Painting a picture of model polytopes

Danai Deligeorgaki

Conclusion Slide

- Model polytopes carry information about statistical models.
- They exhibit rich and elegant combinatorics.
- Multiset permutations are cool.
- Some model polytopes relate closely to multiset permutations.

Probability Simplex

- X_1, \ldots, X_n discrete random variables with outcomes $[m_1]_0, \ldots, [m_n]_0$ respectively, $[m_j]_0 := \{0, \ldots, m_j\}$.
- $\mathcal{R} := [m_1]_0 \times \cdots \times [m_n]_0$ set of possible outcomes.

The joint distribution of $X_1,...,X_n$ lies in the $(|\mathcal{R}|-1)$ -dimensional probability simplex

$$\Delta_{|\mathcal{R}|-1} = \{ p \in \mathbb{R}^{|\mathcal{R}|} : p_i \geq 0, \text{ for all } i \in \mathcal{R} \text{ and } \sum_{i \in \mathcal{R}} p_i = 1 \}.$$

A (discrete) statistical model \mathcal{M} is a subset of $\Delta_{|\mathcal{R}|-1}$.

Decomposable Simplicial Complexes

A simplicial complex is called decomposable if we can split it into two along a face such that each component is either decomposable or a simplex.

Example

Decomposable Simplicial Complexes

A simplicial complex is called decomposable if we can split it into two along a face such that each component is either decomposable or a simplex.

Example

Non-example

Discrete Decomposable Models

- $X_1, ..., X_n$ discrete random variables with outcomes $[m_1]_0, ..., [m_n]_0$ respectively.
- $\mathcal{R} := [m_1]_0 \times \cdots \times [m_n]_0$ set of possible outcomes.
- Γ decomposable simplicial complex on [n]. F facet of Γ , $\mathcal{R}_F := \prod_{i \in F} [m_i]_0$ set of facet outcomes.

Discrete Decomposable Models

- $X_1, ..., X_n$ discrete random variables with outcomes $[m_1]_0, ..., [m_n]_0$ respectively.
- $\mathcal{R} := [m_1]_0 \times \cdots \times [m_n]_0$ set of possible outcomes.
- Γ decomposable simplicial complex on [n]. F facet of Γ , $\mathcal{R}_F := \prod_{j \in F} [m_j]_0$ set of facet outcomes.

The (discrete) decomposable model \mathcal{M}_{Γ} associated with Γ is

$$\mathcal{M}_{\Gamma} = \{ p \in \Delta_{|\mathcal{R}|-1}^{\circ} : p_i = \frac{1}{Z(y)} \prod_{F \in \mathsf{facets}(\Gamma)} y_{i_F}^{(F)} \text{ for all } i \in \mathcal{R} \},$$

for $y_{i_F}^{(F)}$ positive parameters and Z(y) normalizing constant.

Discrete Decomposable Models

- $X_1, ..., X_n$ discrete random variables with outcomes $[m_1]_0, ..., [m_n]_0$ respectively.
- $\mathcal{R} := [m_1]_0 \times \cdots \times [m_n]_0$ set of possible outcomes.
- Γ decomposable simplicial complex on [n]. F facet of Γ , $\mathcal{R}_F := \prod_{j \in F} [m_j]_0$ set of facet outcomes.

The (discrete) decomposable model \mathcal{M}_{Γ} associated with Γ is

$$\mathcal{M}_{\Gamma} = \mathcal{V}(\ker(\phi_{\Gamma})) \cap \Delta_{|\mathcal{R}|-1}^{\circ},$$

$$\phi_{\Gamma} : \mathbb{C}[z_{i} : i \in \mathcal{R}] \longrightarrow \mathbb{C}[y_{i_{F}}^{F} : i_{F} \in \mathcal{R}_{F}, F \in \text{facets}(\Gamma)];$$

$$\phi_{\Gamma} : z_{i} \longmapsto \prod_{F \in \text{facets}(\Gamma)} y_{i_{F}}^{F}.$$

From the model to the Polytope

• There is a (toric) variety $\mathcal{V}_{\mathcal{M}_{\Gamma}}$ and a lattice polytope $P_{\mathcal{M}_{\Gamma}}$ associated to a decomposable model \mathcal{M}_{Γ} . We can read off $P_{\mathcal{M}_{\Gamma}}$ directly from Γ and m_1, \ldots, m_n .

• We call $P_{\mathcal{M}_{\Gamma}}$ the model polytope.

We record the support vectors of each $\phi_{\Gamma}(z_i)$ as the columns of a $(N_{\Gamma} \times |\mathcal{R}|)$ 0/1-matrix A_{Γ} , where $N_{\Gamma} = \sum_{F \in \mathsf{facets}(\Gamma)} |\mathcal{R}_F|$. Then $P_{\mathcal{M}_{\Gamma}} = \mathsf{conv}(\mathsf{columns}(A_{\Gamma})) \subset \mathbb{R}^{N_{\Gamma}}$.

Example

$$[m_1]_0 = \{0, 1, 2\}, [m_2]_0 = [m_3]_0 = \{0, 1\}$$

$$P_{\mathcal{M}_{\Gamma}}=\operatorname{\mathsf{conv}}ig(e_1+e_7,e_1+e_8,e_2+e_7,\ldots,e_6+e_8ig)\subset\mathbb{R}^8.$$

Example 2: Independence Model

- X_1, X_2 binary variables $(m_1 = m_2 = 1)$, Γ empty graph.
- \mathcal{M}_{Γ} consists of positive joint distributions $p = (p_{00}, p_{01}, p_{10}, p_{11})$ for which X_1, X_2 are independent.

Example 2: Independence Model

- X_1, X_2 binary variables $(m_1 = m_2 = 1)$, Γ empty graph.
- \mathcal{M}_{Γ} consists of positive joint distributions $p = (p_{00}, p_{01}, p_{10}, p_{11})$ for which X_1, X_2 are independent.

 $P_{\mathcal{M}_{\Gamma}} = \mathsf{conv}\big(\{1,0,1,0\},\{1,0,0,1\},\{0,1,1,0\},\{0,1,0,1\}\big) \subset \mathbb{R}^4$

Example 2: Independence Model

- X_1, X_2 binary variables $(m_1 = m_2 = 1)$, Γ empty graph.
- \mathcal{M}_{Γ} consists of positive joint distributions $p = (p_{00}, p_{01}, p_{10}, p_{11})$ for which X_1, X_2 are *independent*.

$$P_{\mathcal{M}_{\Gamma}} = \mathsf{conv}\big(\{1,0,1,0\},\{1,0,0,1\},\{0,1,1,0\},\{0,1,0,1\}\big) \subset \mathbb{R}^4$$

But $P_{\mathcal{M}_{\Gamma}}$ is 2-dimensional and isomorphic to the unit square.

When investigating a polytope's combinatorics, there are several questions to be explored, such as

- 1) What are the facets of the polytope $P_{\mathcal{M}_{\Gamma}}$?
- 2) Does $P_{\mathcal{M}_{\Gamma}}$ admit a unimodular triangulation?
- What combinatorial information does this triangulation carry?
- 3) Enumerative combinatorics of $P_{\mathcal{M}_{\Gamma}}$.
- 4) Subpolytopes of interest.

What are the facets of the polytope $P_{\mathcal{M}_{\Gamma}}$?

Develin-Sullivant (2003): An H-representation of $P_{\mathcal{M}_{\Gamma}}$ is given by $y_{i_F}^F \geq 0$ for all $F \in \text{facets}(\Gamma)$ and $i_F \in \mathcal{R}_F$.

Hoşten-Sullivant (2002): $P_{\mathcal{M}_{\Gamma}}$ has a unimodular triangulation T.

- Computed the number of facets in T.

-
$$\dim(P_{\mathcal{M}_{\Gamma}}) = \sum_{f \in \mathsf{faces}(\Gamma) \setminus \{\emptyset\}} \prod_{f = \{j_1, ..., j_t\}} m_{j_k}.$$

D-Solus (2022): Described the facets of $P_{\mathcal{M}_{\Gamma}}$, using the above.

Special case. Let Γ be a disjoint union of simplices F_1, \ldots, F_k . A full-dimensional representation of $P_{\mathcal{M}_{\Gamma}}$ is given by

$$\sum_{i_{F_j} \in \mathcal{R}_{F_j} \setminus \{i_0\}} y_{i_{F_j}}^{F_j} \leq 1, \qquad \forall \ j \in [k],$$

$$y_{i_{F_j}}^{F_j} \geq 0, \qquad \forall \ i_{F_j} \neq i_0, \ \forall \ j \in [k].$$

 \diamond $P_{\mathcal{M}_{\Gamma}}$ is a chain polytope (almost an order polytope)!

Special case. Let Γ be a disjoint union of simplices F_1, \ldots, F_k . A full-dimensional representation of $P_{\mathcal{M}_{\Gamma}}$ is given by

$$\begin{split} \sum_{i_{F_j} \in \mathcal{R}_{F_j} \setminus \{i_0\}} y_{i_{F_j}}^{F_j} &\leq 1, \qquad \forall \ j \in [k], \\ y_{i_{F_i}}^{F_j} &\geq 0, \qquad \forall \ i_{F_j} \neq i_0, \ \forall \ j \in [k]. \end{split}$$

 \diamond $P_{\mathcal{M}_{\Gamma}}$ is a chain polytope (almost an order polytope)!

Example

Definition

We define the h^* -polynomial of $P_{\mathcal{M}_{\Gamma}}$ as

$$h^*(P_{\mathcal{M}_{\Gamma}};t) = h_0^* + h_1^*t + \cdots + h_d^*t^d,$$

where h_i^* is the number of facets missing-i-facets in a half-open unimodular triangulation T of $P_{\mathcal{M}_{\Gamma}}$, $i \in [d]_0$.

<u>Note</u>: $h^*(P_{\mathcal{M}_{\Gamma}}; t)$ is $f_T(P_{\mathcal{M}_{\Gamma}}; t)$ after a change of basis, enumerating faces of different dimensions in T.

Question: What can we say about $h^*(P_{\mathcal{M}_{\Gamma}}; t)$? applications:

- lower bound on the weak maximum likelihood threshold of the model (Johnson-Sullivant, 2023);
- time-complexity bound for variable elimination (D-Solus, 2022).

Question: What can we say about $h^*(P_{\mathcal{M}_{\Gamma}}; t)$?

Palindromic $h^*(P_{\mathcal{M}_{\Gamma}};t)$

If $h^*(P_{\mathcal{M}_{\Gamma}};t)$ is palindromic, then $P_{\mathcal{M}_{\Gamma}}$ is called Gorenstein. e.g.: If $h^*(P_{\mathcal{M}_{\Gamma}};t) = 1 + 3t + t^2$ then $P_{\mathcal{M}_{\Gamma}}$ is Gorenstein.

Theorem [Johnson-Sullivant, 2023; D-Solus]:

 $P_{\mathcal{M}_{\Gamma}}$ is Gorenstein if and only if $|\mathcal{R}_{F}|$ is fixed for every facet $F \in \text{facets}(\Gamma)$.

Palindromic $h^*(P_{M_E};t)$

If $h^*(P_{\mathcal{M}_{\Gamma}}; t)$ is palindromic, then $P_{\mathcal{M}_{\Gamma}}$ is called Gorenstein. e.g.: If $h^*(P_{\mathcal{M}_{\Gamma}};t) = 1 + 3t + t^2$ then $P_{\mathcal{M}_{\Gamma}}$ is Gorenstein.

Theorem [Johnson-Sullivant, 2023; D-Solus]:

 $P_{\mathcal{M}_{\Gamma}}$ is Gorenstein if and only if $|\mathcal{R}_{F}|$ is fixed for every facet $F \in \text{facets}(\Gamma)$.

- $[m_1]_0 = \{0, 1, 2\}, [m_2]_0 = [m_3]_0 = \{0, 1\}; \mathcal{R}_{(1+2)} = 6, \mathcal{R}_{(3)} = 2$
- $[m_1]_0 = \{0, 1, 2\}, [m_2]_0 = \{0, 1\}, [m_3]_0 = \{0, \dots, 5\}$:

$$R_{\widehat{(1)}-\widehat{(2)}} = 6, \ \mathcal{R}_{\widehat{(3)}} = 6. \ \checkmark$$

Computing $h^*(P_{\mathcal{M}_{\Gamma}};t)$ for disjoint unions of simplices

Independence model

Outcomes:

$$[m_1]_0, [m_2]_0, \ldots, [m_n]_0$$

Poset of chains

П

1	2	<i>n</i>
m_1	m_2 :	m_n
1	2	 <i>n</i>
1	2	n n

Computing $h^*(P_{\mathcal{M}_{\Gamma}};t)$ for disjoint unions of simplices

Poset of chains

Independence model

Γ

$$(X_1)$$
 (X_2) \cdots (X_n)

Outcomes:

$$[m_1]_0, [m_2]_0, \ldots, [m_n]_0$$

$$h^*(P_{\mathcal{M}_\Gamma};t) = \sum_{\pi \in \mathcal{L}(\Pi)} t^{\mathsf{des}(\pi)} = \sum_{\pi \in \mathcal{S}_M} t^{\mathsf{des}(\pi)}, \;\; \mathsf{where}$$

$$\begin{split} \mathcal{L}(\Pi) &= \{ \text{linear extensions of } \Pi \} \\ S_M &= \{ \text{permutations of multiset } M = \{1,1,\ldots,2,2,\ldots,n,n \} \} \end{split}$$

```
▶ M = \{1^{m_1}, 2^{m_2}, \dots, n^{m_n}\} multiset. For example, M = \{1, 1, 1, 2, 2, 3, 3\} for m_1 = 3, m_2 = m_3 = 2.
```

- ▶ $M = \{1^{m_1}, 2^{m_2}, \dots, n^{m_n}\}$ multiset. For example, $M = \{1, 1, 1, 2, 2, 3, 3\}$ for $m_1 = 3$, $m_2 = m_3 = 2$.
- ▶ S_M permutations of M. For example, $M = \{1, 1, 2\}$ gives $S_M = \{112, 121, 211\}$.

- $M = \{1^{m_1}, 2^{m_2}, \dots, n^{m_n}\}$ multiset. For example, $M = \{1, 1, 1, 2, 2, 3, 3\}$ for $m_1 = 3$, $m_2 = m_3 = 2$.
- ▶ S_M permutations of M. For example, $M = \{1, 1, 2\}$ gives $S_M = \{112, 121, 211\}$.
- ▶ $\pi \in S_M$ permutation of M. The statistic des (π) counts descents in π , i.e., i's with i+1 < i. For example, for $2\underline{3}111\underline{3}2$, des $(\pi) = 2$.

- $M = \{1^{m_1}, 2^{m_2}, \dots, n^{m_n}\}$ multiset. For example, $M = \{1, 1, 1, 2, 2, 3, 3\}$ for $m_1 = 3$, $m_2 = m_3 = 2$.
- ▶ S_M permutations of M. For example, $M = \{1, 1, 2\}$ gives $S_M = \{112, 121, 211\}$.
- ▶ $\pi \in S_M$ permutation of M. The statistic des (π) counts descents in π , i.e., i's with i+1 < i. For example, for $2\underline{3}111\underline{3}2$, des $(\pi) = 2$.
- ▶ descent polynomial of S_M : $\sum_{\pi \in S_M} t^{\text{des}(\pi)}$. For example, for $M = \{112, 121, 211\}$, $\sum_{\pi \in S_M} t^{\text{des}(\pi)} = 1 + 2t$.

• When $m_1 = m_2 = \cdots = m_n = 1$ (binary variables),

$$h^*(P_{\mathcal{M}_{\Gamma}};t) = h^*(\mathbf{D}_n;t) = \sum_{\pi \in S} t^{\mathsf{des}(\pi)}.$$

• • •

• When $m_1 = m_2 = \cdots = m_n = 1$ (binary variables),

$$h^*(P_{\mathcal{M}_{\Gamma}};t) = h^*(\mathbf{\square}_n;t) = \sum_{\pi \in S_n} t^{\mathsf{des}(\pi)}.$$

• For general m_1, m_2, \ldots, m_n , $M = \{1^{m_1}, 2^{m_2}, \ldots, n^{m_n}\}$,

$$h^*(P_{\mathcal{M}_\Gamma};t) = h^*(\Delta_{m_1} \times \cdots \times \Delta_{m_n};t) = \sum_{\pi \in S_M} t^{\mathsf{des}(\pi)}.$$

Bijection between simplices in the triangulation T of $P_{\mathcal{M}_{\Gamma}}$ and permutations in S_M (missing facets correspond to descents).

• When $m_1 = m_2 = \cdots = m_n = 1$ (binary variables),

$$h^*(P_{\mathcal{M}_{\Gamma}};t) = h^*(\overline{\square}_n;t) = \sum_{\pi \in S_n} t^{\mathsf{des}(\pi)}.$$

• For general m_1, m_2, \ldots, m_n , $M = \{1^{m_1}, 2^{m_2}, \ldots, n^{m_n}\}$,

$$h^*(P_{\mathcal{M}_\Gamma};t) = h^*(\Delta_{m_1} imes \cdots imes \Delta_{m_n};t) = \sum_{\pi \in S_M} t^{\mathsf{des}(\pi)}.$$

[D-Han-Solus, 2024⁺] For $r\Delta_m$ the r-th dilate of m-simplex,

$$h^*(r_1\Delta_{m_1}\times\cdots\times r_n\Delta_{m_n};t)=\sum_{\pi\in S_{M^r}}t^{\mathsf{des}(\pi)}.$$

- Characterized when the above polynomial is palindromic.
- \diamond Showed that it satisfies several **distributional properties** if $r_i > m_i$.

- ▶ Multiset permutations enumerate facets in the model polytope triangulation for the independence model.
- ▶ Is this a coincidence?

Split pair permutations

A split-pair permutation of the multiset $M = \{1, 1, 2, 2, ..., n, n\}$ is a permutation π of M such that, for each i < n, exactly one copy of i+1 appears between the two copies of i in π (alternatively, they avoid abba, aabb for $b=\pm 1$.) E.g., 12134234.

Graham-Zhang (2008): Computed number of split-pair permutations for given n.

Split pair permutations

A split-pair permutation of the multiset $M = \{1, 1, 2, 2, ..., n, n\}$ is a permutation π of M such that, for each i < n, exactly one copy of i+1 appears between the two copies of i in π (alternatively, they avoid abba, aabb for $b=\pm 1$.) E.g., 12134234.

Graham-Zhang (2008): Computed number of split-pair permutations for given n.

Question. (Graham-Zhang)

Construct a bijection between split-pair permutations and the facets in triangulation T of $P_{\mathcal{M}_{\Gamma}}$ for the binary Markov chain.

Binary Markov chain

Conjecture [D-Solus, 2025⁺]: For the binary Markov chain model,

$$\mathit{h}^*(\mathit{P}_{\mathcal{M}_\Gamma};t) = \sum_{\pi \in \mathit{SP}_n} t^{\mathsf{des}(\pi)-1},$$

where SP_n denotes split-pair permutations of $\{1, 1, ..., n, n\}$.

Binary Markov chain

Conjecture [D-Solus, 2025⁺]: For the binary Markov chain model,

$$\textit{h}^*(\textit{P}_{\mathcal{M}_{\Gamma}};t) = \sum_{\pi \in \textit{SP}_n} t^{\mathsf{des}(\pi)-1},$$

where SP_n denotes split-pair permutations of $\{1, 1, \ldots, n, n\}$.

Recall. For general
$$m_1, \ldots, m_n$$
, $M = \{1^{m_1}, \ldots, n^{m_n}\}$,

$$h^*(P_{\mathcal{M}_\Gamma};t) = h^*(\Delta_{m_1} imes \cdots imes \Delta_{m_n};t) = \sum_{\pi \in S_{\mathcal{M}}} t^{\mathsf{des}(\pi)}.$$

Binary Markov chain

Conjecture [D-Solus, 2025⁺]: For the binary Markov chain model,

$$h^*(P_{\mathcal{M}_\Gamma};t) = \sum_{\pi \in SP_n} t^{\mathsf{des}(\pi)-1},$$

where SP_n denotes split-pair permutations of $\{1, 1, ..., n, n\}$.

Recall. For general m_1, \ldots, m_n , $M = \{1^{m_1}, \ldots, n^{m_n}\}$,

$$h^*(P_{\mathcal{M}_{\Gamma}};t) = h^*(\Delta_{m_1} \times \cdots \times \Delta_{m_n};t) = \sum_{\pi \in S_M} t^{\mathsf{des}(\pi)}.$$

- ▷ Bijection between facets in the triangulation T of $P_{\mathcal{M}_{\Gamma}}$ and permutations in SP_n (missing facets correspond to descents)?
- ▶ How Markov chain polytope fits inside the independence model's.

Applications and hopes

Nice subpolytopes

Fix $M = \{1, 1, ..., n, n\}$.

 $A \subseteq S_M$, where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of S_M

Elizalde (2024): canon permutations (motivated from Stirling permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations

Fix $M = \{1, 1, ..., n, n\}$.

 $A \subseteq S_M$, where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of S_M

Elizalde (2024): canon permutations (motivated from Stirling permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations

Theorem

 $P_{\mathcal{M}_{\Gamma}}$ is Gorenstein if and only if $|\mathcal{R}_{F}|$ is fixed for all facets F.

Corollary: $P_{\mathcal{M}_{\Gamma}}$ is Gorenstein for \mathcal{M}_{Γ} binary Markov chain, i.e., $h^*(P_{\mathcal{M}_{\Gamma}};t)$ is palindromic.

Fix $M = \{1, 1, ..., n, n\}$.

 $A \subseteq S_M$, where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of S_M

Elizalde (2024): canon permutations (motivated from Stirling permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations

D (Conjectured): split pair permutations

Fix $M = \{1, 1, \dots, n, n\}$.

 $A \subseteq S_M$, where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of S_M

Elizalde (2024): canon permutations (motivated from Stirling permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations

D (Conjectured): split pair permutations

Question. (Graham-Zhang, 2008)

"split-pair permutations" for $M = \{1, 1, 1, 2, 2, 2, \dots, n, n, n\}$? (motivated from robotic scheduling)

hope: connection to $P_{\mathcal{M}_{\Gamma}}$ for suitable \mathcal{M}_{Γ} .

Conclusion Slide

- Model polytopes carry information about statistical models.
- They exhibit rich and elegant combinatorics.
- Multiset permutations are cool.
- Some model polytopes relate closely to multiset permutations.

Conclusion Slide

- Model polytopes carry information about statistical models.
- They exhibit rich and elegant combinatorics.
- Multiset permutations are cool.
- Some model polytopes relate closely to multiset permutations.

Thank you!

Some references

- Hoşten, S., Sullivant, S., Gröbner Bases and Polyhedral Geometry of Reducible and Cyclic Models, J. Comb. Theory A (2002).
- Graham, R., Zang, N., Enumerating Split-Pair Arrangements, J. Comb. Theory A (2008).
- Deligeorgaki, D., Solus, L., Gorenstein Decomposable Models, technical report (2022).
- Johnson, J., Sullivant, S., The Codegree, Weak Maximum Likelihood Threshold, and the Gorenstein Property of Hierarchical Models, arXiv:2310.11560 (2023).
- Sullivant, S., Algebraic Statistics, American Mathematical Society (2023).
- Elizalde, S., Descents on Nonnesting Multipermutations, Eur. J. Comb. (2024).
- Deligeorgaki, D., Han, B., Solus, L., Colored Multiset Eulerian Polynomials, arXiv:2407.12076 (2024).
- Beck, M., Deligeorgaki, D., Canon Permutation Posets, FPSAC (2025).
- Deligeorgaki, D., Combinatorics and Algebraic Statistics through Polyhedra, PhD thesis, KTH (2025).

