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Start with an example

Table 1. i (on or above the diagonal) and partial cor-
relatons (below o d\agona\) for the examination marks in five mathematical
subject:

Subject (x1000) and partial I

Mechanics  Vectors  Algebra  Analysis  Statistics

Mechanics 524 -244 2.74 0.01 ~0.14
Vectors 0.33 1043 —4.71 ~0.79 -0.17
Algebra 0.23 0.28 26,95 ~7.05 —-4.70
Analysis ~0.00 0.08 043 9.88 -2.02
Statistics 0.02 0.02 036 025 645
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A VU E — [d] coloring of the vertices and edges of G for some d € N,
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The colored Gaussian graphical model Kg associated to G is the set of all
concentration matrices K € PD,, such that

= Kjj=0 for all {i,j} & E(G) with i # j,
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Lg := K¢ d-dimensional linear space of symmetric matrices.
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Existence of the maximum likelihood estimate

S= %27:1 x;xt sample covariance matrix, xi, ..., X, € R™.

R A8, =1
MLE for the covariance matrix X = (K)

arg max,, logdet K— (S, K),

R:
subject to Ke K¢

(S,K) := tr(SK) = Z sk

1<ij<m

Sufficient statistics:

g : Sym(m) —
S 1 — (<S7K1>7..-,<S,Kd>)

Kiy.oo, Ky basis of L

The MLE ¥ exists for a sample covariance matrix S iff
fiberg(S) := {X € PD,, | mg(X) = mg(S)} # 0.

Then the MLE 5 is the unique matrix in fiberg(S) such that ¥~ € K. 6
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Let G be a colored graph on [m]. The generic completion rank ger(G) is
the smallest n such that dim 7g(Sym(m,n)) = d.

Figure 1: mg(Sym(2,1)) for the 2-cycle with a single vertex color.

mlt(G) < ger(9)
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s 1/2 e (tx(S)/2 12\ .
For S = (1/2 522), the MLE is ¥~ = < 1/2 tx(S)/2 if it exists.

Positive definite completions:

= tr(S) = 2: fiberg(S :{< ? 1/2>:0§a<\@/2}
= t1(S) =0,1: fiberg(S) =10

Low rank completions (rank 1):

e, (@EVR2 12
t(5)2'< 1/2 (2$ﬁ)/z>

(12 12
= (S =L <1/2 1/2)

= tr(S) = 0: no real rank 1 completion but (

+i/2  1/2
12 Fif2
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Is gcr a good bound for mlt?

= Trivial case: If ger(G) = 1, then mlt(G)

= 1.
= Are there graphs with mlt(G) < ger(G)

ger(G) = 2,
» mlt(G) = 1.

.

= Are there graphs with bounded mlt(G) and arbitrarily high ger(G)

If G is the 4-cycle with |[A(V)|=1 and |A(E)|= |E|

If G is the disjoint union of a vertex and an m-complete graph with
IA(V)|= 1 and [A(E)|= |E|

= ger(9) > [(m—2)/2],
= mlt(G) =1.
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MLE existence via the ideal of the projection

Ideal of the projection via g of rank n matrices:

lg.n = (Ins1(S) + ({ti = (S, K hcicq) ) ORIt -, 1.
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MLE existence via the ideal of the projection

Ideal of the projection via g of rank n matrices:

o (/n+1(5) + <{t,- (s, K;>}1§i§d>> AR[L, ..., t.

If Ig,, = (0), the MLE exists for n observations with

C wmlt(G) < mlt(G) < ger(G) < n

If Ig ., # (0), the MLE for n observations... ger(G) > n

= __.exists with wmlt(G) < mlt(G) < n

6 4-cycle with single vertex color for n =1
= _.exists wit

/" mlt(G) > n, wmlt(G) < n

A 3-cycle with single vertex color for n =1

- exists mlt(G) > wmlt(G) > n

3-cycle with two vertex color for n =1
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Computing MLT via elimination ideal - an example

g: e o Sufficient statistics: t; = sy 1,

to =S5+ 544, t3 = 533, t4 = 251 2 + 251 4,

o e ts = 253, tg = 253 4.
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+ 4(—hahs + haha)® + 4(hslaa)® + 4(bak3)?
+ 4(—hahss 4 h3la)? + 4(h3las)? + 4(l33lsa)? > 0.

wmlt(G) = mlt(G) = ger(G) =2
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Reinterpretation of thresholds: generalizing Bleckherman-Sinn

generic completion rank
The of G is the smallest

weak maximum likelihood threshold

Lg

n for which there is no matrix K # 0 in such that
Lg NPSD,,
some |.i.
x; € ker(K) for observations xq,...,x, € R™.

some |.i.
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generic completion rank
The of G is the smallest
weak maximum likelihood threshold

is equal to Sym,,,

n for which the vector space (xi, ..., xp)2 + L
contains a PD matrix
some
for observations xq,...,x, € R™.
some
I = {1 - ym)Ki(y1 -+ ¥m)}ari<icmm-1)/2)s R:=Rly1, ..., yml/lg,

Kayi, ..y Kim—1)/2 basis of LG
= xgl)yl + ..o x( Ym € R for some x(J) eR
<€1,...,£n>2 cE R ~ Sym( )/Cg,

t
X = (xgl), e ,x§"’)) € R™.
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4-cycle with a single vertex color

If G is a colored m-cycle with |A(V)|= 1, then ger(G) = 2.
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- ger(G) > 2: dim(¢), < dim R, for any | € R;.

- ger(G) <2 {1, )2 = Ry for by = 1P yi b = 1 + > U2y Vi
= mlt(G) = 1

- Equivalent to proving that there is no 0 # K € Lz N PSD,, that
contains a generic column vector (a; ... am)" in its kernel.
Any PSD matrix K # 0 in Lg N PSD,, satisfies A1 > |\j|.
- Rewrite K(a1...am)" ' =0as A(A1... Ami1)" = 0.
- If a1 #0, (Zlf"(fl)"“a?) A1 =0 for meven: A\ = 0.
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Summary of techniques

For gcr:

= Compute ideal of the projection.

For mlt or wmlt:

= Studying the sign of the generators of the ideal of the projection.
= Studying the algebraic boundary of the cone of sufficient statistics.
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Studying existence (or non-existence) of matrices in Lg with n
observations in its kernel.

Studying existence (or non-existence) of n observations that span
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Local persistence homology

Regular Point  Boundary Point ~ Singular Point

Figure 2: Geometric anomaly detection in data, Bernadette Stolz et al. PNAS
(2020)
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Performance
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Figure 3: Percentage of boundary points in two colored 4-cycles and the
uncolored 4-cycle. Points with less than 4 neighbours in their annular

neighbourhoods are excluded.
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wmlt(Gs3) = mlt(G3) =1 wmlt(Gg) = mlt(Gs) =1 wmlt(Gig) = 2, mlt(Gig) =



Thanks a lot!
Moltes gracies!
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