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Conclusion Slide

Model polytopes carry information about statistical models.

They exhibit rich and elegant combinatorics.

Multiset permutations are cool.

Some model polytopes relate closely to multiset permutations.



Probability Simplex
e Xi,...,X, discrete random variables with outcomes
[milo, - .., [mn]o respectively,  [mj]o :={0,..., m;}.
e R :=[mi]o X -+ X [mp]o set of possible outcomes.

The joint distribution of Xi, ..., Xj, lies in the (JR| — 1)-dimensional
probability simplex
Ajgi-r={peR®:p >0, forallicRand 3 p;=1}.
i€R

A (discrete) statistical model M is a subset of A _;.




Decomposable Simplicial Complexes

A simplicial complex is called decomposable if we can split it into
two along a face such that each component is either decomposable
or a simplex.

Example
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Decomposable Simplicial Complexes

A simplicial complex is called decomposable if we can split it into
two along a face such that each component is either decomposable
or a simplex.

Example
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Discrete Decomposable Models

e Xi,..., X, discrete random variables with outcomes
[m1]o, ..., [mn]o respectively.

e R :=[mi]o X -+ X [mp]o set of possible outcomes.

e [ decomposable simplicial complex on [n].

F facet of I', RF := [][mj]o set of facet outcomes.
JeF
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Discrete Decomposable Models

e Xi,..., X, discrete random variables with outcomes
[m1]o, .., [mn]o respectively.

e R :=[mi]o X -+ x [my]o set of possible outcomes.

e [ decomposable simplicial complex on [n].
F facet of I', RF := ][ [mj]o set of facet outcomes.
JeF
The (discrete) decomposable model M associated with [ is

1
Mr=1{peDin r:ip==5—~ [[ ¥ foraliery,

Z(y) Fefacets(I')
(F)

for y;_ 7 positive parameters and Z(y) normalizing constant.



Discrete Decomposable Models

e Xi,..., X, discrete random variables with outcomes
[m1]o, .., [mn]o respectively.

o R :=[my]o X -+ X [my]o set of possible outcomes.

e [ decomposable simplicial complex on [n].

F facet of I', RF := ] [mj]o set of facet outcomes.
JeF

The (discrete) decomposable model M associated with I is
Mr = V(ker(¢r)) N A1,

ér:Clzi:i € R] — C[y,f iF € RE, F € facets(N)];
orozi— [ v

Fefacets(IN)



From the model to the Polytope

e There is a (toric) variety V4, and a lattice polytope Pay,
associated to a decomposable model M. We can read off
Py, directly from I and myq, ..., my,.

@ .
sw o~ @.

e We call Py, the model polytope.



We record the support vectors of each ¢r(z;) as the columns of a
(NF x |R[) 0/1-matrix Ar, where Nr = 3 rcc.corsry [RF|. Then
P, = conv(columns(Ar)) C RN

Example

r
@4@ @ [mi]o = {0,1,2}, [mo]o = [m3]o = {0,1}

001 001 010 011 100 101 110 111 200 201 210 211

00- 1 1 0 0 0 0 0 0 0 0 0 0
01- 0 0 1 1 0 0 0 0 0 0 0 0
10- 0 0 0 0 1 1 0 0 0 0 0 0
Ar= 11 0 0 0 0 0 0 1 1 0 0 0 0
20- 0 0 0 0 0 0 0 0 1 1 0 0
21- 0 0 0 0 0 0 0 0 0 0 1 1
-0 1 0 1 0 1 0 1 0 1 0 1 0
-1\ 0 1 0 1 0 1 0 1 0 1 0 1

PMI_=C0nv(el+e7761+68762+e7,...766+68) C R8.



Example 2: Independence Model

e X1, Xo binary variables (m; = my = 1), I empty graph.
e M consists of positive joint distributions

p = (poo, Po1, P10, p11) for which X1, Xy are independent



Example 2: Independence Model

e X1, Xy binary variables (m; = my = 1), T empty graph.
e M consists of positive joint distributions

p = (poo, po1, P10, P11) for which Xi, X5 are independent.

00 01 10 11
0-0/1 1 0 0

/o o0 1 1

<:> <:> r Ar“-o 1 0 1 0
1\o 1 o0 1

P, = conv({1,0,1,0},{1,0,0,1},{0,1,1,0},{0,1,0,1}) c R



Example 2: Independence Model

e X1, Xo binary variables (m; = my = 1), I empty graph.
e M consists of positive joint distributions
p = (poo, Po1, P10, p11) for which X1, X, are independent.

00 01 10 11

0-/1 1 0 0

.10 o0 1 1

<::> <::> r Ar"-o 1 0 1 0
1\0 1 0 1

P = conv({1,0,1,0},{1,0,0,1},{0,1,1,0},{0,1,0,1}) Cc R*

But P4, is 2-dimensional and 10
isomorphic to the unit square.
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When investigating a polytope's combinatorics, there are several
questions to be explored, such as

1) What are the facets of the polytope P4 ?

2) Does Pp4, admit a unimodular triangulation?

— What combinatorial information does this triangulation carry?
3) Enumerative combinatorics of Py, .

4) Subpolytopes of interest.



What are the facets of the polytope Ppy.?

Develin-Sullivant (2003): An H-representation of Pp4, is given by

y,-’: > 0 for all F € facets(I') and ir € RE.

Hosten-Sullivant (2002): Py, has a unimodular triangulation T.
- Computed the number of facets in T.

- dim(Pay, ) = > T m.
fefaces(M)\{0} F={j1,-.-Jt }

D-Solus (2022): Described the facets of Py, using the above.



Special case. Let I be a disjoint union of simplices Fq, ...

full-dimensional representation of Py, is given by

AN

yi S 17 V./ e [k]7

i €RF\{io}

Jn

Y >0, Vlf:jilovv./e[k]

n

o Py, is a chain polytope (almost an order polytope)!
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Special case. Let I be a disjoint union of simplices Fq, ...

full-dimensional representation of Py, is given by

<1, Vj €[],

(]

Jn

Yi
iF €RF\{io}

vl >0, Vig#£io, Vje€ [k

S

o Ppy, is a chain polytope (almost an order polytope)!

Example

r
@4@ @ [mlo = {0,1,2}, [ma]o = [ms]o = {0,1}

PMr:COI’IV(El+677€1+687€2+677...,66+68> CR®:

Yo1 + i1

Yot » Y11 » Yo1 » Y10 » Y20 ) @ZO'

Yo1 + Y15 + Y20 <1, Y1GD <1

7Fk-



Definition
We define the h*-polynomial of Ppy, as
R*(Pampit) = b+ Bit 4 - + h5t,
where h7 is the number of facets missing-i-facets in a half-

open unimodular triangulation T of Pay., i € [d]o.

Note: h*(Pay,;t) is fr(Pa,; t) after a change of basis, enu-
merating faces of different dimensions in T.

hy + hit + b5t = 1+ 3t + t°




Question: What can we say about h*(Pay; t)?

applications:
< lower bound on the weak maximum likelihood threshold of the
model (Johnson-Sullivant, 2023);
& time-complexity bound for variable elimination (D-Solus,
2022).



Question: What can we say about h*(Pay; t)?




Palindromic h*(Pay,; t)

If h*(P,; t) is palindromic, then Py, is called Gorenstein.
e.g.: If h*(Papyp;t) =1+ 3t + t? then Py, is Gorenstein.

Theorem [Johnson-Sullivant, 2023; D-Solus]:
P, is Gorenstein if and only if |Rf| is fixed for every facet
F € facets(I').




Palindromic h*(Pay,; t)

If h*(Pay,; t) is palindromic, then Py, is called Gorenstein.
e.g.: If h*(Papp;t) = 14 3t + t2 then Py, is Gorenstein.

Theorem [Johnson-Sullivant, 2023; D-Solus]:
P, is Gorenstein if and only if |RF| is fixed for every facet
F € facets(I').

O—® O
i [ml]O = {0, 172}7 [m2]0 = [m3]0 = {07 1}; R@_@ =6, R@ =2 X

L] [ml]o = {0, 1,2}, [m2]0 = {0, 1}, [m3]0 = {07 N ,5} :
Rov@ =6 Rg =6 v



Computing h*(Py,; t) for disjoint unions of simplices

Poset of chains

Independence model Mn
r
DIORND I
my: my: :Mp
Outcomes: 1 5 '
n
[m1]o, [m2]o, - -, [Mn]o | |



Computing h*(Py,; t) for disjoint unions of simplices

Poset of chains

Independence model Mn
OIOEENC b i
ttt | | |
my: ms: My

Outcomes: ) 5
n

[ml]O, [m2]0, ) [mn]O ‘ ‘
1 2 n

h*(Ppy,; t) Z gdes(m) — Z tdes(”), where
meL(M) TESM

L(MN) = {linear extensions of M}
Sy = {permutations of multiset M = {1,1,...,2,2,...,n,n}}



Multiset permutations - descent polynomial

> M= {1m2m . n™} multiset. For example,
M=1{1,1,1,2,2,3,3} for m; =3, mp = m3 = 2.
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> M= {1m 2m2 . n™} multiset. For example,
M=1{1,1,1,2,2,3,3} for m; =3, mp = m3 = 2.

» Sy permutations of M. For example, M = {1, 1,2} gives
Sw = {112,121, 211}.



Multiset permutations - descent polynomial

> M= {1m 2m . n™} multiset. For example,
M=1{1,1,1,2,2,3,3} for m; =3, mp = m3 = 2.

» Sy permutations of M. For example, M = {1, 1,2} gives
Sw = {112,121, 211}.

» 7 € Sp permutation of M. The statistic des(7) counts
descents in 7, i.e., i's with i + 1 < i. For example, for
2311132, des(n) = 2.



Multiset permutations - descent polynomial

> M= {1m,2m . n™} multiset. For example,
M=1{1,1,1,2,2,3,3} for m; =3, mp = m3 = 2.

» Sy permutations of M. For example, M = {1, 1,2} gives
Sw = {112,121, 211}.

» 7 € Sp permutation of M. The statistic des(7) counts
descents in 7, i.e., i's with i + 1 < i. For example, for
2311132, des(n) = 2.

» descent polynomial of Sp: > tdes(7) . For example, for
TESH
M = {112,121,211}, 3 tdes(®) =1 4 2t
TESM



e When my = my =--- = m, =1 (binary variables),

B (Pag,; t) = h*( =y tdem)

TES,



e When my = my =--- = m,=1 (binary variables),
W (Pueit) = b (Bnrt) = Y sl
TES,
e  For general my, my,...,m,, M = {1™ 2m2 . nMn}

W (Papit) = h* (D X o X Dy t) = Y 1950
TESM

Bijection between simplices in the triangulation T of Pr4. and permutations in Sy
(missing facets correspond to descents).



e  When m;y = mp =--- = m, =1 (binary variables),
TES,
e For general my, my,...,m,, M ={1m™ 2Mm ™}

W (Papit) = h* (B X - X Dy t) = Y 1950

TESY

[D-Han-Solus, 20247] For rA, the r-th dilate of m-simplex,

h*(rnAm X - X Ayt E gdes(m)
TESyr

¢ Characterized when the above polynomial is palindromic.

o Showed that it satisfies several distributional properties if r; > m;.



> Multiset permutations enumerate facets in the model polytope
triangulation for the independence model.

> |s this a coincidence?



Split pair permutations

A split-pair permutation of the multiset M = {1,1,2,2,...,n,n} is
a permutation m of M such that, for each i < n, exactly one copy
of i + 1 appears between the two copies of i in 7 (alternatively,
they avoid abba, aabb for b = £1.)

Eg.,

Graham-Zhang (2008): Computed number of split-pair
permutations for given n.



Split pair permutations

A split-pair permutation of the multiset M = {1,1,2,2,....n,n} is
a permutation m of M such that, for each i < n, exactly one copy
of i 4+ 1 appears between the two copies of i in 7 (alternatively,
they avoid abba, aabb for b = +1.)

Eg.,

Graham-Zhang (2008): Computed number of split-pair
permutations for given n.

Question. (Graham-Zhang)

Construct a bijection between split-pair permutations and the
facets in triangulation T of Py, for the binary Markov chain.

O ) 1y



Binary Markov chain

Conjecture [D-Solus, 20251]: For the binary Markov chain
model,

h*(PMr, t) — Z tdes(7r)—1,
€SP,

where SP,, denotes split-pair permutations of {1,1,...,n, n}.




Binary Markov chain

Conjecture [D-Solus, 20251]: For the binary Markov chain
model,
h*(PMr| t) — Z tdes(7r)—1,
TESP,
where SP,, denotes split-pair permutations of {1,1,...,n, n}.
Recall. For general mq,...,mp,, M ={1™ ... n™n},

W (Pptri t) = B (Dy X o X Ay t) = Y (),

TESH



Binary Markov chain

Conjecture [D-Solus, 2025"]: For the binary Markov chain
model,
h*(PMr, t) — Z tdes(7r)—1,
TESP,
where SP, denotes split-pair permutations of {1,1,...,n, n}.
Recall. For general mq,...,mp,, M ={1™ ... n™},

W (Ppgri t) = BBy X o X A t) = Y (),

TESH

> Bijection between facets in the triangulation T of P4 and
permutations in SP, (missing facets correspond to descents)?

> How Markov chain polytope fits inside the independence
model's.



Applications and hopes



Nice subpolytopes
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Fix M ={1,1,...,n,n}.
A C Sy, where A has palindromic descent polynomial:
Carlitz-Hoggatt (1978): all of Sy

Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations



Fix M ={1,1,...,n,n}.
A C Sy, where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of Sy

Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations

Theorem

P4, is Gorenstein if and only if |Rf| is fixed for all facets F.

Corollary:  Pay, is Gorenstein for Mr binary Markov chain, i.e.,
h*(Pay,; t) is palindromic.
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Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia's talk)
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D (Conjectured): split pair permutations



Fix M ={1,1,...,n,n}.
A C Sy, where A has palindromic descent polynomial:
Carlitz-Hoggatt (1978): all of Sy

Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia's talk)

Beck-D (2025): dissonant canon permutations
D (Conjectured): split pair permutations

Question. (Graham-Zhang, 2008)

“split-pair permutations” for M = {1,1,1,2,2,2,....n,n,n}?
(motivated from robotic scheduling)

hope: connection to Py, for suitable Mr.
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Model polytopes carry information about statistical models.

They exhibit rich and elegant combinatorics.

Multiset permutations are cool.

Some model polytopes relate closely to multiset permutations.



Conclusion Slide

Model polytopes carry information about statistical models.

They exhibit rich and elegant combinatorics.

Multiset permutations are cool.

Some model polytopes relate closely to multiset permutations.

Thank you!
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