, θ∗) is the squared Hellinger distance between p(Yn | θ) and
p(Yn | θ∗).

Theorem
Under model identifiability, with high probability,∫

Θ
h2(θ, θ∗) q̂(dθ) ≤ C inf

q∈Γ

[
Ψ(q)

]
+ Smaller order terms.

Recall that Ψ(·) is minimized at πn among all q ≪ π !!
Minimizing Ψ(qθ) within the variational family has the same effect
as minimizing the variational Bayes risk



Optimizing the upper bound
Choose good q ∈ Γ to control Ψ(q)

qopt
δ (θ) =

π(θ)IB(θ∗;δ)(θ)∫
Θ π(θ)IB(θ∗;δ)(θ)dθ

where B(θ∗; δ) = {θ : DKL(θ
∗ ∥ θ) < δ2}.

Then
Ψ(qopt

δ ) = −Model fit︸ ︷︷ ︸
≤nδ2

+ Penalty︸ ︷︷ ︸
− log Π{B(θ∗;δ)}

Theorem
If − log Π{B(θ∗; δ)} ≤ h(δ) and Γ is rich enough to contain qopt, then
Ψ(qopt

δ ) ≤ nδ2 + h(δ).

Balancing the model fit and the penalty is achieved by choosing δ
s.t. nδ2 = h(δ).



Example 1: High-dimensional sparse linear regression

Assumption:
πβ | z∗ is continuous assigns sufficient mass around β∗, and the
truth β∗ is s-sparse.
Sparse eigen value assumption: For any Cs-sparse vector u,
∥Xu∥2/∥u∥2 ≥ µ > 0.

Theorem
If s log d/n → 0 as n → ∞, then it holds with probability tending to one
as n → ∞ that{∫

h2[p(· |β) ∣∣∣∣ p(· |β∗)
]

q̂β(β) dβ
}1/2

≲

√
s
n
log(d n).



Example 2: Structured VB in LGSSM

Avoid mean-field on Zn, instead assume

qWn(Wn) = qZn(Zn) qθ(θ).

In particular, the computation of univariate and bivariate marginals
q(s)Zn (Zk) and q(s)Zn (Zk,Zk+1) at any iteration s can be efficiently
carried out using Belief Propagation (BP).

Theorem

If |a∗| < 1, then there exists C,D ≥ 0, such that with P(n)
θ∗ probability at

least 1 − D/(log n), it holds that∫
h2 (θ, θ∗) q̂θ(dθ) ≤ C

log n
n

.



Example 3: Structured VB in singular models

Don’t use MF directly on the singular model.

Use MF after transforming to the “resolved coordinates” ξ Hironaka
1964

The marginal likelihood approximately becomes∫
[0,1]d

e−nξ2k1
1 ξ

2k2
2 ···ξ2kd

d ξh1
1 ξ

h2
2 · · · ξhd

d dξ

Using MF on the resolved coordinates, for the non-linear
regression example ELBO = −0.7509 log(n)− 1.5169.



Mean-Field VI in Dimension d = 2
MFVI approximation ρ(ξ) = ρ1(ξ1)⊗ ρ2(ξ2) to normal form

γ
(n)
K (ξ) ∝ ξh1

1 ξ
h2
2 e−nξ2k1

1 ξ
2k2
2 , ξ1, ξ2 ∈ [0, 1].

Calculus of variations shows the optimal mean-field approximation is
given by marginals,

ρ∗1(ξ1) ∝ ξh1
1 e−nµ∗

2 ξ
2k1
1 1[0,1](ξ1) = fk1,h1,nµ∗

2
(ξ1),

ρ∗2(ξ2) ∝ ξh2
2 e−nµ∗

1 ξ
2k2
2 1[0,1](ξ2) = fk2,h2,nµ∗

1
(ξ2),

where

fk,h,β(u) = uh exp(−βu2k)1[0,1](u)/B(k, h, β),

B(k, h, β) =
∫ 1

0
xh exp(−βx2k)dx, G(λ, β) =

∫ 1

0
u2kfk,h,β(u)du,

µ∗1 = G(λ, nµ∗2), µ∗2 = G(λ, nµ∗1).



Mean-Field VI in Dimension d = 2
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Example 3: Structured VB in singular models

Use MF on the resolved coordinates q(ξ) = q1(ξ1) · · · qd(ξd)

Theorem
C1 and C2 independent of n such that
−λ log n − C1 ≤ ELBO ≤ −λ log n − C2.

The log log n term is missed due to the mean-field approximation,
but still surprising since the target after resolving the coordinates,
there is still a high dependence structure.



Learn unknown transformation

Assume Γ : ξ → Θ be a blowup associated with the resolution of
singularities and Q is the mean-field probability on ξ. Let
Q̃ = Q ◦ Γ−1, and consider the variational family

FtMF = {q̃ : Q̃ = Q ◦ Γ−1,Γ ∈ FΓ,Q is MF}

where FΓ is a smooth function class.
Learn Γ using normalizing flows.

Theorem
When optimized over FtMF, ELBO = −λ log n + O(1).



Recipe for Statistical Accuracy

Construct likelihood and prior such that posterior should have
optimal risk (typically prior should have adequate concentration
around the true parameter).
Variational family should contain (or can approximate) densities of
the form

qopt(θ) =
π(θ)IB(θ∗;δ)(θ)∫

Θ π(θ)IB(θ∗;δ)(θ)dθ
.

What this means for mean-field approximation? B(θ∗; δ) should
contain a rectangular interval N (θ∗; δ) which has the same prior
concentration order.



Algorithmic convergence of coordinate ascent in mean-field



CAVI algorithm

Suppose X = X1 × . . .×Xd with Xj ⊆ Rmj and
∑d

j=1 mj = m. Let

QMF : =
{

q = q1 ⊗ . . .⊗ qd : q ≪ πn and DKL(q ||πn) <∞
}

with qj a density on Xj for each j ∈ [d].
Denote F(q) := DKL(q ||πn) to be the variational objective function.
Write F(q) equivalently as F(qj ⊗ q−j) to emphasize dependence
on j th coordinate.



CAVI algorithm

Each sub-problem argmin qj
F(qj ⊗ q(t)−j) is convex (however, not

jointly)
Explicit form exploiting the tensorization property of KL divergence

q(t+1)
j ∝ exp

(∫
X−j

q(t)−j log πn

)
.

Iterates analytically tractable in exponential family models
General framework for convergence?

Ghorbani, Javadi, Montanari 2018; Mukherjee et al. 2018; Huggins et al. 2019; Zhang &
Zhou 2020; Alquier & Ridgway 2020; Ghosh, Bhattacharya, P 2022...



Parallel vs. Sequential (2 block case)

Figure: Parallel dynamics in 2d with q(t+1)
1 = argmin q1

F(q1 ⊗ q(t)
2 ) and

q(t+1)
2 = argmin q2

F(q(t)
1 ⊗ q2).

Figure: Sequential dynamics in 2d with q1 updated first, i.e., q(t+1)
1 = argmin q1

F(q1 ⊗ q(t)
2 ) and

q(t+1)
2 = argmin q2

F(q(t+1)
1 ⊗ q2).



Example
High-dimensional sparse regression
Coordinate ascent variational inference - try sequential and
parallel implementation

n <- 100
p <- 100
q <- 20
X=matrix(rnorm(n*p),n,p)
sigmasq=1
E <- rnorm(n,0,sigmasq)
beta=c(rep(1,q),rep(0,p-q))
snr=sd(X%*%beta)/sd(E)
y=X%*%as.matrix(beta) + sigmasq*E
vb_out <- variational_seq(y,X)
vb_out <- variational_par(y,X)



Sequential update - estimates

Figure: Variational mean, Pointwise intervals



Sequential update -tracking ELBO

Figure: ELBO stabilizing after 20 iterations



Back to the drawing board

In conditionally conjugate models, the CAVI iterates typically lie
inside parametric families qj(· | ψj) with ψj ∈ Ψj for j = 1, 2

Parallel iterates can be expressed as a finite-dimensional
dynamical system ψ(t) = G(ψ(t−1)) where ψ = (ψ1, ψ2), and
G : Ψ1 ×Ψ2 → Ψ1 ×Ψ2. Similarly for sequential updates.

One approach: directly analyze this dynamical system. Case
specific?



Two-block CAVI

A key quantity in our theory which captures the interaction
between the two blocks:

∆n(q1, q2) :=

∫
(q1 − q⋆1)⊗ (q2 − q⋆2) log πn,

where (q⋆1, q
⋆
2) is a global optima of the variational objective F.

Decomposing log πn(θ1, θ2) = C +Vn,1(θ1) +Vn,2(θ2) +Vn,12(θ1, θ2),

∆n(q1, q2) = −
∫

Vn,12(θ1, θ2)[q1(θ1)− q⋆1(θ1)] [q2(θ2)− q⋆2(θ2)]dθ1dθ2.

In particular, ∆n free of the normalizing constant of the target
density.



Two-block CAVI

Let DKL,sym(p, q) = DKL(p || q) + DKL(q || p) denote symmetrized KL
for densities p, q.

Define GCorr(πn) below as the generalized correlation within πn
with respect to the decomposition X = X1 ×X2 over families Q1
and Q2:

GCorr(πn) := sup
qj ̸=q⋆j ∈Qj

|∆n(q1, q2)|√
DKL,sym(q1, q⋆

1)DKL,sym(q2, q⋆2)
.

We show that if GCorr(πn) ∈ (0, 2), then parallel / sequential CAVI
globally contracts.



Two-block CAVI: global convergence

Theorem
Suppose the target density πn satisfies GCorr(πn) ∈ (0, 2). Then, for
any initialization q(0) = q(0)1 ⊗ q(0)2 ∈ Q of the parallel/sequential CAVI
algorithm, one has a contraction

DKL,sym(q(t+1), q⋆) ≤ κnDKL,sym(q(t), q⋆),

for any t ≥ 0, where the contraction constant 2κn = GCorr2(πn) ∈ (0, 2).

Iterating, for any t ≥ 1,

DKL,sym(q(t), q⋆) ≤ κt
nDKL,sym(q(0), q⋆).



Example (Gaussian)

Suppose πn ≡ Np(θ0, (nQ)−1) where Q is a fixed positive definite matrix.
Consider a mean-field decomposition q(θ) = q1(θ1) q2(θ2) where we
decompose θ = (θ1, θ2)

′ with θi ∈ Rpi . Partition θ0 = (θ01, θ02)
′ and

Q =

[
Q11 Q12
Q21 Q22

]

Proposition
For a Gaussian target πn ≡ Np(θ0, (nQ)−1) with Q positive definite, and
a mean-field decomposition as above,
GCorr(πn) = 2∥Q−1/2

11 Q12Q−1/2
22 ∥2 < 2.



Remarks

As a by-product q⋆ = q⋆1 ⊗ q⋆2 is the unique global minima of F
within Q.

The explicit forms of the updates can be exploited to bound
GCorr(πn) more conveniently.

Global convergence may not always hold. Formulate a local
version of result.



Local convergence

In the definition of GCorr(πn), replace Qj by
Q⋆

j (r0) := {qj ∈ Qj : DKL(q⋆j || qj) ≤ r0} for r0 > 0, and call the
resulting quantity GCorr(πn; r0).

GCorr(πn) := sup
qj ̸=q⋆j ∈Q⋆

j (r0)

|∆n(q1, q2)|√
DKL,sym(q1, q⋆1)DKL,sym(q2, q⋆2)

.



Two-block CAVI: local convergence (both parallel and
sequential)

Theorem (Two-block CAVI: local contraction)
Suppose there exists r0 > 0 such that GCorr(πn; r0) ∈ (0, 2). Assume
that the initialization satisfies DKL,sym(q

(0)
j , q⋆j ) ≤ r0 for j = 1, 2. Then, for

any t ≥ 0,

DKL,sym(q(t+1), q⋆) ≤ κnDKL,sym(q(t), q⋆),

with κn : = GCorr2(πn; r0) ∈ (0, 2).



Examples



Parallel and sequential CAVI concordances for d = 2

Global conditions on GCorr(πn)
▶ Multivariate Gaussian target
▶ Probit regression

Characterize r0 precisely in the condition for GCorr(πn; r0)
▶ Multivariate mean precision
▶ Gaussian mixture
▶ General expo-family LVM
▶ Ising Models - region of convergence corresponds to the Dobrushin

regime.



Extension to general d

Define the generalized correlation between qj and q−j.

GCorr(j)(πn) = sup
qj∈Qj\{q⋆j }

|∆j,n(qj, q−j)|√
DKL,sym(qj || q⋆j )

√
DKL,sym(q−j || q⋆−j)

,

GCorrd(πn) = max
j∈[d]

GCorr(j)(πn) .

Extension to only parallel case in general d valid with
GCorrd(πn) < 2/

√
d − 1.



General d and parallel and sequential discordances

Is the condition GCorr(πn) < 2/
√

d − 1 necessary?
πn ≡ Nd(0,Q−1), Q = (1 − ρ)Id + ρ1d1′d.
To ensure positive definiteness of Q, assume −(d − 1)−1 < ρ < 1.
Consider a mean-field approximation q(θ) =

∏d
j=1 qj(θj).

GCorr(πn) < 2/
√

d − 1 ⇔ |ρ| < 1/(d − 1) .

The parallel update proceeds as

q(t+1)
j (θj) = N (θj;m(t+1)

j , 1), m(t+1)
j = −ρ

∑
k ̸=j

m(t)
k , j ∈ [d].

The dynamical system m(t+1) = ρ(Id − 1d1′d)m
(t) converges for

|ρ| < 1/(d − 1), so our theory is sharp.



Mitigating strategy and concluding remarks

The parallel scheme itself fails to converge if 1/(d − 1) < ρ < 1.
We can prove for this particular example that sequential
converges within this range.
For the high-dimensional regression example, stronger conditions
on the design are needed for the parallel version for convergence

max
k

∑
j∈{S0}\{k}

⟨Xj,Xk⟩2

∥Xj∥2∥Xk∥2 ≤ 1/(s0 − 1)

where s0 is the true sparsity and S0 is the true index set. This
forces s2

0 = o(n) for iid Gaussian.



Merging statistical and computational guarantees

Theorem

Suppose An is such that P(n)
θ0

(An) ≥ 1 − δn and on An,∫
Θ h2(θ, θ0)q⋆(dθ) ≲ ε2

n and GCorr(πn; r0) ∈ (0, 2) for some r0 > 0.
Assume that the CAVI initialization satisfies DKL,1/2(q

(0)
j || q⋆j ) ≤ r0/2.

Then, on An, one has∫
Θ

h2(θ, θ0)q(t)(dθ) ≲ ε2
n whenever t ≥ tn : = C log(1/εn)/ log(1/κn),



Concluding remarks and open problems

Recommendations:
Convergence in latent variable models depend on initialization.
Avoid parallel CAVI - tends to have cyclical behavior and smaller
radius of convergence.

Open problems:
Convergence Guarantees beyond mean-field?
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Explanation slides



Final target

Theorem

Suppose An is such that P(n)
θ0

(An) ≥ 1 − δn and on An,∫
Θ h2(θ, θ0)q⋆(dθ) ≲ ε2

n and GCorr(πn; r0) ∈ (0, 2) for some r0 > 0.
Assume that the CAVI initialization satisfies DKL,1/2(q

(0)
j || q⋆j ) ≤ r0/2.

Then, on An, one has∫
Θ

h2(θ, θ0)q(t)(dθ) ≲ ε2
n whenever t ≥ tn : = C log(1/εn)/ log(1/κn),



Ising Model on two nodes

Construct πn [
(0, 0) (0, 1) (1, 0) (1, 1)

(1 − p)/2 p/2 p/2 (1 − p)/2

]
,

where p ∈ (0, 1).
Marginals are Bernoulli(0.5) each
If |logit(p)| < 2, CAVI system is globally convergent at
q⋆1 = q⋆2 = Bernoulli(0.5). Indeed, the target density here can be
viewed as an Ising model on two nodes, and the condition
|logit(p)| < 2 coincides with the Dobrushin regime.
|logit(p)| > 2, statistically uninteresting since MF minima not at
Bernoulli(0.5) periodic behavior of parallel CAVI



Two-block sequential CAVI

Theorem (Two-block sequential CAVI: local contraction)

Consider (q(t)1 , q(t)2 ) 7→ (q(t+1)
1 , q(t)2 ) 7→ (q(t+1)

1 , q(t+1)
2 ), where q1 is

updated first.

Suppose there exists r0 > 0 such that GCorr(πn; r0) ∈ (0, 1). Assume
that the initialization for q1 satisfies DKL,sym(q

(0)
1 , q⋆1) ≤ r0, and prepare

q(0)2 : = argmin q2
F(q(0)1 ⊗ q2). Then, for any t ≥ 0,

DKL,sym(q
(t+1)
1 || q⋆1) ≤ κnDKL,sym(q

(t)
2 || q⋆2),

DKL,sym(q
(t+1)
2 || q⋆2) ≤ κnDKL,sym(q

(t+1)
1 || q⋆1),

with κn : = GCorr2(πn; r0) ∈ (0, 1).

If the two equations above are satisfied with κ1n and κ2n

respectively, then only need κ1nκ2n < 1 for an overall contraction.
Useful feature in latent variable models.



Example (2-block Gaussian)

Suppose πn ≡ Np(θ0, (nQ)−1) where Q is a fixed positive definite matrix. Consider
q(θ) = q1(θ1) q2(θ2) with θ = (θ1, θ2)

′ and θi ∈ Rpi . Partition θ0 = (θ01, θ02)
′ and

Q =

[
Q11 Q12
Q21 Q22

]

The parallel CAVI updates are

q(t+1)
1 (θ1) = N (θ1;m(t+1)

1 , (nQ11)
−1), q(t+1)

2 (θ2) = N (θ2;m(t+1)
2 , (nQ22)

−1),

m(t+1)
1 = θ01 − Q−1

11 Q12
(
E

q(t)
2
(θ2)− θ02

)
, m(t+1)

2 = θ02 − Q−1
22 Q21

(
E

q(t)
1
(θ1)− θ01

)
.

For qj ≡ N(mj, (nQjj)−1), j = 1, 2,

∆n(q1, q2) = −nδ′1Q12δ2, δj = Eqj [θj]− Eq⋆j
[θj] = mj − m⋆

j .



Example (Probit regression)
Suppose yi | xi, β

ind.∼ Bernoulli(Φ(x′iβ)) independently for i ∈ [n]. Assume prior β ∼ N(0, κ−1Ip).

Augment latent variables z = (z1, . . . , zn) with yi = 1(zi > 0) and zi
ind.∼ N(x′iβ, 1). Consider the

mean-field decomposition

q(β, z) = qβ(β) qz(z).

Let N1 and N0 respectively denote univariate truncated normals with truncation region (0,∞) and
(−∞, 0). The parallel updates are

q(t+1)
β (β) = Np(β;m(t+1),Σ),

q(t+1)
z (z) =

∏n
i=1 q(t+1)

i (zi), q(t+1)
i (zi) ≡ Nyi(zi; x′im

(t), 1)

where Σ = (X′X + κIp)−1, and m(t+1) = ΣX′E
q(t)
z
(z).

For qβ ≡ N(m,Σ) with m ∈ Rd and qz = ⊗n
i=1qi with qi ≡ Nyi (αi, 1),

∆n(qβ , qz) =
n∑

i=1

(
x′i m − x′i m

⋆
)(

Eqi (zi)− Eq⋆i
(zi)

)
.



Example (Mixture model)

Let xi
i.i.d.∼ 1

2 N (0, 1) + 1
2 N (µ, 1) with prior µ ∼ N(0, τ−1

0 ). Write xi | zi, µ
ind.∼ N(µ1(z1 = 2), 1) and

pr(zi = 1) = pr(zi = 2) = 1/2. Letting z = (z1, . . . , zn)′, consider a mean-field decomposition
q(µ, z) = qµ(µ) qz(z).

The updates for z lie in the family qz(z) =
∏n

i=1 qi(zi), where each qi is a two-point distribution on
{1, 2} with probabilities (1 − pi) and pi respectively. Also, the update for µ is of the form
N(m, τ−1). Parallel updates:

logit(p(t+1)
i ) = m(t)xi − 1

2

(
(m(t))2 + 1

τ(t)

)
,

(m(t+1), τ (t+1)) =

( ∑n
i=1 p(t)

i xi

τ0+
∑n

i=1 p(t)
i

, τ0 +
∑n

i=1 p(t)
i

)
.

For any such qµ and qz,

∆n(qµ, qz) =
n∑

i=1

(pi − p⋆i )
[

zi(m) (m − m⋆) +
1
2

(
1
τ⋆

−
1
τ

)]
,

where zi(m) = xi − (m + m⋆)/2.


	Computational guarantees

