

Identifiability in Phylogenetic Networks under the Coalescent

New Directions in Algebraic Statistics

Hector Baños Department of Mathematics Wednesday, July 23, 2025

Joint Work

C. Áne

J. Xu

J. Rhodes

E. Allman

J. Mitchell

M. Garrote-Lopez

Species Networks (Admixture graphs)

- Phylogenetics is the study of the evolutionary history and relationships of organisms.
- New evidence shows hybridization has significantly influenced evolution
- Phylogenetic networks show evolutionary histories in the presence of hybridization.

Species Network

Species Network

The model

Data and Gene Tree Models

Data types

- Quartet concordance factors (CFs).
- · Log-Det distances.
- Average genetic distances.
- Frequencies of full gene trees, or full site patterns.
- f₄ statistics.

Gene Tree Models

- Network Multispecies Coalescent: common or independent inheritance at hybrids.
- Displayed Tree: gene trees displayed in the network (no coalescent).

Literature

Network Multispecies Coalescent:

- Solís-Lemus & Ané 2016
- B. 2019
- Allman, B., & Rhodes 2022
- Allman, B., Mitchell, & Rhodes 2023
- Allman, B., Garrote-Lopez, & Rhodes 2024
- Rhodes, B., Xu, & Ané 2025
- Allman, Ané, B., & Rhodes 2025

Displayed tree:

- Gross et al. 2021
- Hollering & Sullivant 2021
- Xu & Ané 2023
- Englander, Frohn, Gross, Holtgrefe, Van Iersel, Jones, & Sullivant 2025

The Displayed Tree Model

The Displayed Tree model assumes sequence evolve along the trees displayed by a network

Why the Coalescent Model?

Kubatko & Meng '09 - Degnan, Yu, & Nakhleh '12 - Fogg, Ané, & Allman '24

The network multi-species coalescent describes a stochastic model of gene tree generation.

Kubatko & Meng '09 - Degnan, Yu, & Nakhleh '12

The network multi-species coalescent describes a stochastic model of gene tree generation.

Kubatko & Meng '09 - Degnan, Yu, & Nakhleh '12

The network multi-species coalescent describes a stochastic model of gene tree generation.

 $P(C, (A, B)) = \frac{1}{2}e^{-\tau}$

$$P(A,(B,C)) = 1 - \frac{2}{3}e^{-\tau}$$
 $P(C,(A,B)) = \frac{1}{3}e^{-\tau}$ $P(B,(A,C)) = \frac{1}{3}e^{-\tau}$

$$P(A, (B, C)) = 1 - \frac{2}{3}t$$
 $P(C, (A, B)) = \frac{1}{3}t$ $P(B, (A, C)) = \frac{1}{3}t$

t: edge probability

$$P((A,B),(C,D)) = t_1 \gamma^2 P_1 + t_1 (1-\gamma)^2 P_2 + t_1 \gamma (1-\gamma) P_3 + t_1 \gamma (1-\gamma) P_4$$

$$P_1 = t_2 \cdot \frac{1}{3}$$

 P_i is the probability of observing ((A, B), (C, D)) under the MSC on tree i.

The model

Identifying a Species Network from Gene Trees

Motivation: Given estimated gene trees sampled from the Network Multispecies Coalescent model (NMSC) on a network, identify properties of the network.

Quartet Frequencies

Given a sample of gene trees, one can calculate the *quartet frequencies* for any subset of four taxa.

Quartet Concordance Factors

- \star The **quartet Concordance Factor** for a set of 4 taxa a, b, c, d (denoted CF_{abcd}), is the vector of probabilities that a gene tree displays each possible quartet on the taxa.
 - CFs are **polynomials** in terms of the parameters t_i and γ_i on a network.
 - Quartet Frequencies are estimates of the CFs

Quartet Concordance Factors

The quartet *CF*s for a topological semidirected network *N* define a **polynomial map**:

$$CF(N): \begin{array}{ccc} \Theta(N) &
ightarrow & \overbrace{\triangle_2 imes \cdots imes \triangle_2}^{\binom{n}{4}} \subset \mathbb{C}^{3\binom{n}{4}} \\ (t_i, \gamma_j) & \mapsto & \left(\overline{CF}_{1234}, \dots, \overline{CF}_{n-3, n-2, n-2, n}\right) \end{array}$$

- We denote by $V(N) = \overline{\text{Im CF}}$ the variety of CF's associated to N.
- The set of multivariate polynomials in the CFs that vanish on the image of the parameterization forms an ideal, denoted $\mathcal{I}(N)$.
- Elements of $\mathcal{I}(N)$ are called invariants.

Semidirected Networks

The root is not identifiable from CFs

Theorem (Rhodes, B., Xu, & Áne)

Let N_1^+ and N_2^+ be two metric rooted networks on a set X. If $N_1^- = N_2^-$, then for every 4-taxon set $CF(N_1^+) = CF(N_2^+)$. In particular, the subgraph above the LSA of a rooted network does not affect quartet CFs.

The 2 sub-blobs of a network

A 2 sub-blob:

2-blobs are not identifiable from CFs

Theorem (Rhodes, B., Xu, & Áne)

Let N be a metric network and G be a 2-sub-blob in N with boundary nodes u and v. Then there exists $t = t(G, \rho) \ge -\log(3/2)$ such that replacing G with a single tree edge (u, v) or (v, u) of length t leaves the quartet concordance factors of N unchanged. If G does not trap the root, or if u (or v) has a single descendant leaf in $N \setminus \{v\}$, then $t \ge 0$.

Level-1 Networks

So what is identifiable?????

Definition

A network \mathcal{N} is **level-1** if no pair of cycles in \mathcal{N} share an edge.

Following Solís-Lemus & Ané '16.

Theorem (B.)

Let N be a rooted binary metric level-1 species network. Let N' be the semidirected topological network obtained from N by contracting all 2- and 3-cycles, and undirecting the hybrid edges in 4-cycles. Then, under the NMSC model, from N's quartet CFs the network N is identifiable.

Proposition (Allman, B., Garrote-Lopez, & Rhodes)

Let N be a semidirected networks (not necessarily level-1) with an undirected structure as in the figure or the network with the 3-cycle shrunk to a node. Then

$$D = \begin{cases} \textit{a node} & \textit{if } G_{abc} = G_{bca} = 0, \\ \textit{a 3-cycle with A} & \textit{if } G_{abc} > 0, \ G_{bca} \leq 0, \ G_{cab} \leq 0 \\ \textit{below the hybrid node} \\ \textit{a 3-cycle with A or B} & \textit{if } G_{abc} > 0, \ G_{bca} > 0, \ G_{cab} < 0 \\ \textit{below the hybrid node} \end{cases}$$

where
$$G_{xyz} = CF_{xz|xz}CF_{xy|yz} - 2CF_{yz|yz}CF_{xy|xz} + CF_{xy|xy}CF_{xz|yz}$$
.

Theorem (Allman, B., Garrote-Lopez, & Rhodes)

Let N be a level-1 metric binary semidirected network with no 2-cycles. Then from quartet CFs all numerical parameters on N are identifiable except:

Theorem (Allman, B., Garrote-Lopez, & Rhodes)

Let N be a level-1 metric binary semidirected network with no 2-cycles. Then from quartet CFs all numerical parameters on N are identifiable except:

- 1. pendant edge lengths,
- 2. hybrid edge lengths when the hybrid node has exactly one descendant taxon,
- 3. for 3-cycles, hybridization parameters and the lengths of the six edges in and incident to the cycle,
- for 4-cycles, the hybridization parameter and edge lengths of edges adjacent to the hybrid node as in the previous slide.

Network Inference Algorithm - NANUQ

The NANUQ algorithm for inference of topological species networks¹. Input:

A collection of topological gene trees on a taxon set X, a hypothesis testing level α . Ouput:

When the input comes from a level-1 rooted species network, the unrooted species network, after suppressing small cycles, and the directions of hybrid edges in 4-cycles.

¹NANUQ is the Inupiag word for polar bear

Leoparus Data - NANUQ

Level-1 might be too restrictive for empirical data

NANUQ on the Leopardus data:

Beyond Level-1 - Tree of Blobs

The **tree of blobs** of a network is the tree obtained after contracting each "blob" to a node.

Theorem (Rhodes, B., Xu, & Áne)

The tree of an arbitrary network is identifiable from CFs **(some additional requirements are needed)**.

Tree of Blobs Inference Algorithm - TINNiK

Tree of blobs INference for a Networ K²

²Tinnik is the Inupiag word for bearberry

Outer-labeled Planar Blobs

Definition

A network \mathcal{N} is outer-labelled planar (OLP) if it can be represented in the plane:

- · with no edge crossing (planar), and
- with all taxa are in the "outside" (outer-labelled)

Circular Order

In an outer-labeled planar blob, the circular order of taxa is well defined.

Different planar embedding must have a, b, c, d in the same order along the outer face.

Circular Order

Theorem (Rhodes, B., Xu, & Áne)

For a binary outer-labeled planar blob, the full circular order is identifiable from CFs.

Along **Alexandr**, Coons, **Meshkat**, Long, & **Gross**, we are exploring different things of circular orders. Including developing an algorithm for its inference and looking at algebraic properties.

Indistinguishable

Not everything is honey over corn flakes....

These are not distinguishable from CFs.

Where are we currently on identifiability?

Under CFs we have identifiability results for networks of **arbitrary level**, under the restriction that these are:

- Binary
- Galled
- Tree-child
- Class e₄ or (multiple samples per taxon needed)
- Class \mathfrak{C}_5

Thank you!

- Beyond level-1: Identifiability of a class of galled tree-child networks.
 ES Allman, C Ane, H Banos, JA Rhodes. Arxiv 2025.
- Identifying circular orders for blobs in phylogenetic networks.
 JA Rhodes, H Banos, J Xu, C Ané. Advances in Applied Mathematics 2025.
- Identifiability of Level-1 Species Networks from Gene Tree Quartets.
 ES Allman, H Baños, M Garrote-Lopez, JA Rhodes. BMAB 2024.

Hector Banos hector.banos@csusb.edu Department of Mathematics California State University, San Bernardino

