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How many moments do we need to have algebraic or rational identifiability?
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Moment varieties of mixture distributions

Let pp be a density with parameters 8 = (81, ...,6,) and moment variety My C P9.
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Theorem (Pearson 1894; Améndola—Ranestad—Sturmfels 2016; Améndola—Rodriguez—Lindberg 2025)

For Gaussian mixtures, we have algebraic identifiability for d > 3k — 1, and
rational identifiability for d > 3k + 2.

The moment variety of a k-mixture is the kth secant variety Secy(My):
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rational identifiability for d > 3k 4 2.
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What about mixtures
of other distributions?

Gamma Inverse Gaussian x> Exponential
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algebraic identifiability for d > 3k — 1, and rational identifiability for d > 3k + 2.
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Future directions: Unifying results, joins, identifiability degrees, real root counts, ED degrees, ...
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Introduction
In this study Algebra and Statistics are harmonized to develop a cryptography

Algorithm to secure communication in Internet of Things. Here | will like to
dowel much on Statistics with bias in Design of Experiments precisely with



respect to Construction of Designs; Mutually Orthogonal Latin Square MOLS and
Resolvable Balanced Incomplete Block Design RBIBD

Methodology and Result: Automated Data Encryption Generation

Stage 1. (Plaintext): In the name of God, the Entirely Merciful, the Especially
Merciful. It is You worship and You ask for help. Guide us to the straight path.
Stage 2. (Time Based Vector): Generation of Encrypting as: [9, 3, 8, 4,7, 3, 2, 0, 2,
1,6,8/5,1,4,2,0,3,7,3 3,523,021, 6]

Stage 3. (Ciphertex): Ro bkl oank ph Lsh- zie Hqvirgla Reuljnxs- tik Fuuigjgmlb
Pgrckfwg. Lc ja Bvv wf cptxlmq god Brw csm kou qfts? Hujjf wx xs unf swucigjt
rftk|

Stage 4. (Matrix Encryption): [[45907, 48623, 58147, 50564, 58386, 31020, 56474,
90152, 47801, 41489, 59161, 55011, 46233, 37397, 61102, 56072, 63895, 85046,
52907, 43669, 58549, 50832, 53385, 47084, 37875, 51607, 49876, 66581, 56724,
48384, 18226, 70224, 57220, 53490, 70702, 56445, 54399, 50622, 38668, 71687,
43651, 60729, 57535, 65357, 58730, 98173, 44893, 52668, 61283, 73150, 67537,
51712, 69239, 53443, 49503, 61178, 54160, 59639, 52020] ]

Conclusion

The following are the distinct features and advantages of the ZTM algorithm which
distinguishes it from traditional encryption schemes like RSA and AES.



Dynamic Time-Based Key Generation: Unlike static key approaches in RSA and AES,
the ZTM algorithm generates time-based keys dynamically, ensuring an additional
layer of security for each encryption session.

Resistance to Pattern Recognition: By using a shuffled key list in combination with
zig-zag block matrix, the resulting algorithm resists pattern detection that could
sometimes appear in block ciphers like AES.

Lightweight and Efficient: The algorithm is optimized for real-time encryption and
decryption of data. Its lightweight structure allows it to perform faster than heavier
algorithms such as RSA.

Symmetric Timing for Encryption and Decryption: Unlike RSA, which has an intensive
decryption process, the ZTM algorithm ensures that decryption times are almost
identical to encryption times, regardless of the length of the text.

Low Key Space Attack Vulnerability: The shuffled time-based key list enhances the
variability of the encryption key for each session. This makes brute-force attacks more
difficult compared to simpler encryption schemes, which rely on smaller fixed key
spaces.

On a final note, the proposed hybridized encryption algorithm (ZTM) has a unique
feature of dynamic time-based key generation such that it generates distinct ciphertext
at different times of encryption for the same data or messages, which distinguishes it

from traditional encryption schemes like RSA and AES.
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Parameterization of the Jukes-Cantor Model

[Les(r) a5 : ifleg:O
e Tree parametrization: qul,..gn :{ 0 SEE)  Lgem. othe]rwisé

e Network parametrization: q,, ,, = Z Vg, = Z Qoo
TeN TeN

q91929394 - q91929394 + q91929394 —|_ q91929394 + q91929394

e We are interested in studying the ideals corresponding to network parameterizations




Example: Non-Reticulate Half Ziggurat

We implemented a new method of computing the parametrization of a network, and used it analyze a number of
families of networks, such as the following:

e To begin our analysis, we calculated dimension for each network
numerically - and observed the dimension appeared to stabilize

e Using the Macualay2 package MultigradedImplicitization,
we computed generators of the ideal up to degree 2:

fo = —qu111 — Q1212 + Q122 + Q1211
fl ‘= (102391230 — 4101091212
f2 ‘= 010191010 — 9011091001 — 9001191100 T g111190000

e We then proved that as the number of reticulations along leaf 4
grows, the ideal stabilizes to <f0, fy f2>

\% e We believe that these polynomials are always in the ideal for a
larger class of networks
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Continuous Adjoint Newton's system

% =g(x) where g=|JJFLf.

Let fbe
—11¢ + 8x1x2 — 2)3 + 63x; — 112 :
—8xF + Bx1x2 — 8x3 + 54xq + 54xo — 196
® 7 solutions to g = 0.

® Red solutions: source.

® Green solutions: sink.

® Blue solutions: saddle.

Francisco Ponce-Carrién

Geometry of continuous adjoint Newton's systemfor bivariate quadratics



Theorem (Hauenstein, Hills, Hong, PC, 2025+)
(1) Equilibria:

@ g =0 has 7 solutions: {ri, r, r3, ra, p12,34, P13,24, P14,23 }
@ ri, n,r3, 1 are solutions to f= 0.
© Each pjj is the intersection point of the lines L and Ly.

Francisco Ponce-Carrién

Geometry of continuous adjoint Newton's systemfor bivariate quadratics



Theorem (Hauenstein, Hills, Hong, PC, 2025+)

(2) Eigenvalue / eigenspace at equilibrium e:

e eigenvalue of g (e) eigenspace of g (e)
_ D7 2
rq Ag = A, +JC R
—1 ¢
Pk Nj = (Aij?k/ C span (r; — ;)
J K+
A = (Alk)/ij C span (r; — ry)

for some nonzero constant C € R2.

Assuming C < 0 we can deduce \; < O:

Francisco Ponce-Carrién

Geometry of continuous adjoint Newton's systemfor bivariate quadratics



Toric geometry of ReLU neural networks

e For any n € N, the rectified linear unit (ReLU) is the map
¢:R" = R, ¢(x) = (max{0,x1 }, max{0, x2}, - - - , max{0, x, }).

@ For any number of hidden layers k € N, a (k + 1)—layer feedforward
ReLU neural network (RNN) is defined as follows:

fy . R SoA; RM soAz  s0Ak R Aks1 R

where ng, n1,--- ,nx € N, and A; : R"-1 — R" are all affine-linear
maps. The output function f is a piecewise linear function.

@ Which functions are exactly realized by a given RNN architecture?

@ Conversely, given a piecewise linear function, which architectures
realize it?

Yaoying Fu (Boston college) Toric geometry of ReLU neural networks July 21, 2025 1/3



Unbiased RNNs with rational weights

Toric geometry

@ Denoted Z?ig the ReLU fan of an unbiased RNN with rational weights is defined to be the
canonical polyhedral complex associated with fy.

@ The output function f serves as the support function of a Q—Cartier divisor Df supported
on 378, called ReLU Cartier divisor.

Given a 3-layer unbiased feedforward RNN: fy : R? A=tier R3 Fa=laos R L—3> R, where

o
=

Li=|0 —1|,L=[1 -1 1]and L3 =1 The ReLU fan T3 is as follows:

pslF L (HP)

. The output piecewise linear function is f = max{0, x,y}. The
ReLU Cartier divisor associated with f is Df = —Dy; — Dp,.
Yaoying Fu (Boston college) Toric geometry of ReLU neural networks July 21, 2025
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First application of toric geo

Complete classification of functions realizable by unbiased depth 2 RNNs

@ The classification is obtained with the help of computing intersection number of divisors
and curves.

@ A piecewise linear function f is realizable by an unbiased depth 2 RNN with rational

weights iff D - V(11) = Df - V(72) for any two walls 71, 7 coming from the same full
hyperplane in the fan.

v
Counterexamples in R?

2x — 2y
f = max{0,x,y}: and

A\

Yaoying Fu (Boston college) Toric geometry of ReLU neural networks July 21, 2025 3/3



Wasserstein Distance to Small Toric Models

Ikenna Nometa (UH Manoa)
With: Greg DePaul, Serkan Hosten, and Nilava Metya

IMS| Conference on New Directions in Algebraic Statistics
(Lightning Talk)

e

Wa(u, v) is the optimal value of:
Maximize Y., (ui-vi)x: s.t.
/.Xi_Xj/Sdij

for all i <j€/n]

Ilkenna Nometa IMSI — UChicago 2025 July 21, 2025



N S ——
Wasserstein distance between u and M

Wa(u, M) = min Wa(u, v)
vEM

Geometrically: e |uns

Dg(u, M) =Arer;in fA:(u+iB)nM # @} - J

Proposition (Celik-Jamneshan-Montufar-Sturmfels-Venturello)[CJM+21]
Wa(u, M) = Dp(u, M) ; and the # of complex critical points is bounded by

n-1
> 0i(M)fi(B)

=0
Ilkenna Nometa IMSI — UChicago 2025 July 21, 2025



Polar Degrees of Rational Nornmal Scrolls

Theorem (DePaul-Hosten-Metya-N [DHMN24])

Let X = X4 be a rational nomal scroll whose toric variety is defined by the 4
matrix determined by positive integers ny, n,,...,n. Let N = Zz:lnk, then X
has nonzero i*" polar degrees only for i = 0, 1, 2. In particular,

. N, ifi=0,2
1(X) = 2IN-1), fi=1

Other Results:
@ Polar degrees of graphical models — star, path, and cycle graphs’

'G. DePaul, S. Hosten, N. Metya, and |I. Nometa. “Degrees of the Wasserstein Distance to Small
Toric Models”. In: Algebraic Statistics 15 (2 2024), pp. 249-267.
icago 20

lkenna Nometa MSI — UChica July 21, 2025




The Correlated Equilibrium Polytope of Zero Sum
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Correlated Equilibrium

Player 2
go stop
go | (—99,-99) | (1,0)
stop (0,1) (0,0)

Player 1

| 99 29 BE01 )
10000 " 00T 100007 10000

(0,0,1,0)

(0,1.0,0)
1 1 a9

(0, 15, o7 22

Zero Sum Correlated Polytope July 21, 2025
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Zero Sum Games

Goals

o Characterize the combinatorics of the dimension of the polytope
(Phase transitions!)

@ Understand how multiple notions of generic interact

@ Understand how notions of reducing a game affect the Correlated
equilibrium polytope

Zero Sum Correlated Polytope July 21, 2025
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