(el

CALIFORNIA STATE UNIVERSITY

SAN BERNARDINO

College of Natural Sciences

Identifiability in Phylogenetic Networks
under the Coalescent

New Directions in Algebraic Statistics

Hector Barnos

Department of Mathematics
Wednesday, July 23, 2025




Joint Work

J. Xu J. Rhodes E. Allman J. Mitchell M. Garrote-Lopez

F 88 &
- ZKTHY

WISCONSIN ALASKA UTAS fean g

UNIVERSITY OF WISCONSIN-MADISON 7 o
TR




Species Networks (Admixture graphs)

* Phylogenetics is the study of the evolutionary history and relationships of organisms.
* New evidence shows hybridization has significantly influenced evolution

* Phylogenetic networks show evolutionary histories in the presence of hybridization.
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The model
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Data and Gene Tree Models

Data types
+ Quartet concordance factors (CFs).
* Log-Det distances.
+ Average genetic distances.

» Frequencies of full gene trees, or full site
patterns.

 f statistics.
Gene Tree Models

* Network Multispecies Coalescent: common or independent inheritance at hybrids.

+ Displayed Tree: gene trees displayed in the network (no coalescent).
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The Displayed Tree Model

The Displayed Tree model assumes sequence evolve along the trees displayed by a
network




Why the Coalescent Model?

Feng et al. ‘22

Incomplete lineage sorting (ILS)

Didelphimorphia
Microbiotheria

Diprotodontia

Dasyuromorphia
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The network multi-species coalescent describes a stochastic model of gene tree
generation.
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The Network Multispecies Coalescent Model
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The Network Multispecies Coalescent Model

P(A,(B,C)) = 1—e 7 P(A,(B,C)) = e 7

P(C,(A,B)) =

P(B,(A,C)) = %e™ 7

P(A,(B,C)):h%t P(C,(A,B)):%t P(B,(A,C)):%t J

t: edge probability




The Network Multispecies Coalescent Model

P((A,B),(C,D)) =

2P+ t1(1 — )2 Pat
t1y(1 — y)Ps+t1y(1 — v)Pa

Plztg-%

Pj is the probablllty of observmg (A (C D)) under the MSC on tree i.




The model
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Identifying a Species Network from Gene Trees

Motivation: Given estimated gene trees sampled from the Network Multispecies Coalescent model
(NMSC) on a network, identify properties of the network.
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Quartet Frequencies

Given a sample of gene trees, one can calculate the quartet frequencies for any
subset of four taxa.
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Quartet Concordance Factors
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* The quartet Concordance Factor for a set of 4 taxa a, b, ¢, d (denoted CFpcq), is the
vector of probabilities that a gene tree displays each possible quartet on the taxa.

» CFs are polynomials in terms of the parameters f;and ~;on a network.

+ Quartet Frequencies are estimates of the CFs




Quartet Concordance Factors

The quartet CFs for a topological semidirected network N define a polynomial map:
()
—_—N n
CF(N): O(N) — ZDax--x L, cC3)
(tiv 'Yj) = (ﬁ12347 e »ﬁn—s,n—Z,n—Z,n>

+ We denote by V(N) = Im CF the variety of CF’s associated to N.

» The set of multivariate polynomials in the CFs that vanish on the image of the
parameterization forms an ideal, denoted Z(N).

+ Elements of Z(N) are called invariants.




Semidirected Networks
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The root is not identifiable from CFs

Theorem (Rhodes, B., Xu, & Ane)

Let N and N be two metric rooted networks on a set X. If Ny = N, , then for
every 4-taxon set CE(N;") = CF(N"). In particular, the subgraph above the LSA of
a rooted network does not affect quartet CFs.
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The 2 sub-blobs of a network

A 2 sub-blob:
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2-blobs are not identifiable from CFs

Theorem (Rhodes, B., Xu, & Ane)

Let N be a metric network and G be a 2-sub-blob in N with boundary nodes u and
v. Then there exists t = t(G, p) > — log(3/2) such that replacing G with a single
tree edge (u, v) or (v, u) of length t leaves the quartet concordance factors of N
unchanged. If G does not trap the root, or if u (or v) has a single descendant leaf
inN~ {v}, thent> 0.
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Level-1 Networks

Definition
A network N is level-1 if no pair of cycles in N/ share an edge.

X
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Level-1 Network Identifiability

Following Solis-Lemus & Ané '16.

Theorem (B.)

Let N be a rooted binary metric level-1 species network. Let N' be the semidirected
topological network obtained from N by contracting all 2- and 3-cycles, and undirecting the
hybrid edges in 4-cycles. Then, under the NMSC model, from N’s quartet CFs the network
N is identifiable.
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Level-1 Network Identifiability

Proposition (Allman, B., Garrote-Lopez, & Rhodes)

Let N be a semidirected networks (not necessarily level-1) with an undirected structure as in the figure or the
network with the 3-cycle shrunk to a node. Then

a node if Gape = Gpea = Geap = 0,
a 3-cycle with A if Gape > 0, Gpea < 0, Geap < 0
D= below the hybrid node
a 3-cycle with A or B if Gape > 0, Gpea > 0, Geap < 0
below the hybrid node

where Gyyz = CFyzxzCFaylyz — 2CFy21,2CFryixz + CFiyixy CFizyz-




Level-1 Network Identifiability

Theorem (Allman, B., Garrote-Lopez, & Rhodes)

Let N be a level-1 metric binary semidirected network with no 2-cycles. Then from quartet CFs all numerical
parameters on N are identifiable except:




Level-1 Network Identifiability

Theorem (Allman, B., Garrote-Lopez, & Rhodes)

Let N be a level-1 metric binary semidirected network with no 2-cycles. Then from quartet CFs all numerical
parameters on N are identifiable except:

1.

pendant edge lengths,

2. hybrid edge lengths when the hybrid node has exactly one descendant taxon,
8
4

for 3-cycles, hybridization parameters and the lengths of the six edges in and incident to the cycle,

. for 4-cycles, the hybridization parameter and edge lengths of edges adjacent to the hybrid node as in the

previous slide.




Network Inference Algorithm - NANUQ

The NANUQ algorithm for inference of topological species networks'.
Input:

A collection of topological gene trees on a taxon set X, a hypothesis testing level a.
Ouput:

When the input comes from a level-1 rooted species network, the unrooted species
network, after suppressing small cycles, and the directions of hybrid edges in 4-cycles.
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"NANUQ is the Inupiaq word for polar bear




Leoparus Data - NANUQ

Level-1 might be too restrictive for empirical data
NANUQ on the Leopardus data:
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Beyond Level-1 - Tree of Blobs N

CSusB

The tree of blobs of a network is the tree obtained after contracting each “blob” to
a node.
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Theorem (Rhodes, B., Xu, & Ane)

The tree of an arbitrary network is identifiable from CFs **(some additional
requirements are needed)**




Tree of Blobs Inference Algorithm - TINNiIiK

Tree of blobs INference for a NetworK?

Leopardus gene trees
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Outer-labeled Planar Blobs

Definition

A network N is outer-labelled planar (OLP) if it can be represented in the plane:
* with no edge crossing (planar), and
+ with all taxa are in the “outside” (outer-labelled)

b Cc




Circular Order

In an outer-labeled planar blob,the circular order of taxa is well defined.
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Different planar embedding must have a, b, ¢, d in the same order along the outer face.




Circular Order

Theorem (Rhodes, B., Xu, & Ane)

For a binary outer-labeled planar blob, the full circular order is identifiable from
CFs.

b (=3

h

Along Alexandr, Coons, Meshkat, Long, & Gross, we are exploring
different things of circular orders. Including developing an algorithm for its
inference and looking at algebraic properties.




Indistinguishable

Not everything is honey over corn flakes....

These are not distinguishable from CFs.
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Where are we currently on identifiability?

Under CFs we have identifiability results for networks of arbitrary level, under the
restriction that these are:
* Binary
+ Galled
Tree-child
e Class ¢4 or
(multiple samples
per taxon needed)
* Class €5




Thank you!

» Beyond level-1: Identifiability of a class of galled tree-child networks.
ES Allman, C Ane, H Banos, JA Rhodes. Arxiv 2025.

* Identifying circular orders for blobs in phylogenetic networks.
JA Rhodes, H Banos, J Xu, C Ané. Advances in Applied Mathematics 2025.

* Identifiability of Level-1 Species Networks from Gene Tree Quartets.
ES Allman, H Bafos, M Garrote-Lopez, JA Rhodes. BMAB 2024.

Hector Banos

hector.banos@csusb.edu

Department of Mathematics

California State University, San Bernardino

gr--y P~

CALIFORNIA STATE UNIVERSITY

v
b r  SAN BERNARDINO

/ c :
< ollege of Natural Sciences
f\/\r\(\ g

DMS-2331660






