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Sequential data assimilation for chaotic dynamics

» Here, data assimilation (DA) methods are formulated from

Xp41 = M(xg), (1a)
Vi = Hi(Xx) + ek, ex ~ N(0,Ry), (1b)
where M is the autonomous evolution model, xj is the state vector at time 7y, yx is the

observation vector, Hy is the observation operator, €, is the observation error, assumed to be
additive, unbiased, white in time, and Gaussian of covariance matrix Ry.

» DA for geofluids has to be sequential in time because (i) observations need to be assimilated as
they arrive to update the state estimation, (ii) applied to chaotic dynamics, typical errors have an

exponential growth.
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The edge of ensemble filtering methods

» The variational methods (3D—Var, 4D—Var): can handle nonlinearity of the operators,
asynchronous observations, but cannot handle the errors of the day.

» The ensemble filtering methods (EnKFs): can only handle weak nonlinearity of the operators,
cannot handle asynchronous observations, can handle the errors of the day through the ensemble.

» Testing the EnKF (N, = 20), 4D—-Var, and IEnKS (N, = 20) variants with the chaotic
40-variable Lorenz 96 model [Bocquet et al. 2013; Asch et al. 2016]:
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» In mild nonlinear regime, the EnKF significantly outperforms the (basic) 4D—Var with
moderately large DA windows because it captures the errors of the day.
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Our focus: learning the analysis

» Let us assume that M /s known, that the Jacobian of Hy is Hy, and that we wish to learn an
incremental analysis operator ag, typically a neural network parametrised by 6.

» If E2, Efc € RNVx*Ne are the analysis and forecast ensemble matrices at time 73, ag is defined
via the (ensemble) update:

2 = B +ag (B HIR; 151) (22)

where dj, the innovation at time 7y, is defined by

Ne

A _f a1 £,i

O =YK — Hi (X X, = — X, . 2b

(x6). = NQE; : (2b)
i=

— Notice our trick: ag (Efc,ék) — ag (Ei,H;R;lék), i.e., uplift of observation
information in state space.

» The DA forecast step propagates the analysis ensemble, member-wise:

Ej,, =M(E}). ®3)

» The ag—based sequential DA will be called DA/ in the following.
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Neural network architecture

» We choose ag to have a simple residual convolutional neural network (CNN) architecture.

Ny

(Ef, H'R'5)
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Architecture of the residual convolutional network, where Ny, = 2, Ngj, = 3. convy, N, f is a
generic one-dimensional convolutional layer of dimension Ny, with N2 filters of kernel size f.
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Training scheme — 1/2

» Full end-to-end, models and DA |[Allen et al. 2025; Alexe et al. 2024; Lean et al. 2025]: NOt our objective here!

» Literature (focused on sequential data assimilation):

» Learning the analysis of sequential DA is not new [Harter et al. 2012; Cintra et al. 2018], though barely

explored.

» Learning key components of the analysis in the (En)KF [H. Hoang et al. 1994; S. Hoang et al. 1998] possibly

leveraging auto-differentiable structure [Haarnoja et al. 2016; Chen et al. 2022; Luk et al. 2024] Was also
investigated.

» Only two key papers so far focused on a non-parametrised analysis using backpropagation

through the DA cycles: [McCabe et al. 2021; Boudier et al. 2023].

» Our training loss (supervised learning):?

We consider Ny, Nc cycle—lon% ensemble DA runs, based on N; independent concurrent
trajectories of the dynamics xk’r and as many sequences of observation vectors y} .

The analysis ensemble is x:’i’r € RNxXNe  The Joss function is defined by

T

Ny N | e
_ 2 _ A i
L£(6) = x, " —xTO)|T, xTE — xpr
Ne
r=1 k=1 i=1

Bocquet et al. 2024]

(4)
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Training scheme — 2/2
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Structure of the dataset organised as a function of time, trajectory sample, batches and epochs.

» Like [McCabe et al. 2021; Boudier et al. 2023], We use truncated backpropagation through time TEPTT [Tang
et al. 2018; Aicher et al. 2020], With a truncation at Njer << Ne.

» For numerical efficiency, we choose to generate the samples online, as the training progresses,
i.e. an infinite training dataset!
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Hyperparameter sensitivity analysis

» Sensitivity analysis on key hyperparameters such as the number of trajectories N; in the

dataset, and the architecture parameters (N¢, Ny, Ngp,) using the standard Lorenz 96 DA
configuration (H = I, R = Ly).
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Filtering performance
vs the number of trajectories Ny

vs the number of filters N¢
» The learned DA scheme yields EnKF-like accuracy!

» Compromise between ag'’s size and its accuracy: N; = 218, Ny = 40, Ny, = 5, Ny, = 5.
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Sensitivity to the ensemble size

» First key observation: The performance of ag barely depends on the ensemble size N,

. Hence
localisation is irrelevant and unnecessary.
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» Second key observation: ag does not require inflation and is incredibly robust to noise (as we
shall see it applies its own inflation).

» Explanation from the optimisation standpoint: feature collapse of ag with respect to Ne in the
training. Potential better solution when Ne > 1, but ag with Ne = 1 is as accurate as the EnKF!
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Consequences and further checks

» Hence, from now on, we will focus on the mode: .

» Recall

E} = E| + ao (E}, H[R; '0x) . (5)

» Performance of ag compared to baselines such as optimally tuned 3D-Var, the learned optimal
linear filter, optimally tuned EnKF:

DA method well-tuned classical DL-based aRMSE
EnKF-N, Ne = 20 yes 0.191
EnKF-N, N, = 40 yes 0.179
3D-Var yes 0.40
ag, Ne =1, Ny =40 yes 0.191
ag, Ne =1, Ny = 100 yes 0.185
linear ag, Ne = 1, Ny = 40 yes 0.384
simplified dg, Ne = 1, Ny = 40 yes 0.382

where (simplified Ansatz)
& =Ef +ap (H[R, ') (6)
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Sensitivity to the training (truncation) depth Nijte,

» Training through Niter = 1 cycle cannot learn about the direct impact of the dynamics on DA.

» Training through Niter chained cycles is expected to be crucial to the accuracy and robustness
of the learned Qg [Bocquet et al. 2025].
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» Training depth does matter!
As expected, Nijter > 2 cycles are required to see significant benefits.
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Sensitivity to observation error magnitude

» Next, we carry out a series of experiments that are not central to our message here but further
- . A
ground the viability of such learned ay (assuming here Ry = Ix).

» Impact of the observation noise magnitude on the data assimilation tests:
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Sensitivity analysis and first results

Sensitivity to observation sparsity

» Impact of the sparsity of the observation dataset on the data assimilation tests:
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» ag trained with time-dependent, random, observation numbers and positions.

M. Bocquet
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Operator expansion of the analysis

» We look for a classical Kalman update that would be a good match to ay seen as a
mathematical map, at least for small analysis increments.

» To that end, we define the time-dependent normalised scalar anomalies

by = llag (xx, O)1I, (™

1
v Nx
along with the associated mean bias b and the standard deviation s of by in time.

— We obtain b~ 5 x 10~ and s ~ 10~3, which are indeed very small compared to the typical
aRMSE of an either DAN or EnKF run, i.e., 0.20.

» Next, expanding with respect to the innovation, the following functional form for ag is assumed:
ag(x, HHR™16) ~ K(x) - 4, (8)

owing to the fact that no state update is needed when the innovation vanishes, and only keeping
the leading order term in 4.

0o 2
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Identifying the operators in the expansion

» Innovations {6j}j:1 N, are sampled from d; ~ N(0,R).

This yields a set of corresponding incremental updates {a]- = ag(x,HTR_léj)}j_l

“Np
K(x) is then estimated with the least squares problem
NP
_ N
[,x(K):ZHaj—a—K(x)- (8;-9)|" (9)
j=1
where a = N, 1X:I’a]andé NIENPJ
» Within the best linear unbiased estimator framework, K is related to P? through
K = P*H'R ™! so that from Eq. (8),
ag(x, HTR™16) ~ PPH'R 14, (10)

which suggests that an expansion in the second variable ¢ € RVx of ag yields
ag(x,¢) = P*(x) - (. (11)

Hence, we can obtain a numerical estimation of an equivalent P?(x).

7 o
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What is learned? Supporting numerical results

» The surrogate P?, denoted P% , \ and estimated from Eq. (11), is compared to that of a
concurrent well-tuned EnKF with N, = 40, whose analysis error covariance matrix is P%}nKF'
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» Time-averaged eigenspectra of Py, and PL .. They are remarkably close to each other for
the first 10 modes. Beyond these modes the ag operator is likely to selectively apply some

multiplicative inflation, as one would expect from such stable DA runs.
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Main interpretation

» Conclusion 1: ag depends on the innovation but also directly on xfC when Ne = 1, as opposed
;

to the incremental update of the EnKF: ay extracts important information from x, .

» Conclusion 2: ag manages to assess a P, , \ with Ne = 1 which is very close to P}, | - with
Ne = 40, for the dominant axes, and applies multiplicative inflation on the less unstable modes.?
We conclude that ay directly learns about the dynamics features. Hence, for ag, critical pieces of
information on PZ are encoded, and thus exploitable, in xfc alone.

— Supported by results from Sacco et al. 2024; Sakov 2025.

» Explanation, conclusion 3: Furthermore, if the DA run (the forecast and analysis cycle) is
considered as an ergodic dynamical system of its own,3 the multiplicative ergodic theorem
guarantees the existence of a mapping between xfc and P that ag is able to guess. We believe
that a generalised variant of the multiplicative ergodic theorem for non-autonomous random
dynamics should be applicable.*

2[Bocque': et al. 2015]
3[Carrassi et al. 2008]
“#[Arnold 1998; Flandoli et al. 2021]
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Locality and scalability — 1/2

» ag is now trained without changing the architecture and the hyperparameters (Ny = 40), but

with a changing state space dimension Ny € [20,160]. Almost as good as well tuned EnKFs with
changing dimension Nx and Ne = Ny!
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— We conjecture that ag extracts /ocal pieces of information from xfc.

» ag, learned from Lorenz 96 with Nx = 40 is now tested on Lorenz 96 models with Nx ranging
from 20 to 160 (same weights and biases!). The performance is still on par with retraining!
We called this a transdimensional transfer.
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Locality and scalability — 2/2

» These local patterns (for ag, not M) can be pictured from the sensitivity:

8 =(C: [VxVcan(x,Q)c=0] ), .y = (C: [VxP()]) ., (12)

where T is a long L96 trajectory, and C is a tensor that leverages translational invariance of the
L96 model: [C]PmF = NLxén,i+k6m,j+k-
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Semi-supervised learning

» What if we do not have access to the truth x}c but to the observations only y;.?

» Assume (i) Hy, is linear, (i) yx L yx+1, and the estimator zz_H only depends on (xk,Yk)-

» We define the semi-supervised loss function as

Ne N¢
£O) = |ye —mial||" =" £6). (13)
k=1 k=1
But we have from the above assumptions:
By [£4(6)] = By [ [lyi = Huoch ] + By [ |10 (k= 20) || (142)
— Gt + By | [[Hx (xi - 22) || (14b)

» Hence, generalising [McCabe et al. 2021] to non-trivial Hy, we can learn zz from the observation only,
with further assumptions on {Hy},_; . For instance, we can choose zz such that:®

L:k(e) = ||yk+1 — Hk+1M {Xfc + ag (Xfc, HLR;l (yk —_ Hkxi)) } ||2 . (15)

5[Bocquet et al. 2025]
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Data assimilation networks in stronger nonlinear conditions

» Testing DANs as the update time-step /\; Is increased, with the L96 model.

» Comparison with well tuned EnKF, |[EnKF, and well-tuned static background DA methods.
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» Performing at least as well as the IEnKF, without an ensemble, without any nonlinear iterative
solver, without inflation and localisation!

» In addition to the MET map, DANSs also implicitly /earn non-Gaussian priors.
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Conclusions

Conclusions

» One can learn robust DA methods, without an ensemble, without inflation, that are as accurate
as the very best baseline methods (EnKF), including in stronger nonlinear regimes (IEnKF).

» We have carried similar numerical experiments with the Kuramoto—Sivashinski model and a
single-layer QG model on the sphere, with similar conclusions.

» The performance is achieved through (i) implicitly learning the map x! — Pf(xf), and (ii)
through implicitly learning non-Gaussian priors!

» This suggests that end-to-end approaches such as GraphDOP that only have a snapshot of the
physical system, can still implicitly rely on dynamical and non-Gaussian priors!

» Will such multiplicative ergodic theorem still be valid in more anisotropic, non-autonomous,
forced, multivariate, heterogeneously observed systems?

» In any case, this promotes a rethinking of the popular sequential DA schemes for chaotic
dynamics.

Talk mainly based on:

» M. Bocquet, A. Farchi, T. S. Finn, C. Durand, S. Cheng, Y. Chen, |. Pasmans, and A. Carrassi. “Accurate deep
learning-based filtering for chaotic dynamics by identifying instabilities without an ensemble”. In: Chaos 29 (2024), p.
091104.

» M. Bocquet, T. S. Finn, S. Cheng, W. Yu, and A. Farchi. “On the performance of data assimilation neural networks in
nonlinear conditions”. In: (2025). In preparation.
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