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Introduction

Overview

@ This talk is about doing hypothesis testing with semialgebraic statistical models.
— Methodological considerations for semialgebraic hypothesis testing with incomplete
U-statistics (https://arxiv.org/abs/2507.13531)
@ Recently, Sturma, Drton, and Leung (2024) [2] introduced a remarkably general
stochastic method, the SDL method, for doing such tests.
@ In this talk, I'll discuss work implementing this method and applying it to a number of
biologically-motivated models.

e Our goal was to evaluate how this method performed in practice, and also to develop best
practices for using the method.
o Along the way, we uncovered a number of surprising methodological issues.
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https://arxiv.org/abs/2507.13531

Semialgebraic Statisical Model
Semialgebraic Statistical Model

@ Our main object of study are semialgebraic statistical models—defined by polynomial
equalities and inequalities.

@ More precisely:

M = {Py: Py is a probability measure and 6 € O},

where the parameter space Qg is a basic semi-algebraic set of the form
Qo = {GeRd:fi(H) <0, forizl,...,p}

where f1,..., f, are polynomials.
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A First Example: Gene Evolution

Given a set of taxa, a species tree is a labeled tree representing their population-level
evolutionary history:

The positions of the nodes on

the time scale indicate the times

of divergence events.
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However, individual genes in the genome may have treelike histories which look different from
that of the population. For great apes, about 23% of genes have treelike histories whose
topologies do not match the species tree, while 77% do [1]. 4/32



Larger Context: Two-step Model of Evolution

Species tree
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Three “Gene Tree” Toplogies
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Introduction Examples of Semialgebraic Models

What is the semialgebraic model??

(100)

(1,0,0) 100) (1,0,0) (100)
(0,1,0) (001)  (0,1,0) (001)  (0,1,0) (001)  (0,1,0) (0,0,1)
Trinomial cutl T1 cut T3

1
Model T1: @0—{(x,y,z)GAQ:y—ZSO,z—y§0,3—x§O}

Under a standard model of gene evolution, Model T1 represents the evolutionary hypothesis

It
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The Hypothesis Test

Data: X;,..., X, u Py, for some
unknown 6 € ©.

The problem: Given a semialgebraic
subset ©g C O distinguish between

@ (Null hypothesis) Hy : 6 € Og
o (Alternative hypothesis) H; : 6 ¢ O

(0,1,0)

(1,0,0)

-+ data (.77,.11,.12)

< null model ©

(0,0,1)
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e DT
Classical Approach: The Likelihood Ratio Test

The likelihood ratio test gives a measure of the distance of the data from the submodel Og.

M <001 [Mooi<p<oos [Moos<p<oio [Mp>o010

The likelihood ratio test runs into trouble near irregularities, i.e., singular points and certain
boundaries. 9/




The SDL Method
A Brief Introduction to the SDL Method

Given a null model

Oy = {0 e R%: f;(A) < 0 for polynomials f; with i =1, ... ,p}

e Subsample: S ={X;,,...,X;, } asetm data points drawn from X;,..., X,
o Kernel function: A symmetric function h : R™ — RP? such that

e h(S) is an unbiased estimator of f(0) := (f1(0),..., fp(0))
@ We are going to take random subsamples and plug them into the kernel function

e do this once and you get a poor estimate of the polynomial constraints
e but we'll do this many times and take the average.

10/32



The SDL Method
The Test Statistic

o Incomplete U-statistic: Take the average of the value of h(S) over many
randomly-chosen subsamples S

1
U= T > n(S),

Sel

where 7 is a random collection of subsamples of the data.

@ The SDL Test Statistic:
T = max \//F\LUj
1<j<p 0

where 0 is an approximation of the standard deviation of U; obtained by Gaussian
bootstrapping.
@ A large value of T is interpreted as evidence against Hy.
— How we interpret “large” can be formalized through the use of a Gaussian bootstrap
approximation of the distribution of a related statistic, allowing us to compute “p-values™.

@ This is a stochastic test: the SDL “p-values” are actually estimates of p-values. 11/3



UEER
What's the big picture?

@ The holy grail of semialgebraic hypothesis testing is the ability to do valid a hypothesis
test for any semialgebraic model using only the defining inequalities—without knowing
anything else about the model geometry.

— We've seen that classical methods may fail near singularities of the model. And other
existing algebraic methods in phylogenetics are often ad hoc, tailored to specific models.

@ By contrast, the SDL method offers a rigorous and fully general statistical framework for
hypothesis testing.

— Has good statistical guarantees, even near model singularities.
@ But understanding how best to implement the SDL test is not trivial. In the remainder of

the talk, | will discuss two of the methodological challenges that arose, and how we were
able to deal with them.
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Results and Challenges

Challenge #1
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There is more than one way to represent a semialgebraic set

(1,0,0)

(0,1,0) (0,0,1)

There is more than one way to represent this
model with polynomial inequalities:

Representation A Representation B
y—2<0 y—2<0
z—y <0 z—y <0
1—:U<O g—y—zSO
3 - 3
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Results and Challenges

There is more than one way to represent a semialgebraic set

(1,0,0)
Representation C

y—2<0
z—y <0
1-2<0
.0386 — .116x — .214y + .2142 < 0

(0,1,0) (0,0,1) —
0313 — .094x — 291y + .291z < 0
There is more than one way to represent this 2776 — .833z — .143y + .1432 < 0
model with polynomial inequalities: .2103 — .631z + .175y — .1752 < 0
. . 0826 — 248 + .225y — .2252 < 0
Representation A Representation B 1473 — 4425+ 064y — 064z < 0
y—2<0 y—2<0 0406 — 1222 + .865y — .8652 < 0
z—y <0 z—y <0 2163 — 649z + .342y — 3422 < 0
1 2 0793 — 238z + .118y — .1182 < 0
g‘xﬁo g_y_zéo 114 — 3422 — ATdy + AT42 < 0
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The SDL test is affected by the choice of model constraints (1/2)

Representation A Representation B

M ;<001 [Mooi<p<oos [Moos<p<oio [Mp>o010

The rejection regions are shaped differently!
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The SDL test is affected by the choice of model constraints (2/2)

AAA

Representation A Representation B Representation C

M ,<001 [Mooi<p<oos [Moos<p<oio [Mp>o010

The rejection regions are shaped differently!

17/32



Results and Challenges

Here's another example, involving the cuspidal cubic model:

AAAA

2 3 2 3 2 3 2 3
w-5HP-@-1L?=0 -5H?-@-1?=0 w-5Hi-@-1Hi=0 w-5Hi-@-L1Hi=0
%*ZSO %71‘S0 %7z§0
+ 10 random convex combinations + 10 random convex combinations

—+ 2 well-chosen linear inequalities

Adding redundant constraints tends to improve test performance. And being smart about how
you choose your additional constraints even more so!
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Results and Challenges

One more example, that knowing model geometry can be valuable:

(z—w)(z—2)(y—2=0
(- 22 —271/3-2)<0
(-9 @w—2)°1/3-y) <0
(@ —9)*(x—2)*(1/3-2) <0

o Left: Rejection region using defining constraints and 10 random convex combinations.
@ Right: Using an Intersection-Union test using the SDL tests for the 3 irreducible
components of the model. 19/32



Testing a Model of Nucleotide Evolution

Now, let's transition to a second class of models

Species tree

Gorilla. Human ~ Chimp Orangutan
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/ / Gene trees \ \
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l l Sequence data l l
(alignments)

ACTGCACACCG CTGAGCATCG AGCAGCATCGTG CAGGCACGCACGAA
ACTGC-CCCCG CTGAGC-TCG AGCAGC-TCGTG AGC-CACGC-CATA
AATGC-CCCCG ATGAGC-TC- AGCAGC-TC-TG ATGGCACGC-C-TA
~CTGCACACGG CTGA-CAC-G C-TA-CACGGTG AGCTAC-CACGGAT
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Testing a Model of Nucleotide Evolution

Nucleotide Evolution

@ Another class of semialgebraic models arise when modeling DNA mutation on
macroevolutionary timescales.

o Standard approach: DNA sequences are produced from a stochastic process
parameterized by an evolutionary tree:

Gene 8 uwences

Gene Tce 165) | TV 45k
PN ATCC A G

' Ts J ATGCA.. G

T |
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@ We consider the simplest such model, the Cavendar-Farris-Neyman (CFN) model.
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The CFN Model, Visualized

AN
<K W e

@ For a 3-leaf tree, the CFN model is a 3-dimensional
semialgebraic subset of A3:

z,y,2 20

(I1-2x—-2y)(1—22x—2y) <1—-2y—2z
(1—2z—2y)(1—2y—2y) <1—2z—2z
(1-2y—22)(1—-22—22)<1—2x—2y

o For 4-leaf trees, we get a 5-dimensional set (next slide).




CFN Model for a 4-leaf tree

The CFN model for a 4-leaf tree is a 5-dimensional subset of
AT = {P ER®:p; >0, andp1+...+ps— 1= O} satisfying

P3P5 — Pape — P1p7 + p2ps = 0 {ni’“-? j

DP2p5 — P1P6 — Pap7 + p3ps = 0
P2p3 — p1p4 — PepP7 + Psps < 0

=°

along with additional inequalities

(p3 +pa)(ps +pe) — (1 +p2)(p7 +ps) <0, (P2 +ps)(ps +p7) — (P +ps5)(pa+ps) <0
(P2 +pa)(ps +ps) — (P +p3)(ps +p7) <0, (P2 +p7)(ps+ps) — (P4 +ps5)(p1 +ps) <O
(ps +pe)(p7 +ps) — (p1 +p2)(ps +p4) <0, (P2 +p6)(pa +ps) — (pr +ps)(ps +p7) <0
(ps +p7)(ps +ps) — (p1 +p3)(p2 +p1) <0,  (p3s+ps)(pa+ps) — (p1 +ps)(p2 +p7) <O

(There are other ways to represent this set using polynomial inequalities.)
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What phylogenetic trees did we look at?

We tested the SDL method for a range of parameters:

[a}
—
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—
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parameter b

Our tests focused on the topology of the tree (the true topology is always 12|34).
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Testing a Model of Nucleotide Evolution

Again, we find the choice of generating polynomials matters:

Let's compare SDL p-values from two different representations A and B of the polynomial
constraints:

Tests of the true null hypothesis (H,3,) Tests of a false null hypothesis (;3)24)

A B A B

2500
8000
8000

2500

r=0
0 1000
0 1000
0 4000
0 4000

T T 1T 1T 1 T T 1T 1 1 I T T T T 1 r T T T T 1
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

@ Conclusion: A is better than B!

@ However, when we added 20 random convex combination constraints, differences in
performance were substantially reduced.
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Going Beyond Hypothesis Testing: A New Direction

We introduced a new method to infer the a 4-leaf tree topology.
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The Challenge of Kernel Symmetry

Challenge #2
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The Challenge of Kernel Symmetry

The SDL test requires a symmetric kernel

@ Recall the kernel function h used to define the incomplete U-statistic:

= i 2 19)

Sel

@ The theory requires that h must be a symmetric function: i.e., for any permutation 7

h(xlv E 7xm) = h(xﬂ(l)v s 7x7r(m))'

@ On one hand, if your kernel is not symmetric, maybe that's okay... a non-symmetric kernel
h can always be symmetrized by averaging over all permutations of its m arguments:

1
heym (21, ..., Tm) = — Z h(Zr(1),- -5 Ta(m))

’ 7'('68m
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The Challenge of Kernel Symmetry

A simple example of what I'm talking about:

@ Suppose we have the non-symmetric kernel
2
h(z1,22,23) = 122 + 23.

(This is not symmetric because, e.g., h(1,2,0) = 2 but h(2,0,1) =1.)
@ But we can symmetrize it:

1
hSym(x) = ? Z h(l‘ﬂ'(l)71"ﬂ'(2)7mﬂ(3))

TES3

= = (h(z1, 22, 23) + h(z1, T3, 22) + h(T2, 71, 23) + h(T2, 3, 21) + h(T3, 1, 22) + h(T3, 2, 1))

((z122 + 23) + (123 + 23) + (z2w1 + 23) + (v223 + 27) + (w321 + 23) + (2322 + 27))

2 2 2
(xlxz + x173 + 23 + X7 + T3 + 953)

W= = O =

@ The sum has 3! = 6 terms.
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The Problem with Symmetrization (and a Partial Solution)

@ After some consideration, the symmetrization procedure

1
heym (21, ..., Tm) = — Z h(Zr(1), -+ s Ta(m))

’ WES'm

is unsatisfactory because it is not computationally feasible when m is large.

o Partial random symmetrization: each time h is evaluated, average over s
randomly-chosen permutations to “partially symmetrize" it.

— Here, s € N is fixed, e.g., s = 100.
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The Challenge of Kernel Symmetry

Partial Symmetrization Works in Practice

bbb

s=100

Rejection regions obtained using s = 1, 10, and 100 random permutations. For all, m = 15.

Open problem: are the statistical properties of the SDL test preserved when partial
symmetrization is used?
@ How many permutations s are sufficient to approximate the fully symmetric kernel?
@ And how does s scale with dimension and degree?
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Conclusion

Conclusion

@ In this talk, I've focused on two methodological challenges that we faced in implementing
this test.

1. The question of how the test is affected by the choice of model representation, and
how that can often (but not always) be mitigated by adding redundant constraints.
2. The difficulty of constructing a symmetric kernel function. We resolved this by
implementing random, partial symmetrization, but additional theoretical work is necessary.
@ Other methodological considerations:
e How to go about choosing various other user-specified parameters—need to balance the
validity, statistical power, as well as the stability of the stochastic p-values.
o Knowing features of model geometry often enabled us to improve test performance.
@ As a general-purpose framework, the SDL method performed remarkably well, and with
thoughtful implementation it was able to match performance of traditional deterministic
tests, at least for the low-dimensional models that we considered.
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Conclusion

Questions?

[1] Cécile Ané. “Reconstructing concordance trees and testing the coalescent model from
genome-wide data sets”. In: Estimating Species Trees: Practical and Theoretical Aspects.
Ed. by Lacey Knowles and Laura Kubatko. Wiley-Blackwell, 2010, pp. 35-36.

[2] Nils Sturma, Mathias Drton, and Dennis Leung. “Testing many constraints in possibly
irregular models using incomplete U-statistics”™. In: Journal of the Royal Statistical Society
Series B: Statistical Methodology (Mar. 2024), gkae022. 1sSN: 1369-7412. DOI:
10.1093/jrsssb/qkae022.

(y —1/3)* — 6(x —2/5)%(z — 1/9) =0

@ Slide 4 Figure: David Savada, et. al, Principles of Life (2014) 32/32
@ Slide 5 Figure: Marina Garrote-Lépez (modified)
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Backup slides

Higher degree irreducible models

AAA

m=4; s=6 m=15; s=10 m=15; s=10
Rejection regions for SDL tests of (L-R) (a) the Hardy-Weinberg 2-allele model defined by
y? —4xz =0, (b) a nodal cubic model defined by (y — 1/3)% — 6(z — 2/5)?(x — 1/9) = 0, (c)
a cuspidal cubic model, defined by (y —1/3)% — (z — 1/3)% = 0.
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