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Dèja Vu: Introductory Example

Example (Flipping a coin)

Probability of Tails: t ∈ [0,1] Probability of Heads: 1 − t ∈ [0,1]
For each t we have a Bernoulli probability distribution represented by
pt = (P(X = H),P(X = T )) = (1 − t, t); we have the statistical model

M= {(1 − t, t)∣t ∈ [0,1]} = ∆1

A discrete probability distribution on [n] = {0,1, . . . ,n} is determined
by the probability pi that the ith state occurs, i = 0, . . . ,n.
This is a point in

∆n = {p ∈ Rn+1
∣ pi ≥ 0 for all i and p+ =

n

∑
i=0

pi = 1} .

→ statistical model M is a subset of the probability simplex ∆n.
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Mantra: “Statistical models are algebraic varieties”

Example (Flipping a coin twice)

Binomial(2, t) distribution with n = 2 (# tails observed).

M= {((1 − t)2,2t(1 − t), t2) ∣t ∈ [0,1]} ⊂ ∆2

distributions pt = (p0,p1,p2)

defined by the Hardy-Weinberg equation:

4p0p2 = p2
1 .
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Maximum Likelihood Estimation

Data from a sample can be summarized in a vector of counts
u ∈ Nn+1, where ui = # times state i occurs.

The empirical distribution is given by ū = 1
N u ∈ ∆n where u+ = N.

The likelihood function given u is

Lu(p) = pu0
0 pu1

1 ⋯punn .

The MLE given u is the maximizer p̂ of Lu(p) over M⊆ ∆n.

Example (MLE for Binomial(2, t))

Suppose we repeat the ‘flipping a coin twice’ experiment N = 50 times,
observing the count vector u = (u0,u1,u2) = (10,20,20).
M= {((1 − t)2,2t(1 − t), t2) ∣ t ∈ [0,1]}. What would be an estimate t̂?

The MLE for the model is p̂, given by t̂ = u1+2u2
2(u0+u1+u2) .
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The ML Degree

In many models used in practice (such as parametric discrete
exponential models), computing the MLEs is equivalent to solving an
algebraic optimization problem.

The maximum likelihood degree (ML degree) is an intrinsic invariant
that counts the number of complex solutions to the likelihood
equations for generic data.1

The ML degree gives an upper bound on the number of isolated local
maxima of the likelihood function2 → global optimization

Example: ML degree for Binomial = 1

ML degree = 1 ⇐⇒ MLE is a rational function of u

1F. Catanese, S. Hoşten, A. Khetan, B. Sturmfels (2006) The maximum likelihood
degree. American Journal of Mathematics, 128(3), 671-697.

2S. Hoşten, A. Khetan, B. Sturmfels (2005) Solving the likelihood equations. FoCM,
5, 389-407.
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Carlos Améndola 1D models of ML deg 1: AlgStats meets CR geometry 4 / 25



The ML Degree

In many models used in practice (such as parametric discrete
exponential models), computing the MLEs is equivalent to solving an
algebraic optimization problem.

The maximum likelihood degree (ML degree) is an intrinsic invariant
that counts the number of complex solutions to the likelihood
equations for generic data.1

The ML degree gives an upper bound on the number of isolated local
maxima of the likelihood function2 → global optimization

Example: ML degree for Binomial = 1

ML degree = 1 ⇐⇒ MLE is a rational function of u
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Characterizing ML degree one Models

Great result by Huh 3 and refinement by Duarte-Marigliano-Sturmfels 4.

Theorem (Huh, Duarte-Marigliano-Sturmfels)

The following are equivalent:

1 The model M⊂ ∆n has ML degree one.

2 There exists a Horn pair (H, λ) such that M is the image of the Horn
uniformization map ϕ(H,λ) ∶ Rn+1

>0 → Rn+1
>0 .

3 There exists a discriminantal triple (A,∆,m) such that M is the
image under the monomial map φ(∆,m) of precisely one orthant of the
dual toric variety Y ∗

A .

Question: Can such models be classified?

3J. Huh (2014). Varieties with maximum likelihood degree one. Algebraic Statistics,
5(1), 1–17.

4E. Duarte, O. Marigliano, B. Sturmfels (2021). Discrete statistical models with
rational maximum likelihood estimator. Bernoulli 27(1), 135–154.
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Curves of ML degree one

Bik and Marigliano 5 study the classification when dim(M) = 1.

Proposition

Let M⊂ ∆n with dim(M) = 1 and ML degree one. Then

M= {(c0t
ν0(1 − t)µ0 , c1t

ν1(1 − t)µ1 , . . . , cnt
νn(1 − t)µn)∣t ∈ [0,1]},

for some ci > 0 and νi , µi ∈ N, ∀i ∈ [n].

Moreover, the identity

c0t
ν0(1 − t)µ0 + c1t

ν1(1 − t)µ1 + ⋅ ⋅ ⋅ + cnt
νn(1 − t)µn = 1

must hold in the polynomial ring R[t].

5A. Bik, O. Marigliano (2025). Classifying one-dimensional discrete models with
maximum likelihood degree one. Advances in Applied Mathematics 170.
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Reduced Models

Let M⊂ ∆n be

M= {(c0t
ν0(1 − t)µ0 , c1t

ν1(1 − t)µ1 , . . . , cnt
νn(1 − t)µn)∣t ∈ [0,1]}.

We say M is reduced iff all exponent pairs (νi , µi) are pairwise distinct
and different from (0,0). We also have

deg(M) = max{νi + µi ∣ i ∈ [n]}.

Every one-dimensional model of ML degree one is the image of a reduced
model under a chain of linear embeddings of the form

∆n−1 →∆n, (p0, . . . ,pj , . . . ,pn) ↦ (λp0, . . . ,1 − λ, . . . , λpn), λ ∈ [0,1]

or of the form

∆n−1 →∆n, (p0, . . . ,pj , . . . ,pk , . . . ,pn) ↦ (p0, . . . , λpj , . . . , (1 − λ)pj , . . . ,pn) .

Hence, it suffices to study reduced models.
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Composite Models

If M is a reduced model represented by (ci , νi , µi)
n
i=0, the support of

M is the set of all pairs (νi , µi).

We can encode reduced models as functions

h ∶ Z2
→ R≥0, (νi , µi) ↦ ci

with supp(h) = supp(M).

Let M1 and M2 be reduced models represented by h1,h2 and
0 < λ < 1. Then the composite model M1 ∗λM2 is the reduced
model represented by h = (1 − λ)h1 + λh2 ∶ Z2 → R≥0.

Example (Composite of Ber(t) and Bin(2, t))

Let M1 ∶ t ↦ (1 − t, t) ⊆ ∆1 and M2 ∶ t ↦ ((1 − t)2,2t(1 − t), t2) ⊂ ∆2.

M1 ∗λM2 ∶ t ↦ ((1 − λ)(1 − t), (1 − λ)t, λ(1 − t)2,2λt(1 − t), λt2) ⊂ ∆4
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Fundamental Models

Definition

A reduced model represented by (ci , νi , µi)
n
i=0 is fundamental if, given

(νi , µi), the scalings ci are uniquely determined by the constraint
p0 + p1 + . . . + pn = 1.

Example (Bin(2, t))

Consider the support {(2,0), (1,1), (0,2)}. The polynomial constraint

c0t
2
+ c1t(1 − t) + c2(1 − t)2

= 1

reduces to the linear system

c0 − c1 + c2 = 0 c1 − 2c2 = 0 c2 − 1 = 0

which has the unique solution (1,2,1) → Bin(2, t) is fundamental.
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Fundamental Theorem of Reduced Models

Every reduced model can be constructed from finitely many fundamental
models in a finite number of steps.

Theorem (Bik-Marigliano)

Every reduced model in ∆n is a composite of at most n fundamental
models, each one in a ∆m with m < n.

Focus on finding all fundamental models M⊂ ∆n.

Let deg(M) = d .
Since there are only finitely many possible supports of degree d , there
can only be finitely many fundamental models for fixed n,d !

If a reduced model M⊂ ∆n is not fundamental, there exists m < n
and a fundamental model in ∆m of the same degree of M.

Given n, is there an upper bound on deg(M)?

If this were the case, there would be only finitely many fundamental
models in ∆n for any n ∈ N!
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can only be finitely many fundamental models for fixed n,d !

If a reduced model M⊂ ∆n is not fundamental, there exists m < n
and a fundamental model in ∆m of the same degree of M.

Given n, is there an upper bound on deg(M)?

If this were the case, there would be only finitely many fundamental
models in ∆n for any n ∈ N!
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Fundamental models in ∆2

Let M⊂ ∆2 fundamental of deg(M) = d .

Possible supports are subsets of size 3 of

{(i , j) ∣0 < i + j ≤ d} ⊂ Z2

d = 1: no reduced models, M ∶ t ↦ (1 − t, t,0)

d = 2: there are three fundamental models

M1 ∶ t ↦ ((1 − t)2,2t(1 − t), t2)

M2 ∶ t ↦ (1 − t, t(1 − t), t2)

M3 ∶ t ↦ ((1 − t)2, t(1 − t), t)

1 − t

t

1 − t

t

p0

p1

p2
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Fundamental models in ∆2

d = 3: there is a unique fundamental model:

M ∶ t ↦ ((1 − t)3,3t(1 − t), t3) .

This model is obtained by merging states 1,2 from a Bin(3, t):

t ↦ ((1 − t)3,3t(1 − t)2,3t2
(1 − t), t3) ⊂ ∆4

d > 3: no fundamental models!

In order to conclude the last statement, Bik and Marigliano develop a
range of combinatorial criteria to rule out supports for fundamental
models, and keep track of possible supports through Chipsplitting games.
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State-of-the-Art (Bik-Marigliano)

n Ó d 1 2 3 4 5 6 7 8 9

1 1
2 3 1
3 12 4 2
4 82 38 10 4
5 602 254 88 24 2

Number of fundamental models in ∆n of degree d .

Furthermore, there are no more models in ∆n with higher degree for n ≤ 4.

Conjecture

Let M⊆ ∆n be a one-dimensional model with ML degree one. Then

deg(M) ≤ 2n − 1.
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Resolving the Conjecture

Theorem (Am., Nguyen, Oldekop)

Let M⊆ ∆n be a one-dimensional model of ML degree one. Then

deg(M) ≤ 2n − 1.

Corollary

For any n ∈ N, the number of fundamental models in ∆n is finite.

Crucial fundamental model:

Proposition

The binomial model Bin(n, t) ⊂ ∆n parametrized by

p ∶ [0,1] →∆n, t ↦ ((
n

i
)t i(1 − t)n−i)

n

i=0

is fundamental. Moreover, it is the unique reduced model that is
homogeneous of degree d.
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CR Geometry

Branch of mathematics which arose from the theory of functions of
several complex variables 6

CR stands for Cauchy-Riemann → Cauchy-Riemann equations

CR also for complex-real → real submanifolds of complex spaces

Relate the geometry of the boundary of a domain in complex
Euclidean space to the function theory on the domain

Classical problem: study of proper holomorphic mappings between
complex unit balls:

F ∶ BN → Bn+1

If F extends continuously to the boundaries, F is proper if it maps the
unit sphere in CN to the unit sphere in Cn+1

6G. Zampieri (2008). Complex Analysis and CR Geometry. University Lecture Series,
American Mathematical Society
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CR Geometry: Faran’s Classification

Given such a map F ∶ B2 → B3, we can get another such by composing
with an automorphism of B2 and an automorphism of B3:

spherical equivalence
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Faran’s Classification (1982)

Note that indeed for (3):

z2
+w2

= 1 Ô⇒ z4
+ 2z2w2

+w4
= 1

Do these look familiar? set t = z2 ! Ô⇒ 1 − t = w2

These are the fundamental models in ∆2!
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Some CR Geometry Literature

Non-exhaustive list of relevant references:

John D’Angelo. Polynomial proper maps between balls. Duke Mathematical
Journal, 57(1):211 219, 1988.

John D’Angelo, Simon Kos, and Emily Riehl. A sharp bound for the degree of
proper monomial mappings between balls. The Journal of Geometric Analysis,
13(4):581593, 2003.

John D’Angelo, Jiŕı Lebl, and Han Peters. Degree estimates for polynomials
constant on a hyperplane. Michigan Mathematical Journal, 55(3):693-713, 2007.

Jiŕı Lebl and Daniel Lichtblau. Uniqueness of certain polynomials constant on a
line. Linear Algebra and its Applications, 433(4):824837, 2010.

Jiŕı Lebl and Han Peters. Polynomials constant on a hyperplane and CR maps of
spheres. Illinois Journal of Mathematics, 56(1):155 175, 2012.

John D’Angelo. Rational Sphere Maps. Progress in Mathematics. Birkhäuser
Cham, 2021.
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Proving the Upper Bound 2n − 1

For a reduced model M⊆ ∆n represented by (ci , νi , µi)
n
i=0, define

fM = c0x
µ0yν0 + c1x

µ1yν1 + . . . + cnx
µnyνn ∈ R[x , y].

Note that fM has nonnegative coefficients and fM(x , y) = 1 on the
line x + y = 1.

For any fM of degree d , there exists a polynomial gM ∈ R[x , y] of
degree d − 1 such that

fM − 1 = (x + y − 1)gM

Define the Newton diagram GM of gM as

GM ∶ Z2
→ {0,P,N}, (a,b) ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P, if gab > 0,

0, if gab = 0,

N, if gab < 0.
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Carlos Améndola 1D models of ML deg 1: AlgStats meets CR geometry 19 / 25



Proving the Upper Bound 2n − 1

For a reduced model M⊆ ∆n represented by (ci , νi , µi)
n
i=0, define

fM = c0x
µ0yν0 + c1x

µ1yν1 + . . . + cnx
µnyνn ∈ R[x , y].

Note that fM has nonnegative coefficients and fM(x , y) = 1 on the
line x + y = 1.

For any fM of degree d , there exists a polynomial gM ∈ R[x , y] of
degree d − 1 such that

fM − 1 = (x + y − 1)gM

Define the Newton diagram GM of gM as

GM ∶ Z2
→ {0,P,N}, (a,b) ↦

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

P, if gab > 0,

0, if gab = 0,

N, if gab < 0.
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Example

Consider the fundamental model M⊂ ∆4 parametrized by

t ↦ (t7,
7

2
t5

(1 − t),
7

2
t(1 − t),

7

2
t(1 − t)5, (1 − t)7

) .

Then we have

gM = 1 + x + y + x2
−

3

2
xy + y2

+ x3
−

1

2
x2y −

1

2
xy2

+ y3
+ x4

+
1

2
x3y

− x2y2
+

1

2
xy3

+ y4
+ x5

+
3

2
x4y −

1

2
x3y2

−
1

2
x2y3

+
3

2
xy4

+ y5
+ x6

− x5y + x4y2
− x3y3

+ x2y4
− xy5

+ y6
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Proving the Upper Bound 2n − 1

Proof technique largely inspired by d’Angelo-Kos-Riehl (2003).

(a,b) in GM is a sink if the subdiagram of the entry itself, the entry
just below and the entry to the left is one of

Key observation: if GM has a sink at (a,b) then the coefficient of
xayb in fM is positive:

(x + y − 1)(g(a−1)bx
a−1yb + ga(b−1)x

ayb−1
+ gabx

ayb)

Hence, the support size of M is at least the number of sinks in GM.

(DKR03, Prop 3.11) For any M of degree d , GM has at least
2 + ⌈d−1

2 ⌉ sinks.

Finally, from 2 + ⌈d−1
2 ⌉ ≤ n + 1, we obtain d ≤ 2n − 1.
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Sharp Models

Definition

A reduced model M⊂ ∆n is sharp if deg(M) = 2n − 1

Sharp models always exist for every n ∈ N+. A well-known family (also
found by Bik-Marigliano) is

t ↦ (t2n−1,(
2n − 1

2i + 1
(
n + i − 1

2i
)tn−i−1

(1 − t)2i+1
)
n−1

i=0
)

Lebl and Lichtblau (2010) prove the following about the support of a
sharp model M of degree d :

The support of M contains (d ,0) and (0,d)

It does not contain any other elements (a,b) with a + b = d

It does not contain (k ,0) nor (0, k) for all k < d

It contains at least one element (a,b) with a + b = d − 1.

No two sharp models have the same support Ô⇒
they are always fundamental!
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Carlos Améndola 1D models of ML deg 1: AlgStats meets CR geometry 22 / 25



Sharp Models

Definition

A reduced model M⊂ ∆n is sharp if deg(M) = 2n − 1

Sharp models always exist for every n ∈ N+. A well-known family (also
found by Bik-Marigliano) is

t ↦ (t2n−1,(
2n − 1

2i + 1
(
n + i − 1

2i
)tn−i−1

(1 − t)2i+1
)
n−1

i=0
)

Lebl and Lichtblau (2010) prove the following about the support of a
sharp model M of degree d :

The support of M contains (d ,0) and (0,d)

It does not contain any other elements (a,b) with a + b = d

It does not contain (k ,0) nor (0, k) for all k < d

It contains at least one element (a,b) with a + b = d − 1.

No two sharp models have the same support Ô⇒
they are always fundamental!
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Counting polynomials

Table 2 from Lebl and Lichtblau (2010):

Compare with Bik-Marigliano:

n Ó d 1 2 3 4 5 6 7 8 9

1 1
2 3 1
3 12 4 2
4 82 38 10 4
5 602 254 88 24 2

Key message: We can learn from each other!
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State-of-the-Art (Am., Nguyen, Oldekop)

n
d

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1
2 3 1
3 12 4 2
4 82 38 10 4
5 602 254 88 24 2
6 6710 2421 643 198 32 4
7 83906 23285 6445 1442 332 56 8

Number of fundamental models of degree d in the simplex ∆n.

We can now know that all blank entries are indeed zero.

Proposition

There exist fundamental models of degree d in ∆n if and only if

n ≤ d ≤ 2n − 1.
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Fundamental Models Triangle (Am., Nguyen, Oldekop)

Conjecture

Let an be the number of fundamental models in ∆n of degree 2n − 1. Then the
number of fundamental models in ∆n of degree 2n − 2 is given by

2(a1an−1 + a2an−2 + . . . + an−1a1).

Example: for n = 4 ∶ 2(a1a3 + a2
2 + a3a1) = 2(1 ⋅ 2 + 22 + 2 ⋅ 1) = 10

Lebl 7 reports a9 = 2, a10 = 24 and a11 = 2 (> 8 months computation time!)

7J. Lebl (2013). Addendum to uniqueness of certain polynomials constant on a line.
arXiv: 1302.1441
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Conclusion

Fundamental models as building blocks for all one-dimensional
discrete models of ML degree one.

We show there exist (finitely many) fundamental models of degree d
in ∆n if and only if n ≤ d ≤ 2n − 1.

Sharp models have nice combinatorial properties and correspond to
well-studied special holomorphic maps between complex spheres.

Exciting link between Algebraic Statistics and CR Geometry !

THANK YOU!
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