Lea,rning Where to Learn Nicolas Guerra

Gpa,l: Find optimal v such that F performs well on unseen distributions.
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CGKN: Conditional Gaussian Koopman Network

A Stochastic Digital Twin for Modeling, Forecasting, Data Assimilation, and
Uncertainty Quantification
Nan Chen'*, Chuangi Chen?, Zhongrui Wang' and Jinlong Wu?
TUW-Madison (Math) 2UW-Madison (ME) *chennan@math.wisc.edu

Consider a spatiotemporal discretization of a general complex turbulent system (e.g., PDEs). In
many cases, only the measurements of part of the state variables are available (e.g., sparse obs):
ui(n+1) = Gi(us(n), uz(n)), caKy ui(n+1) =Fy(ui(n) + Gi (ui(n))v(n) + ores(n+ 1),
uz(n+ 1) = Ga(ug(n),uz(n)), v(n+1) = F2(ui(n)) + Gz (u1(n))v(n) + oze2(n+ 1),
where v(n) = ¢(uz(n)), while Fy, F2, Gy, and F, contain neural operators.

The CGKN transforms general nonlinear systems into highly nonlinear neural differential equations
with conditional Gaussian structures
» Physics + Machine Learning. The mathematical justification for the conditional Gaussian
nonlinear stochastic systems has been demonstrated in . Many

well-known complex dynamical systems belong to this framework (Lorenz, Boussinesq, etc).

> Data Assimilation. It aims to retain essential nonlinear components while applying
systematic simplifications to facilitate the development of analytic formulae for nonlinear DA.
This allows for incorporating the DA performance into the deep learning training.

> Uncertainty Quantification. Even though the distribution in the latent space is conditional
Gaussian, when mapping back to physical space via the decoder, the posterior distribution
can be highly non-Gaussian.
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Test Example: ¢ 05006t — 05008
2D Navier-Stokes Equation
Resolution: 128 x 128

Observation: 8 x 8
"‘\,,\WExamples Navier—Stokes Equations
Methods | DAErmor | Forecast Error

CGKN 6.0940e+01 | 1.9754e+01
EnKF 6.9010e+01 —
Interpolation 1.2844e+02
DNN — 1.0936e+02
CNN — 3.0600e+01
FNO — 1.7129e+01

(All NNs have similar numbers of hyperparameters.)

Right top: Forecast

Right bottom: Data assimilation

Computational efficiency compared to EnKF:

e 600x faster for Viscus Burgers Equation

o 125x faster for Kuramoto-Sivashinsky Equation
e 300x faster for Navier-Stokes Equation

CGKN has been adopted to recover the ocean field and topography (sea mountains), modeling

equatorial Pacific Earth systems, conduct nonlinear Lagrangian data assimilation, incorporate

memory in the system (Mori-Zwanzig formalism). An online model correction algorithm has also

been developed (Chen, et. al., 2023, Chaos: Wang, et. al., 2025). 2/2



Motivation & Problem Setup

@ Dynamic X-ray CT seeks to reconstruct a sequence of images over time from
limited projection data.

@ Digital twins rely on accurate and efficient data assimilation to monitor and
predict complex dynamical systems, making scalable sequential reconstruction
methods essential for real-time applications.

@ Some problems are ill-posed, high-dimensional, and subject to radiation
exposure limits:

e Small measurement noise can cause large reconstruction errors.
e Only a limited number of projections can be collected safely.
e Traditional “all-at-once” methods scale poorly with time and memory.

@ Goal: Develop a scalable, adaptive framework that processes data sequentially and
doesn’t require major parameter tuning, memory, or time.
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Aryeh Keating (Virginia Tech) A Sequential Framework



Sequential Filtering Framework

Smoother

@ Employs a Kalman filtering
approach for sequential estimation
in time-dependent imaging.

EM & OF Update

@ Uses a reduced-order model for Prior — Filter — Smoother — EM&OF
scalability. Update

@ Core components:

e Kalman Filter & RTS
Smoother — dynamic
estimation and temporal
refinement

e Expectation—Maximization
(EM) — learns noise statistics
automatically

o Optical Flow (OF) —
estimates and refines motion
between frames

Aryeh Keating (Virginia Tech) A Sequential Framework



* crmoser2@wisc.edu
Bridging Idealized and Operational Models:
e An Explainable AI Framework for Earth System Emulators
ParisTech Pouria Behnoudfar!, Charlotte Moser!'*, Marc Bocquet?, Sibo Cheng2, Nan Chen*

¢ The framework is highly efficient,
featuring a reconfigured latent
data assimilation technique
specifically designed to deal with

Acurately represent the large scale

statistics and physical processes,
Idealized Models BUT..

they only contain only a and

low-dimensional (S)ODEs and (S)PDEs
are large dimension discrepancies
= between idealized and
g operational models.
Complexity Gap Inhibiting 4 ¢ The resulting computationally
Communication g efficient bridging model is high
They contain many key g resolution like the operational
e ::(‘)l‘:::“"“d are high model but is dynamically and
general circulston o r:tol'tr:?h!g:lyfcsomp]cx models BUT. statistically improved through

they struggle to capture accurate

assimilation with pseudo
observations of the idealized

: " model.
Results of implementation

e The process is explainable,
allowing us to trace how specific
features from the idealized
model correct specific biases in
the operational model.

and

The framework produces a bridging model that can efficiently generate
numerous high-quality synthetic datasets that mimic nature, facilitate the
study of extreme events, and provide training datasets for many machine
learning tasks, including building effective digital twins.



Implementation for Representing the Dominant Interannual Phenomena: ENSO

----- : : | e The framework corrects both on

’ ’ equator and off equator biases in the
operational model for both

Lgiude B ' Longiude ’ P e pseudo-observed and unobserved

Bridging model-H, TSUBA variables.

H, TSUBA GODAS-H, TSUBA

e By manipulating the long term
background forcing in the idealized
model the bridging model can
effectively produce high resolution
representations of different scenarios
that mimic observed decadal
variability.
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Figure: Standard deviation of different physical fields.

(a) I=0: SST, 7, (b) Stochastic I: SST, 7, ~ (c) I=1: SST, 7,
e The bridging model provides a new

way to build physics-assisted digital
twins, which can efficiently test
what-if scenarios.

Longtitude E
Figure: What-if scenarios for strengthened and weakened Walker circulation.

Bridging Model Framework



Towards understanding the errors in online Bayesian data assimilation

Liliang Wang and Alex Gorodetsky, University of Michigan

— )
Background & Motivation |
* Many real-world tasks require assimilating data incrementally P, @ @ @
=+ Ok

for real-time prediction and decision making :

o Robotics navigation o Dynamic soaring of UAVs
U N
* Practical Online Bayesian data assimilation methods are based ! >eoe = |0k-1
on approximations: true posterior ;. is approximated with Q \ ‘

: prior-to-posterior map
* Gap between analysis theory development and methodology
development learning error d (P, (J;,) comes from two sources:

o The majority of the existing theoretical work are:

Incremental approximation error d (0, 0;)

=  Asymptotic results = Developed for a specific method

prior perturbation error d (P, Q};)

o Non-asymptotic analysis theory for general online Bayesian
data assimilation methods is needed d(Q,, Q0 ): fairly studied d(Qy, Qy): not well studied

m IMSI workshop on data assimilation and inverse problems for digital twins Liliang Wang liliangw @umich.edu and Alex Gorodetsky



Main Results

* The prior perturbation error d (P, Q;,) is caused by the prior
error d(P,_4,0,_1). What is the relation between the two?

Pointwise global Lipschitz prior-to-posterior stability -
V Pyg,we have ] () ) |G
=+ Ok

d(Py, Q1) < Ky, Pe—1)d (P, 0 —1), V Qg_1 (global)

Holds for d being Holds in three contexts QR QR
o total variation distance o inverse problems P

Q-1
o Wasserstein-1 distance O joint state-parameter estimation —

\ 4
A 4

o Hellinger distance o state estimation %

« Two upper bounds on the learning error d (P, 0): . prior-to-posterior map

k—1
1P 00 <) (Yo P 1) +
j=1
k—1 « Sufficient conditions for learning error decay, i.e.,
d(Py, Qx) < z Co(Yr, Qjie—1) + d(Py, Q) < d(Px-1, Qk-1)
j=1

[1] Wang, L. and Gorodetsky, A. A. (2025). A global Lipschitz stability perspective for understanding Lili Wi i ch.ed d Alex Gorodetsk
approximate approaches in Bayesian sequential learning. arXiv preprint arXiv:2507.20379 L el e i e erely) gliel Al ECraaiely)



FlowDAS: A Stochastic Interpolants-based Framework for Data Assimilation

State Trajectory

Overview YL

*

«+ Consider a stochastic process X defined over the interval s € [0, 1].
<+ Initial state: Xo~m(X,)
<+ Final state: X;~q(X;|Xo)

*

% A Stochastic Interpolant can be described as:

Is = asXo + Bs Xy + oW,

< W is a Wiener process. The time-varying coefficients are defined to
satisfy with boundary conditions: @ = 1 — s, fs = 52,05 = 1 — 5.

<+ The velocity of the interpolant path, Ry, is given by:

Rs = a. Xy + B X, + oW
<+ Consider the following SDE:

dX; = bs(X;,X,) ds + o dW

<+ The drift term bs(X;, X) is defined as the minimizer of the cost function:

) = [ E[1B.0 20~ ]

Predictor

<+ Then, one can prove that: Law(/;|X,) = Law(Xy).

M UNIVERSITY OF MICHIGAN

o

Xk+1

SDE dynamic

Vi lly = AD I3

++ Derive the observation-aware drift function:

by(X,, ¥, Xo) = by(X,, X,) + 12E20 X5 Xo)

A5Bs

¥, w;Viog p(yIxP)

=b (X, X,) +2= =00 -
s(Xs. Xo) AsBs

<+ How to estimate the posterior likelihood Vlog p(y|X§j))?
++ Acceleration of X, estimation:
«+ First-order Euler-Milstein method:
X, =bs(Xs, Xo)(1—5) + [ o5 AW,
<+ Second-order stochastic Runge-Kutta method:
o bs(Xg, Xo)+by (X,

Corrector X%'= (o) (1 - 5) + [ oy W,

I¥ = a,xp + Bexry1 + V0.2
Rf =& @) + el + \/;(}_A.Z[\..

e 1 sy, .
1:;,‘“"(1)):F 3 / ((bo(IF,x)), RY) ds,

keBys Y

Algorithm 1 Training

1: Input: Dataset xg.x; minibatch size K’ < K coefficients as, 3s,
Os
: repeat R
Compute the empirical loss £f< [b] in Eq. 14
Take the gradient step on £ [b] to update b
until converged
: return drifts b,

ARl

Algorithm 2 Sampling

1: Input: AObservation Y1. K, the measurement map .A, initial state xq,
model bs (X, Xo), noise coefficient o5, grid so =0 < 81 < -+- <
sy = 1, iid. zp, ~ N(0,Ip) forn = 0: N — 1, step size (n,
Monte Carlo sampling times J

2: Set &g + xp
3: Setthe (As)n = Sp+1 —sn,n=0: N—1
4: fork=0to K — 1do
5: qu)y — :ﬁkaykJrl
6: forn=0toN—1do
7. X;n+1 =X, +bs(Xs,,, Xsy)(A8)n + 05,/ (AS)n2zn
8: {Xl(j)}}le <+ Posterior estimation (b, sn, X0, Xs,,)
.y (12
9: {w;}/_, + Softmax function({Hy — A(XfJ)) ||2}'j’:1)
(12
10: X‘gnJrl = X‘;'rt+1 o Cnvx-sn E.;‘]:]- Wi Hy B A(ng))H2

11: end for

12: j\:k-i-l — X_;N
13: end for

14: return {a;} 5 |

Algorithm

Paper
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GitHub
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FlowDAS has been
accepted by the
NeurlPS 2025!
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Probabilistic Error Analysis of a Randomized Proper Orthogonal

Decomposition

* Kathrin Smetana’, Tommaso Taddei?, Marissa Whitby' and Zhiyu Yin’ ﬁ"l
STEVENS

* 1Stevens Institute of Technology 2 Inria Bordeaux South-West

Main goals: To approximate the range of a bounded nonlinear functionu: P - H
using randomized POD and derive error bounds that do not rely on the dimension of

—g— Antl
‘ et the ambient space.
109 Current Result: We have a nonasymptotic probabilistic error bound of the
10-4 3\5\@ covariance estimator used in randomized POD/PCA for bounded random variables.
10-8 E‘gn Current Direction: We are currently using arguments from [Rei3, Wahl 20] to
I derive a priori error bounds for randomized POD/PCA for bounded random
1012 0 variables.
%5 | Motivation: For a more restrictive subclass of sub-Gaussian random variables, which

—16
30 0 2 4 6 8 1012 excludes some bounded random variables, [ReiB, Wahl 20] shows if a covariance

n operator has exponentially decaying eigenvalues, then the number of samples needed
for POD/PCA to produce (quasi-)optimal results scales linearly in the reduced space.

Applications:

« PCA of gradient of log-likelihood function for Bayesian Inverse Problems [Zahm, Cuii,
Law, Spantini, Marzouk 22]

N ST * Construction of local multiscale ansatz spaces [Smetana, Taddei 23]
. P Supported by NSF Award # 2145364

M =80 samples




The Problem
[

The Problem of High-Dimensional Summation

Why Naive Summation Fails for Low-Rank Tucker Tensors

The Problem: Rank Inflation The Conventional, Inefficient
Summing low-rank Tucker tensors, Solution

C= Zfﬂ X1, is computationally This leads to a costly process:
challenging. @ Sum: Ranks additively combine,
® The core issue is Rank Inflation. creating a high-rank tensor.
* The rank of the sum becomes the sum @ Round: An expensive decomposition
of individual ranks: Rk = 3; rk). is required to compress the result.
® This causes exponential growth in
storage and computational cost. The question: Can we find the final

low-rank sum without forming the
high-rank intermediates?



Our Solution
o

Breaking the Cycle with Structured Sketching

A Shortcut to the Sum

Proposed Solution: Sketch, then Sum The Theoretical Core & Next

Our approach bypasses the need for rounding. Frontier
* We create small, compressed sketches of each The Key Insight: Method efficacy hinges on
tensor's unfolding: Y = X('s,. choosing the sketch size. Our Sub-rank
s (k) Selection heuristic provides a principled way to
® We sum these small sketches to find an approximate balance accuracy and cost.
basis, {Ux}, for the final sum.
* Reconstruction: We project each original core Interesting discussions:
tensor onto this new basis and sum the results to * How do we find the optimal sketch size?

form the final core . ¢ Can this process be made fully adaptive?

® The result: An accurate, low-rank approximation
¢ =G xq Ug - -- xy Uy with none of the expensive
detours.

¢ What are the next steps for scalable tensor
computations; a hierarchical Approach?



Identification of Paths for Dynamic Measure Transport

Aimee Maurais, Bamdad Hosseini, and Youssef Marzouk

Task: Sample from a distribution 7 on R4

The commonly t=0 t=01 t=02 t=03 t=04 t=005 t=06 t=07 t=08 t=09 t=1.0

e N N A L

mixture
Can we identify a path p for which a corresponding

Geometric

p(-, 1) < n''n
may be
problematic!

velocity field is “nice”?



Approach: Identify a tilting via control

We seek a new path p°> « p €%, where p_.. is a reference path, by solving

inf [vll5, + 4llglly st =V - () = p4(9,logp?), pfxpes, g(-0)=g(,1)=0

VEY ,gEG
K(x, 1) o n(x) "t (x)* ed(x.t) p9(x, £) o ulx, t)e9(x.t)
Formalizes previous approaches to fix B N . 0.0
the geometric mixture 0.8

0.30 0.30

0.6 0.25 0.25
- 0.20 0.20

0.4 0.15 0.15
0.10 0.10
0.05 0.05
0.00 0.00

42 1.0

Flexible framework enables promotion
of smoothness

0.2

0.0

Many implementations possible!

t = t=01 t=02 t=03 t=04 t=05 t=06 t=07 t=08 t=09 t=1.0

LV

—————
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Bayesian Inference for Latent Gaussian Models Governed by PDEs

Sonia Reilly and Georg Stadler
Courant Institute, NYU

Hierarchical model with Gaussian prior:

6 ~ Thyp(0)
m|6 ~ N (py(6), Q' (9))
ylm, 0 ~ Tiike(y|m, 0)

Linear Gaussian Bayesian inverse problem as
LGM:

y:Am+€ with ENN(O,QE(H))a

with A a discretization of a linear PDE.
Want to characterize m(m|y).

E.g. Advection-Diffusion

Time Os s Time 0.4s s Time 1.0s

Time 2.0s . Time 3.0s . Time 4.0s

e o
0s 04
E : H : H

Given later time observations y and prior
with unknown hyperparameters 0, find
posterior of initial condition m




Fast Sampling Using Hyperparameter Marginal 7(0|y)

Sample m* ~ w(mly) by
1. sampling 6 ~ 7(0]y) (low-dimensional, so can use MCMC)

2. sampling m* ~ w(m|0*,y) (Gaussian, since it is the posterior of a linear Gaussian
Bayesian inverse problem)

Need to compute quickly:

- ~ m(m,0,y) _ Tiike (Y|112, ) Tpr (M |0) Thyp (6)
(Bly) 7(m|6,y) w(ml0,y)

1/2

QI 1

o<< 22 exn (<5 [Iwlla, +lipllo,  lipes0,.] ) o 8
‘onst|

Idea: low rank approximation of Q. — Q, = ATQ_A (two ways)
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