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Consider a spatiotemporal discretization of a general complex turbulent system (e.g., PDEs). In

many cases, only the measurements of part of the state variables are available (e.g., sparse obs):

u1(n + 1) = G1(u1(n), u2(n)),

u2(n + 1) = G2(u1(n), u2(n)),

CGKN−→
u1(n + 1) = F1

(
u1(n)

)
+ G1

(
u1(n)

)
v(n) + σ1ε1(n + 1),

v(n + 1) = F2
(
u1(n)

)
+ G2

(
u1(n)

)
v(n) + σ2ε2(n + 1),

where v(n) = ϕ(u2(n)), while F1, F2, G1, and F2 contain neural operators.

The CGKN transforms general nonlinear systems into highly nonlinear neural differential equations

with conditional Gaussian structures (Chen et. al., JCP 2024, CMAME 2025).

I Physics + Machine Learning. The mathematical justification for the conditional Gaussian

nonlinear stochastic systems has been demonstrated in (Chen & Majda 2018). Many

well-known complex dynamical systems belong to this framework (Lorenz, Boussinesq, etc).

I Data Assimilation. It aims to retain essential nonlinear components while applying

systematic simplifications to facilitate the development of analytic formulae for nonlinear DA.

This allows for incorporating the DA performance into the deep learning training.

I Uncertainty Quantification. Even though the distribution in the latent space is conditional

Gaussian, when mapping back to physical space via the decoder, the posterior distribution

can be highly non-Gaussian. 1 / 2



Test Example:

2D Navier-Stokes Equation

Resolution: 128× 128

Observation: 8× 8

(All NNs have similar numbers of hyperparameters.)

Right top: Forecast

Right bottom: Data assimilation

Computational efficiency compared to EnKF:

• 600x faster for Viscus Burgers Equation

• 125x faster for Kuramoto-Sivashinsky Equation

• 300x faster for Navier-Stokes Equation

CGKN has been adopted to recover the ocean field and topography (sea mountains), modeling

equatorial Pacific Earth systems, conduct nonlinear Lagrangian data assimilation, incorporate

memory in the system (Mori-Zwanzig formalism). An online model correction algorithm has also

been developed (Chen, et. al., 2023, Chaos; Wang, et. al., 2025). 2 / 2



Motivation & Problem Setup

Dynamic X-ray CT seeks to reconstruct a sequence of images over time from
limited projection data.

Digital twins rely on accurate and efficient data assimilation to monitor and
predict complex dynamical systems, making scalable sequential reconstruction
methods essential for real-time applications.

Some problems are ill-posed, high-dimensional, and subject to radiation

exposure limits:

Small measurement noise can cause large reconstruction errors.
Only a limited number of projections can be collected safely.
Traditional “all-at-once” methods scale poorly with time and memory.

Goal: Develop a scalable, adaptive framework that processes data sequentially and
doesn’t require major parameter tuning, memory, or time.
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Sequential Filtering Framework

Employs a Kalman filtering
approach for sequential estimation
in time-dependent imaging.

Uses a reduced-order model for
scalability.

Core components:

Kalman Filter & RTS
Smoother — dynamic
estimation and temporal
refinement
Expectation–Maximization
(EM) — learns noise statistics
automatically
Optical Flow (OF) —
estimates and refines motion
between frames

The process iterates, refining both
motion and uncertainty adaptively.

Prior Filter Smoother

EM & OF Update

Iterate

Prior → Filter → Smoother → EM&OF
Update

A unified low-rank Bayesian framework for scalable, self-adaptive dynamic CT
reconstruction.
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Bridging Idealized and Operational Models:
An Explainable AI Framework for Earth System Emulators

Pouria Behnoudfar1, Charlotte Moser1∗, Marc Bocquet2, Sibo Cheng2, Nan Chen1

Results of implementation

The framework produces a bridging model that can efficiently generate
numerous high-quality synthetic datasets that mimic nature, facilitate the
study of extreme events, and provide training datasets for many machine
learning tasks, including building effective digital twins.

• The framework is highly efficient,
featuring a reconfigured latent
data assimilation technique
specifically designed to deal with
large dimension discrepancies
between idealized and
operational models.

• The resulting computationally
efficient bridging model is high
resolution like the operational
model but is dynamically and
statistically improved through
assimilation with pseudo
observations of the idealized
model.

• The process is explainable,
allowing us to trace how specific
features from the idealized
model correct specific biases in
the operational model.

1 2 ∗ crmoser2@wisc.edu

C. Moser Bridging Model Framework September 27, 2025 1/2



Implementation for Representing the Dominant Interannual Phenomena: ENSO

Figure: Standard deviation of different physical fields.

Figure: What-if scenarios for strengthened and weakened Walker circulation.

• The framework corrects both on
equator and off equator biases in the
operational model for both
pseudo-observed and unobserved
variables.

• By manipulating the long term
background forcing in the idealized
model the bridging model can
effectively produce high resolution
representations of different scenarios
that mimic observed decadal
variability.

• The bridging model provides a new
way to build physics-assisted digital
twins, which can efficiently test
what-if scenarios.
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Towards understanding the errors in online Bayesian data assimilation

• Many real-world tasks require assimilating data incrementally 
for real-time prediction and decision making :

• Practical Online Bayesian data assimilation methods are based 
on approximations: true posterior 𝑃𝑘  is approximated with 𝑄𝑘

     • Gap between analysis theory development and methodology 
development  

o The majority of the existing theoretical work are:

▪ Developed for a specific method

o Non-asymptotic analysis theory for general online Bayesian 
data assimilation methods is needed

▪ Asymptotic results

1Liliang Wang liliangw@umich.edu and Alex Gorodetsky
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Background & Motivation

learning error 𝑑(𝑃𝑘, 𝑄𝑘) comes from two sources:

prior perturbation error 𝑑(𝑃𝑘, 𝑄𝑘
∗)

Incremental approximation error 𝑑(𝑄𝑘
∗ , 𝑄𝑘)

𝑑(𝑄𝑘
∗ , 𝑄𝑘): fairly studied 𝑑(𝑄𝑘

∗ , 𝑄𝑘): not well studied

o Robotics navigation o Dynamic soaring of UAVs 

: prior-to-posterior map

IMSI workshop on data assimilation and inverse problems for digital twins 

Liliang Wang and Alex Gorodetsky, University of Michigan



Main Results
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: prior-to-posterior map

• The prior perturbation error 𝑑 𝑃𝑘, 𝑄𝑘
∗  is caused by the prior 

error 𝑑 𝑃𝑘−1, 𝑄𝑘−1 . What is the relation between the two?

Pointwise global Lipschitz prior-to-posterior stability : 
∀ 𝑃𝑘−1, we have

𝑑 𝑃𝑘 , 𝑄𝑘
∗ ≤ 𝐾 𝑦𝑘 , 𝑃𝑘−1 𝑑 𝑃𝑘−1, 𝑄𝑘−1 , ∀ 𝑄𝑘−1 (global)

Holds for 𝑑 being 
o total variation distance 
o Hellinger distance
o Wasserstein-1 distance

Holds in three contexts
o inverse problems
o state estimation
o joint state-parameter estimation

𝑑 𝑃𝑘, 𝑄𝑘 ≤ ෍

𝑗=1

𝑘−1

𝐶1 𝒴𝑘, 𝑃𝑗:𝑘−1 𝑑 𝑄𝑗
∗, 𝑄𝑗 + 𝑑(𝑄𝑘

∗ , 𝑄𝑘)

• Two upper bounds on the learning error 𝑑 𝑃𝑘, 𝑄𝑘 :

• Sufficient conditions for learning error decay, i.e.,

      𝑑 𝑃𝑘, 𝑄𝑘 ≤ 𝑑(𝑃𝑘−1, 𝑄𝑘−1) 

      

𝑑 𝑃𝑘, 𝑄𝑘 ≤ ෍

𝑗=1

𝑘−1

𝐶2 𝒴𝑘, 𝑄𝑗:𝑘−1 𝑑 𝑄𝑗
∗, 𝑄𝑗 + 𝑑(𝑄𝑘

∗ , 𝑄𝑘)

[1]

[1] Wang, L.  and Gorodetsky, A. A. (2025). A global Lipschitz stability perspective for understanding 
approximate approaches in Bayesian sequential learning. arXiv preprint arXiv:2507.20379
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FlowDAS: A Stochastic Interpolants-based Framework for Data Assimilation

1

FlowDAS has been 
accepted by the 
NeurIPS 2025! 



FlowDAS: A Stochastic Interpolants-based Framework for Data Assimilation
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Experiments on Navier-Stokes sparse observation task

Experiments on SEVIR weather forecasting task

Experiments on Lorenz-63 data assimilation task

Experiments on Particle Image Velocimetry





The Problem Our Solution

The Problem of High-Dimensional Summation
Why Naive Summation Fails for Low-Rank Tucker Tensors

The Problem: Rank Inflation
Summing low-rank Tucker tensors,
C =

∑d
i=1 X (i), is computationally

challenging.
• The core issue is Rank Inflation.
• The rank of the sum becomes the sum

of individual ranks: Rk ≈
∑

i r (i)k .
• This causes exponential growth in

storage and computational cost.

The Conventional, Inefficient
Solution
This leads to a costly process:

1 Sum: Ranks additively combine,
creating a high-rank tensor.

2 Round: An expensive decomposition
is required to compress the result.

The question: Can we find the final
low-rank sum without forming the
high-rank intermediates?



The Problem Our Solution

Breaking the Cycle with Structured Sketching
A Shortcut to the Sum

Proposed Solution: Sketch, then Sum
Our approach bypasses the need for rounding.

• We create small, compressed sketches of each
tensor’s unfolding: Y(i)

k = X(i)
(k)Sk .

• We sum these small sketches to find an approximate
basis, {Uk}, for the final sum.

• Reconstruction: We project each original core
tensor onto this new basis and sum the results to
form the final core G̃.

• The result: An accurate, low-rank approximation
C̃ = G̃ ×1 U1 · · · ×N UN with none of the expensive
detours.

The Theoretical Core & Next
Frontier
The Key Insight: Method efficacy hinges on
choosing the sketch size. Our Sub-rank
Selection heuristic provides a principled way to
balance accuracy and cost.

Interesting discussions:
• How do we find the optimal sketch size?
• Can this process be made fully adaptive?
• What are the next steps for scalable tensor

computations; a hierarchical Approach?



Identification of Paths for Dynamic Measure Transport

Motivation Approach

The commonly 
used geometric 

mixture 
 

may be 
problematic!

ρ( ⋅ , t) ∝ η1−tπt

Task: Sample from a distribution  on  π ℝd
Aimee Maurais, Bamdad Hosseini, and Youssef Marzouk

Can we identify a path  for which a corresponding 
velocity field is “nice”?

ρ



Approach: Identify a tilting via control
We seek a new path , where  is a reference path, by solvingρg ∝ ρrefeg ρref

inf
v∈𝒱,g∈𝒢

∥v∥2
𝒱 + λg∥g∥2

𝒢 s.t.  − ∇ ⋅ (vρg) = ρg(∂t log ρg), ρg ∝ ρrefeg, g(⋅,0) = g(⋅,1) ≡ 0

• Formalizes previous approaches to fix 
the geometric mixture 

• Flexible framework enables promotion 
of smoothness  

• Many implementations possible!



Bayesian Inference for Latent Gaussian Models Governed by PDEs
Sonia Reilly and Georg Stadler

Courant Institute, NYU

Hierarchical model with Gaussian prior:

θ ∼ πhyp(θ)
m|θ ∼ N (µpr(θ), Q−1

pr (θ))
y|m, θ ∼ πlike(y|m, θ)

Linear Gaussian Bayesian inverse problem as
LGM:

y = Am + ε with ε ∼ N (0, Qε(θ)),

with A a discretization of a linear PDE.
Want to characterize π(m|y).

E.g. Advection-Diffusion

Given later time observations y and prior
with unknown hyperparameters θ, find
posterior of initial condition m



Fast Sampling Using Hyperparameter Marginal π(θ|y)

Sample m∗ ∼ π(m|y) by
1. sampling θ∗ ∼ π(θ|y) (low-dimensional, so can use MCMC)
2. sampling m∗ ∼ π(m|θ∗, y) (Gaussian, since it is the posterior of a linear Gaussian

Bayesian inverse problem)

Need to compute quickly:

π(θ|y) ∝ π(m, θ, y)
π(m|θ, y) = πlike(y|m, θ)πpr(m|θ)πhyp(θ)

π(m|θ, y)

∝
(

|Qpr||Qε|
|Qpost|

)1/2

exp
(

−1
2
[
||y||Qε

+ ||µpr||Qpr − ||µpost||Qpost

])
πhyp(θ)

Idea: low rank approximation of Qpost − Qpr = AT QεA (two ways)
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