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How much data do we need? Maximum likelihood thresholds

Question What is the minimum amount of data required to do statistical
inference?

More precisely, given a statistical model, the minimum amount of data
required for the existence of the maximum likelihood estimate (MLE) of
its parameters...

• ...with probability 1 is called the maximum likelihood threshold of
the model.

• ...with positive probability is called the weak maximum likelihood
threshold of the model.

For graphical models, we use the notation mlt(G) and wmlt(G).

Our models: Gaussian graphical models with additional vertex and edge
symmetries

1



How much data do we need? Maximum likelihood thresholds

Question What is the minimum amount of data required to do statistical
inference?
More precisely, given a statistical model, the minimum amount of data
required for the existence of the maximum likelihood estimate (MLE) of
its parameters...

• ...with probability 1 is called the maximum likelihood threshold of
the model.

• ...with positive probability is called the weak maximum likelihood
threshold of the model.

For graphical models, we use the notation mlt(G) and wmlt(G).

Our models: Gaussian graphical models with additional vertex and edge
symmetries

1



How much data do we need? Maximum likelihood thresholds

Question What is the minimum amount of data required to do statistical
inference?
More precisely, given a statistical model, the minimum amount of data
required for the existence of the maximum likelihood estimate (MLE) of
its parameters...

• ...with probability 1 is called the maximum likelihood threshold of
the model.

• ...with positive probability is called the weak maximum likelihood
threshold of the model.

For graphical models, we use the notation mlt(G) and wmlt(G).

Our models: Gaussian graphical models with additional vertex and edge
symmetries

1



How much data do we need? Maximum likelihood thresholds

Question What is the minimum amount of data required to do statistical
inference?
More precisely, given a statistical model, the minimum amount of data
required for the existence of the maximum likelihood estimate (MLE) of
its parameters...

• ...with probability 1 is called the maximum likelihood threshold of
the model.

• ...with positive probability is called the weak maximum likelihood
threshold of the model.

For graphical models, we use the notation mlt(G) and wmlt(G).

Our models: Gaussian graphical models with additional vertex and edge
symmetries

1



How much data do we need? Maximum likelihood thresholds

Question What is the minimum amount of data required to do statistical
inference?
More precisely, given a statistical model, the minimum amount of data
required for the existence of the maximum likelihood estimate (MLE) of
its parameters...

• ...with probability 1 is called the maximum likelihood threshold of
the model.

• ...with positive probability is called the weak maximum likelihood
threshold of the model.

For graphical models, we use the notation mlt(G) and wmlt(G).

Our models: Gaussian graphical models with additional vertex and edge
symmetries

1



How much data do we need? Maximum likelihood thresholds

Question What is the minimum amount of data required to do statistical
inference?
More precisely, given a statistical model, the minimum amount of data
required for the existence of the maximum likelihood estimate (MLE) of
its parameters...

• ...with probability 1 is called the maximum likelihood threshold of
the model.

• ...with positive probability is called the weak maximum likelihood
threshold of the model.

For graphical models, we use the notation mlt(G) and wmlt(G).

Our models: Gaussian graphical models with additional vertex and edge
symmetries

1



Start with an example

KG =


5.24 −2.44 −2.74 0.01 0.14
−2.44 10.43 −4.71 −0.79 −0.17
−2.74 −4.71 26.95 −7.05 −4.70
0.01 −0.79 −7.05 9.88 −2.02
0.14 −0.17 −4.70 −2.02 6.45



G:

M

V AN

S

AL

Whittaker, 1990; Edwards, 2000

Theorem Uncolored chordal graphs:
wmlt(G) = mlt(G) = maximal clique size

wmlt(G) = mlt(G) = 3
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wmlt(G) = mlt(G) = 3
wmlt(G) = mlt(G) = 1
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And yet another example: Frets’ heads

Study of heredity of heads dimensions (Freds, 1921): length and breath
of 25 pairs of first and second sons.

G:

B1

L1 L2

B2

KG =


λ1 λ5 0 λ8
λ5 λ2 λ6 0
0 λ6 λ3 λ7
λ8 0 λ7 λ4


wmlt(G) = 2,
mlt(G) = 3
Buhl, 1993

G:

B1

L1 L2

B2

KG =


λ1 λ5 0 λ8
λ5 λ2 λ6 0
0 λ6 λ3 λ7
λ8 0 λ7 λ4


wmlt(G) = 1,
mlt(G) = 2
Uhler, 2012
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Colored Gaussian graphical models

G = (V,E) graph with vertex set V = [m],
λ : V t E � [d] coloring of the vertices and edges of G for some d ∈ N,
Λ(V) and Λ(E) set of vertex colors and edge colors, resp.

We call G = (G, λ) a colored graph with underlying graph G and coloring λ.
The colored Gaussian graphical model KG associated to G is the set of all
concentration matrices K ∈ PDn such that

• Kij = 0 for all {i, j} 6∈ E(G) with i 6= j,
• Kii = Kjj whenever λ(i) = λ(j), and
• Kij = Kkℓ whenever {i, j}, {k, ℓ} ∈ E(G) and λ({i, j}) = λ({k, ℓ}).

LG := KG d-dimensional linear space of symmetric matrices.

LG =

{(
λ1 λ2
λ2 λ1

)
∈ Sym(2) | λ1, λ2 ∈ R

}
G: 1 2

5
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Existence of the maximum likelihood estimate

S = 1
n
∑n

i=1 xixt
i sample covariance matrix, x1, . . . , xn ∈ Rm.

MLE for the covariance matrix Σ̂ =
(

K̂
)−1

K̂ =
arg maxK log detK − 〈S,K〉,
subject to K ∈ KG

〈S,K〉 := tr(SK) =
∑

1≤i,j≤m
sijkij

Sufficient statistics:

πG : Sym(m) −→ Rd

S 7 −→ (〈S,K1〉, . . . , 〈S,Kd〉)

K1, . . . ,Kd basis of LG

Sufficient statistics:

πG : Sym(2) −→ R2

S 7 −→ (s11 + s22, 2s12)(
1 0
0 1

)
,
(

0 1
1 0

)
basis of LG

Sufficient statistics:

πG : Sym(m) −→ Rd

S 7 −→ (〈S,K1〉, . . . , 〈S,Kd〉)

K1, . . . ,Kd basis of LG

Theorem The MLE Σ̂ exists for a sample covariance matrix S iff

fiberG(S) := {Σ ∈ PDm | πG(Σ) = πG(S)} 6= ∅.

Then the MLE Σ̂ is the unique matrix in fiberG(S) such that Σ̂−1 ∈ KG.
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Likelihood geometry by example

7



An algebraic relaxation: the generic completion rank

Let G be a colored graph on [m]. The generic completion rank gcr(G) is
the smallest n such that dimπG(Sym(m, n)) = d.

Figure 1: πG(Sym(2, 1)) for the 2-cycle with a single vertex color.

Theorem (Uhler, 2012) mlt(G) ≤ gcr(G)
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Matrix completion problems

For S =

(
s11 1/2
1/2 s22

)
, the MLE is Σ̂ =

(
tr(S)/2 1/2

1/2 tr(S)/2

)
if it exists.

Positive definite completions:

• tr(S) = 2: fiberG(S) =
{(

1 ± a 1/2
1/2 1 ∓ a

)
: 0 ≤ a <

√
3/2
}

• tr(S) = 0, 1: fiberG(S) = ∅

Low rank completions (rank 1):

• tr(S) = 2:
(
(2 ±

√
3)/2 1/2

1/2 (2 ∓
√

3)/2

)

• tr(S) = 1:
(

1/2 1/2
1/2 1/2

)

• tr(S) = 0: no real rank 1 completion but
(
±i/2 1/2
1/2 ∓i/2

)
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1 ± a 1/2
1/2 1 ∓ a

)
: 0 ≤ a <

√
3/2
}

• tr(S) = 0, 1: fiberG(S) = ∅

Low rank completions (rank 1):

• tr(S) = 2:
(
(2 ±

√
3)/2 1/2

1/2 (2 ∓
√

3)/2

)

• tr(S) = 1:
(

1/2 1/2
1/2 1/2

)

• tr(S) = 0: no real rank 1 completion but
(
±i/2 1/2
1/2 ∓i/2

)
9



Is gcr a good bound for mlt?

• Trivial case: If gcr(G) = 1, then mlt(G) = 1.

• Are there graphs with mlt(G) < gcr(G)?
Question solved in the uncolored setting by Bleckherman-Sinn: K5,5
If G is the 4-cycle with |Λ(V)|= 1 and |Λ(E)|= |E|,

• gcr(G) = 2,
• mlt(G) = 1.

• Are there graphs with bounded mlt(G) and arbitrarily high gcr(G)?
Question posed in the uncolored setting by Bleckherman-Sinn
If G is the disjoint union of a vertex and an m-complete graph with
|Λ(V)|= 1 and |Λ(E)|= |E|,

• gcr(G) ≥ ⌈(m − 2)/2⌉,
• mlt(G) = 1.
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Which colorings give gcr(G) = 1?

For i ∈ V and c ∈ Λ(E), N(i, c) := {j ∈ V | λ(i, j) = c} ⊂ N(i).

Proposition (Deligeorgaki, H., Johnson, Kagy, Maraj 25+)
If there exists an injective map φ : Λ(V) t Λ(E) −→ V s.t.

(1) for c ∈ Λ(V), λ(φ(c)) = c,
(2) for c ∈ Λ(E), N(φ(c), c) 6= ∅,

(3) for c ∈ Λ(E), N(i, c) ∩ φ(Λ(V)) =
{

6= ∅, if φ(c) = i,
= ∅, if i ∈ φ(Λ(E))\{φ(c)},

then gcr(G) = 1.

injectivity necessary,
(1)&(2) not sufficient,
(3) not necessary

Idea of the proof: Show that the Jacobian of πG |Sym(m,1) is full rank.
Corollary

• For |Λ(E)|= 1: gcr(G) = 1 if |Λ(V)|< m. if and only if
• For |Λ(V)|= 1: gcr(G) = 1 if there is a vertex adjacent to all edge

colors. not necessary
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MLE existence via the ideal of the projection

Ideal of the projection via πG of rank n matrices:

IG,n :=
(

In+1(S) +
⟨
{ti − 〈S,Ki〉}1≤i≤d

⟩)
∩ R[t1, . . . , td].

If IG,n = (0), the MLE exists for n observations with probability 1

wmlt(G) ≤ mlt(G) ≤ gcr(G) ≤ n

If IG,n 6= (0), the MLE for n observations... gcr(G) > n

• ...exists with probability 1 wmlt(G) ≤ mlt(G) ≤ n
4-cycle with single vertex color for n = 1

• ...exists with probability strictly between 0 and 1
mlt(G) > n, wmlt(G) ≤ n

3-cycle with single vertex color for n = 1
• ...never exists mlt(G) ≥ wmlt(G) > n

3-cycle with two vertex color for n = 1
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Computing MLT via elimination ideal - an example

G:

4

1 2

3

Sufficient statistics: t1 = s1,1,
t2 = s2,2 + s4,4, t3 = s3,3, t4 = 2s1,2 + 2s1,4,
t5 = 2s2,3, t6 = 2s3,4.

Ideals of the projection πG : IG,2 = IG,3 = 0, and

IG,1 = 〈t3t2
4 − t1t2

5 − 2t1t5t6 − t1t2
6, 4t2t3 − t2

5 − t2
6〉.

Cholesky decomposition S = LLt:

f2(lij) = 4(−l13l22 + l12l23)
2 + 4(l12l33)

2 + 4(−l14l23 + l13l24)
2

+ 4(−l14l33 + l13l34)
2 + 4(l13l44)

2 + 4(l22l33)
2

+ 4(−l24l33 + l23l34)
2 + 4(l23l44)

2 + 4(l33l44)
2 > 0.

wmlt(G) = mlt(G) = gcr(G) = 2
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Reinterpretation of thresholds: generalizing Bleckherman-Sinn

Theorem The
generic completion rank

maximum likelihood threshold
weak maximum likelihood threshold

of G is the smallest

n for which there is no matrix K 6= 0 in
LG

LG ∩ PSDm
LG ∩ PSDm

such that

xi ∈ ker(K) for
some l.i.
generic
some l.i.

observations x1, . . . , xn ∈ Rm.
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Theorem The
generic completion rank

maximum likelihood threshold
weak maximum likelihood threshold

of G is the smallest

n for which the vector space 〈x1, . . . , xn〉2 + L⊥
G

is equal to Symm
contains a PD matrix
contains a PD matrix

for
some

generic
some

observations x1, . . . , xn ∈ Rm.

IG := ⟨{(y1 . . . ym)Ki(y1 . . . ym)
t}d+1<i≤m(m−1)/2⟩, R := R[y1, . . . , ym]/IG ,

Kd+1, . . . ,Km(m−1)/2 basis of L⊥
G

ℓi = x(1)i y1 + · · ·+ x(m)
i ym ∈ R1 for some x(j)i ∈ R

⟨ℓ1, . . . , ℓn⟩2 ∈ R2 ≃ Sym(m)/L⊥
G ,

xi =
(

x(1)i , . . . , x(m)
i

)t
∈ Rm.
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4-cycle with a single vertex color

Proposition (H., Kuznetsova, Stolz 25+)
If G is a colored m-cycle with |Λ(V)|= 1, then gcr(G) = 2.

If m is even, then mlt(G) = 1.

Sketch of the proof:

• gcr(G) = 2:
- gcr(G) ≥ 2: dim⟨ℓ⟩2 < dimR2 for any l ∈ R1.
- gcr(G) ≤ 2: ⟨ℓ1, ℓ2⟩2 = R2 for ℓ1 =

∑⌊m/2⌋
i=1 yi, ℓ2 = y1 +

∑m−1
⌊m/2⌋ yi.

• mlt(G) = 1:
- Equivalent to proving that there is no 0 ̸= K ∈ LG ∩ PSDm that

contains a generic column vector (a1 . . . am)
t in its kernel.

- Any PSD matrix K ̸= 0 in LG ∩ PSDm satisfies λ1 ≥ |λi|.
- Rewrite K(a1 . . . am)

t = 0 as A (λ1 . . . λm+1)
t = 0.

- If a1 ̸= 0,
(∑m

i (−1)i+1a2
i
)
λ1 = 0 for m even: λ1 = 0.
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Summary of techniques

For gcr:

• Compute ideal of the projection.

• Studying existence (or non-existence) of matrices in LG with n
observations in its kernel.

• Studying existence (or non-existence) of n observations that span
Sym(m)/L⊥

G in degree 2.
• Compute rank of the jacobian of πG restricted to Sym(m, n).

For mlt or wmlt:

• Studying the sign of the generators of the ideal of the projection.
• Studying the algebraic boundary of the cone of sufficient statistics.

• Studying existence (or non-existence) of PSD matrices in LG with n
observations in its kernel.

• Studying existence (or non-existence) of n observations whose
degree 2 span contains a PD matrix.

• Perturbing matrices while preserving their sufficient statistics.
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Local persistence homology

Figure 2: Geometric anomaly detection in data, Bernadette Stolz et al. PNAS
(2020)
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Performance

Figure 3: Percentage of boundary points in two colored 4-cycles and the
uncolored 4-cycle. Points with less than 4 neighbours in their annular
neighbourhoods are excluded.

G3:

4

1 2

3

G6:

4

1 2

3

G18:

4

1 2

3
wmlt(G3) = mlt(G3) = 1 wmlt(G6) = mlt(G6) = 1 wmlt(G18) = 2,mlt(G18) = 3

19



Thanks a lot!
Moltes gràcies!
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