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Conclusion Slide

• Model polytopes carry information about statistical models.

• They exhibit rich and elegant combinatorics.

• Multiset permutations are cool.

• Some model polytopes relate closely to multiset permutations.



Probability Simplex

• X1, . . . ,Xn discrete random variables with outcomes
[m1]0, . . . , [mn]0 respectively, [mj ]0 := {0, . . . ,mj}.

• R := [m1]0 × · · · × [mn]0 set of possible outcomes.

The joint distribution of X1, ...,Xn lies in the (|R| − 1)-dimensional
probability simplex

∆|R|−1 = {p ∈ R|R| : pi ≥ 0, for all i ∈ R and
∑
i∈R

pi = 1}.

A (discrete) statistical model M is a subset of ∆|R|−1.

M



Decomposable Simplicial Complexes

A simplicial complex is called decomposable if we can split it into
two along a face such that each component is either decomposable
or a simplex.

Example
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Discrete Decomposable Models

• X1, ...,Xn discrete random variables with outcomes
[m1]0, ..., [mn]0 respectively.

• R := [m1]0 × · · · × [mn]0 set of possible outcomes.

• Γ decomposable simplicial complex on [n].

F facet of Γ, RF :=
∏
j∈F

[mj ]0 set of facet outcomes.
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Discrete Decomposable Models

• X1, ...,Xn discrete random variables with outcomes
[m1]0, ..., [mn]0 respectively.

• R := [m1]0 × · · · × [mn]0 set of possible outcomes.

• Γ decomposable simplicial complex on [n].

F facet of Γ, RF :=
∏
j∈F

[mj ]0 set of facet outcomes.

The (discrete) decomposable model MΓ associated with Γ is

MΓ = {p ∈ ∆◦
|R|−1 : pi =

1

Z (y)

∏
F∈facets(Γ)

y
(F )
iF

for all i ∈ R},

for y
(F )
iF

positive parameters and Z (y) normalizing constant.



Discrete Decomposable Models

• X1, ...,Xn discrete random variables with outcomes
[m1]0, ..., [mn]0 respectively.

• R := [m1]0 × · · · × [mn]0 set of possible outcomes.

• Γ decomposable simplicial complex on [n].

F facet of Γ, RF :=
∏
j∈F

[mj ]0 set of facet outcomes.

The (discrete) decomposable model MΓ associated with Γ is

MΓ = V(ker(ϕΓ)) ∩∆◦
|R|−1,

ϕΓ : C[zi : i ∈ R] −→ C[yFiF : iF ∈ RF ,F ∈ facets(Γ)];

ϕΓ : zi 7−→
∏

F∈facets(Γ)

yFiF .



From the model to the Polytope

• There is a (toric) variety VMΓ
and a lattice polytope PMΓ

associated to a decomposable model MΓ. We can read off
PMΓ

directly from Γ and m1, . . . ,mn.

X2

X3

X1 X4

↷
PMΓ

• We call PMΓ
the model polytope.



We record the support vectors of each ϕΓ(zi ) as the columns of a
(NΓ × |R|) 0/1-matrix AΓ, where NΓ =

∑
F∈facets(Γ) |RF |. Then

PMΓ
= conv

(
columns(AΓ)

)
⊂ RNΓ .

Example
Γ
1 2 3 [m1]0 = {0, 1, 2}, [m2]0 = [m3]0 = {0, 1}

AΓ=



001 001 010 011 100 101 110 111 200 201 210 211

00· 1 1 0 0 0 0 0 0 0 0 0 0
01· 0 0 1 1 0 0 0 0 0 0 0 0
10· 0 0 0 0 1 1 0 0 0 0 0 0
11· 0 0 0 0 0 0 1 1 0 0 0 0
20· 0 0 0 0 0 0 0 0 1 1 0 0
21· 0 0 0 0 0 0 0 0 0 0 1 1
· · 0 1 0 1 0 1 0 1 0 1 0 1 0
· · 1 0 1 0 1 0 1 0 1 0 1 0 1


PMΓ

= conv
(
e1 + e7, e1 + e8, e2 + e7, . . . , e6 + e8

)
⊂ R8.



Example 2: Independence Model

• X1,X2 binary variables (m1 = m2 = 1), Γ empty graph.

• MΓ consists of positive joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.

21 Γ AΓ=


00 01 10 11

0· 1 1 0 0
1· 0 0 1 1
·0 1 0 1 0
·1 0 1 0 1


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Example 2: Independence Model

• X1,X2 binary variables (m1 = m2 = 1), Γ empty graph.

• MΓ consists of positive joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.

21 Γ AΓ=


00 01 10 11

0· 1 1 0 0
1· 0 0 1 1
·0 1 0 1 0
·1 0 1 0 1


PMΓ

= conv
(
{1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}

)
⊂ R4

But PMΓ
is 2-dimensional and

isomorphic to the unit square.

00

10 11

01



When investigating a polytope’s combinatorics, there are several
questions to be explored, such as

1) What are the facets of the polytope PMΓ
?

2) Does PMΓ
admit a unimodular triangulation?

− What combinatorial information does this triangulation carry?

3) Enumerative combinatorics of PMΓ
.

4) Subpolytopes of interest.

T1

T2



What are the facets of the polytope PMΓ
?

Develin-Sullivant (2003): An H-representation of PMΓ
is given by

yFiF ≥ 0 for all F ∈ facets(Γ) and iF ∈ RF .

Hoşten-Sullivant (2002): PMΓ
has a unimodular triangulation T .

- Computed the number of facets in T .

- dim(PMΓ
) =

∑
f ∈faces(Γ)\{∅}

∏
f={j1,...,jt}

mjk .

D-Solus (2022): Described the facets of PMΓ
, using the above.



Special case. Let Γ be a disjoint union of simplices F1, . . . ,Fk . A
full-dimensional representation of PMΓ

is given by∑
iFj

∈RFj
\{i0}

y
Fj
iFj

≤ 1, ∀ j ∈ [k],

y
Fj
iFj

≥ 0, ∀ iFj ̸= i0, ∀ j ∈ [k].

⋄ PMΓ
is a chain polytope (almost an order polytope)!
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y
Fj
iFj

≥ 0, ∀ iFj ̸= i0, ∀ j ∈ [k].

⋄ PMΓ
is a chain polytope (almost an order polytope)!

Example

Γ
1 2 3 [m1]0 = {0, 1, 2}, [m2]0 = [m3]0 = {0, 1}

PMΓ
= conv

(
e1 + e7, e1 + e8, e2 + e7, . . . , e6 + e8

)
⊂ R8 :

y
1 2

01 + y
1 2

11 + y
1 2

21 + y
1 2

10 + y
1 2

20 ≤ 1, y
3

1 ≤ 1,

y
1 2

01 , y
1 2

11 , y
1 2

21 , y
1 2

10 , y
1 2

20 , y
3

1 ≥ 0.



Definition
We define the h∗-polynomial of PMΓ

as

h∗(PMΓ
; t) = h∗0 + h∗1t + · · ·+ h∗d t

d ,

where h∗i is the number of facets missing-i-facets in a half-
open unimodular triangulation T of PMΓ

, i ∈ [d ]0.

Note: h∗(PMΓ
; t) is fT (PMΓ

; t) after a change of basis, enu-
merating faces of different dimensions in T .

h∗0 + h∗1t + h∗2t = 1 + 3t + t2



Question: What can we say about h∗(PMΓ
; t)?

applications:

⋄ lower bound on the weak maximum likelihood threshold of the
model (Johnson-Sullivant, 2023);

⋄ time-complexity bound for variable elimination (D-Solus,
2022).



Question: What can we say about h∗(PMΓ
; t)?



Palindromic h∗(PMΓ
; t)

If h∗(PMΓ
; t) is palindromic, then PMΓ

is called Gorenstein.

e.g.: If h∗(PMΓ
; t) = 1 + 3t + t2 then PMΓ

is Gorenstein.

Theorem [Johnson-Sullivant, 2023; D-Solus]:
PMΓ

is Gorenstein if and only if |RF | is fixed for every facet
F ∈ facets(Γ).



Palindromic h∗(PMΓ
; t)

If h∗(PMΓ
; t) is palindromic, then PMΓ

is called Gorenstein.

e.g.: If h∗(PMΓ
; t) = 1 + 3t + t2 then PMΓ

is Gorenstein.

Theorem [Johnson-Sullivant, 2023; D-Solus]:
PMΓ

is Gorenstein if and only if |RF | is fixed for every facet
F ∈ facets(Γ).

Γ

1 2 3

• [m1]0 = {0, 1, 2}, [m2]0 = [m3]0 = {0, 1}; R
1 2

= 6, R
3
= 2 ✗

• [m1]0 = {0, 1, 2}, [m2]0 = {0, 1}, [m3]0 = {0, . . . , 5} :

R
1 2

= 6, R
3
= 6. ✓



Computing h∗(PMΓ
; t) for disjoint unions of simplices

Independence model

Γ
X1 X2 · · · Xn

Outcomes:

[m1]0, [m2]0, . . . , [mn]0

Poset of chains

Π
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· · ·
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n
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h∗(PMΓ
; t) =

∑
π∈L(Π)

tdes(π) =
∑
π∈SM

tdes(π), where

L(Π) = {linear extensions of Π}
SM = {permutations of multiset M = {1, 1, . . . , 2, 2, . . . , n, n}}



Multiset permutations - descent polynomial

▶ M = {1m1 , 2m2 , . . . , nmn} multiset. For example,
M = {1, 1, 1, 2, 2, 3, 3} for m1 = 3, m2 = m3 = 2.
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▶ SM permutations of M. For example, M = {1, 1, 2} gives
SM = {112, 121, 211}.
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▶ π ∈ SM permutation of M. The statistic des(π) counts
descents in π, i.e., i ’s with i + 1 < i . For example, for
2311132, des(π) = 2.



Multiset permutations - descent polynomial

▶ M = {1m1 , 2m2 , . . . , nmn} multiset. For example,
M = {1, 1, 1, 2, 2, 3, 3} for m1 = 3, m2 = m3 = 2.

▶ SM permutations of M. For example, M = {1, 1, 2} gives
SM = {112, 121, 211}.

▶ π ∈ SM permutation of M. The statistic des(π) counts
descents in π, i.e., i ’s with i + 1 < i . For example, for
2311132, des(π) = 2.

▶ descent polynomial of SM :
∑

π∈SM
tdes(π). For example, for

M = {112, 121, 211},
∑

π∈SM
tdes(π) = 1 + 2t.



Γ

X1 X2 · · · Xn

When m1 = m2 = · · · = mn = 1 (binary variables),

h∗(PMΓ
; t) = h∗( n; t) =

∑
π∈Sn

tdes(π).



Γ

X1 X2 · · · Xn

When m1 = m2 = · · · = mn = 1 (binary variables),

h∗(PMΓ
; t) = h∗( n; t) =

∑
π∈Sn

tdes(π).

For general m1,m2, . . . ,mn, M = {1m1 , 2m2 , . . . , nmn},

h∗(PMΓ
; t) = h∗(∆m1 × · · · ×∆mn ; t) =

∑
π∈SM

tdes(π).

Bijection between simplices in the triangulation T of PMΓ
and permutations in SM

(missing facets correspond to descents).



Γ

X1 X2 · · · Xn

When m1 = m2 = · · · = mn = 1 (binary variables),

h∗(PMΓ
; t) = h∗( n; t) =

∑
π∈Sn

tdes(π).

For general m1,m2, . . . ,mn, M = {1m1 , 2m2 , . . . , nmn},

h∗(PMΓ
; t) = h∗(∆m1 × · · · ×∆mn ; t) =

∑
π∈SM

tdes(π).

[D-Han-Solus, 2024+] For r∆m the r -th dilate of m-simplex,

h∗(r1∆m1 × · · · × rn∆mn ; t) =
∑

π∈SMr

tdes(π).

⋄ Characterized when the above polynomial is palindromic.

⋄ Showed that it satisfies several distributional properties if rj > mj .



▷ Multiset permutations enumerate facets in the model polytope
triangulation for the independence model.

▷ Is this a coincidence?



Split pair permutations

A split-pair permutation of the multiset M = {1, 1, 2, 2, ..., n, n} is
a permutation π of M such that, for each i < n, exactly one copy
of i + 1 appears between the two copies of i in π (alternatively,
they avoid abba, aabb for b = ±1.)
E.g., 12134234.

Graham-Zhang (2008): Computed number of split-pair
permutations for given n.



Split pair permutations

A split-pair permutation of the multiset M = {1, 1, 2, 2, ..., n, n} is
a permutation π of M such that, for each i < n, exactly one copy
of i + 1 appears between the two copies of i in π (alternatively,
they avoid abba, aabb for b = ±1.)
E.g., 12134234.

Graham-Zhang (2008): Computed number of split-pair
permutations for given n.

Question. (Graham-Zhang)

Construct a bijection between split-pair permutations and the
facets in triangulation T of PMΓ

for the binary Markov chain.

Γ

X1 X2 · · · Xn
m1 = · · · = mn = 1 (binary)



Binary Markov chain

Conjecture [D-Solus, 2025+]: For the binary Markov chain
model,

h∗(PMΓ
; t) =

∑
π∈SPn

tdes(π)−1,

where SPn denotes split-pair permutations of {1, 1, . . . , n, n}.
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Binary Markov chain

Conjecture [D-Solus, 2025+]: For the binary Markov chain
model,

h∗(PMΓ
; t) =

∑
π∈SPn

tdes(π)−1,

where SPn denotes split-pair permutations of {1, 1, . . . , n, n}.

Recall. For general m1, . . . ,mn, M = {1m1 , . . . , nmn},

h∗(PMΓ
; t) = h∗(∆m1 × · · · ×∆mn ; t) =

∑
π∈SM

tdes(π).

▷ Bijection between facets in the triangulation T of PMΓ
and

permutations in SPn (missing facets correspond to descents)?

▷ How Markov chain polytope fits inside the independence
model’s.



Applications and hopes



Nice subpolytopes
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Fix M = {1, 1, . . . , n, n}.

A ⊆ SM , where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of SM

Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia’s talk)

Beck-D (2025): dissonant canon permutations



Fix M = {1, 1, . . . , n, n}.

A ⊆ SM , where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of SM

Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia’s talk)

Beck-D (2025): dissonant canon permutations

Theorem

PMΓ
is Gorenstein if and only if |RF | is fixed for all facets F .

Corollary: PMΓ
is Gorenstein for MΓ binary Markov chain, i.e.,

h∗(PMΓ
; t) is palindromic.
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Fix M = {1, 1, . . . , n, n}.

A ⊆ SM , where A has palindromic descent polynomial:

Carlitz-Hoggatt (1978): all of SM

Elizalde (2024): canon permutations (motivated from Stirling
permutations - see Julia’s talk)

Beck-D (2025): dissonant canon permutations

D (Conjectured): split pair permutations

Question. (Graham-Zhang, 2008)

“split-pair permutations” for M = {1, 1, 1, 2, 2, 2, . . . , n, n, n}?
(motivated from robotic scheduling)

hope: connection to PMΓ
for suitable MΓ.
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• Model polytopes carry information about statistical models.

• They exhibit rich and elegant combinatorics.
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• Some model polytopes relate closely to multiset permutations.



Conclusion Slide

• Model polytopes carry information about statistical models.

• They exhibit rich and elegant combinatorics.

• Multiset permutations are cool.

• Some model polytopes relate closely to multiset permutations.

Thank you!
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