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Learning data assimilation from artificial intelligence: first results Sequential data assimilation for chaotic dynamics

Sequential data assimilation for chaotic dynamics

▶Here, data assimilation (DA) methods are formulated from

xk+1 = M(xk), (1a)
yk = Hk(xk) + εk, εk ∼ N(0, Rk), (1b)

where M is the autonomous evolution model, xk is the state vector at time τk, yk is the
observation vector, Hk is the observation operator, εk is the observation error, assumed to be
additive, unbiased, white in time, and Gaussian of covariance matrix Rk.

▶DA for geofluids has to be sequential in time because (i) observations need to be assimilated as
they arrive to update the state estimation, (ii) applied to chaotic dynamics, typical errors have an
exponential growth.
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Learning data assimilation from artificial intelligence: first results Sequential data assimilation for chaotic dynamics

The edge of ensemble filtering methods

▶The variational methods (3D–Var, 4D–Var): can handle nonlinearity of the operators,
asynchronous observations, but cannot handle the errors of the day.

▶The ensemble filtering methods (EnKFs): can only handle weak nonlinearity of the operators,
cannot handle asynchronous observations, can handle the errors of the day through the ensemble.

▶Testing the EnKF (Ne = 20), 4D–Var, and IEnKS (Ne = 20) variants with the chaotic
40–variable Lorenz 96 model [Bocquet et al. 2013; Asch et al. 2016]:
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▶ In mild nonlinear regime, the EnKF significantly outperforms the (basic) 4D–Var with
moderately large DA windows because it captures the errors of the day .
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Learning data assimilation from artificial intelligence: first results Learning data assimilation

Our focus: learning the analysis

▶ Let us assume that M is known, that the Jacobian of Hk is Hk, and that we wish to learn an
incremental analysis operator aθ , typically a neural network parametrised by θ.

▶ If Ea
k, Ef

k ∈ RNx×Ne are the analysis and forecast ensemble matrices at time τk, aθ is defined
via the (ensemble) update:

Ea
k = Ef

k + aθ

(
Ef

k, H⊺
kR−1

k
δk

)
, (2a)

where δk, the innovation at time τk, is defined by

δk
∆= yk − Hk

(
x̄f

k

)
, x̄f

k

∆=
1

Ne

Ne∑
i=1

xf,i
k

. (2b)

−→ Notice our trick: aθ

(
Ef

k, δk

)
−→ aθ

(
Ef

k, H⊺
kR−1

k
δk

)
, i.e., uplift of observation

information in state space.

▶The DA forecast step propagates the analysis ensemble, member-wise:

Ef
k+1 = M

(
Ea

k

)
. (3)

▶The aθ–based sequential DA will be called DAN in the following.
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Learning data assimilation from artificial intelligence: first results Learning data assimilation

Neural network architecture

▶We choose aθ to have a simple residual convolutional neural network (CNN) architecture.
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Architecture of the residual convolutional network, where Nb = 2, Nsb = 3. convN1,N2,f is a
generic one-dimensional convolutional layer of dimension N1, with N2 filters of kernel size f .
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Learning data assimilation from artificial intelligence: first results Learning data assimilation

Training scheme – 1/2

▶Full end-to-end, models and DA [Allen et al. 2025; Alexe et al. 2024; Lean et al. 2025]: not our objective here!

▶ Literature (focused on sequential data assimilation):
▶ Learning the analysis of sequential DA is not new [Härter et al. 2012; Cintra et al. 2018], though barely

explored.
▶ Learning key components of the analysis in the (En)KF [H. Hoang et al. 1994; S. Hoang et al. 1998] possibly

leveraging auto-differentiable structure [Haarnoja et al. 2016; Chen et al. 2022; Luk et al. 2024] was also
investigated.

▶ Only two key papers so far focused on a non-parametrised analysis using backpropagation
through the DA cycles: [McCabe et al. 2021; Boudier et al. 2023].

▶Our training loss (supervised learning):1

We consider Nr, Nc cycle-long ensemble DA runs, based on Nr independent concurrent
trajectories of the dynamics xt,r

k
and as many sequences of observation vectors yr

k.
The analysis ensemble is xa,i,r

k
∈ RNx×Ne . The loss function is defined by

L(θ) =
Nr∑

r=1

Nc∑
k=1

∥∥xt,r
k

− x̄a,r
k

(θ)
∥∥2

, x̄a,r
k

∆=
1

Ne

Ne∑
i=1

xa,i,r
k

. (4)

1[Bocquet et al. 2024]
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Learning data assimilation from artificial intelligence: first results Learning data assimilation

Training scheme – 2/2

r = 1

r = 2

r = 3
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r = 5
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time

batch 1 of epoch 2 batch 2 of epoch 2epoch 2

Nr

Niter

Nc

Structure of the dataset organised as a function of time, trajectory sample, batches and epochs.

▶ Like [McCabe et al. 2021; Boudier et al. 2023], we use truncated backpropagation through time TBPTT [Tang

et al. 2018; Aicher et al. 2020], with a truncation at Niter ≪ Nc.

▶For numerical efficiency, we choose to generate the samples online, as the training progresses,
i.e. an infinite training dataset!
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Learning data assimilation from artificial intelligence: first results Sensitivity analysis and first results

Hyperparameter sensitivity analysis

▶Sensitivity analysis on key hyperparameters such as the number of trajectories Nr in the
dataset, and the architecture parameters (Nf , Nb, Nsb) using the standard Lorenz 96 DA
configuration (H = Ix, R = Ix).
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▶The learned DA scheme yields EnKF-like accuracy!

▶Compromise between aθ ’s size and its accuracy: Nr = 218, Nf = 40, Nb = 5, Nsb = 5.
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Learning data assimilation from artificial intelligence: first results Sensitivity analysis and first results

Sensitivity to the ensemble size

▶First key observation: The performance of aθ barely depends on the ensemble size Ne. Hence
localisation is irrelevant and unnecessary.
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▶Second key observation: aθ does not require inflation and is incredibly robust to noise (as we
shall see it applies its own inflation).

▶Explanation from the optimisation standpoint: feature collapse of aθ with respect to Ne in the
training. Potential better solution when Ne > 1, but aθ with Ne = 1 is as accurate as the EnKF!
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Learning data assimilation from artificial intelligence: first results Sensitivity analysis and first results

Consequences and further checks

▶Hence, from now on, we will focus on the mode: Ne = 1 .

▶Recall
Ea

k = Ef
k + aθ

(
Ef

k, H⊺
kR−1

k
δk

)
. (5)

▶Performance of aθ compared to baselines such as optimally tuned 3D-Var, the learned optimal
linear filter, optimally tuned EnKF:

DA method well-tuned classical DL-based aRMSE
EnKF-N, Ne = 20 yes 0.191
EnKF-N, Ne = 40 yes 0.179
3D-Var yes 0.40
aθ , Ne = 1, Nf = 40 yes 0.191
aθ , Ne = 1, Nf = 100 yes 0.185
linear aθ , Ne = 1, Nf = 40 yes 0.384
simplified âθ , Ne = 1, Nf = 40 yes 0.382

where (simplified Ansatz)
Ea

k = Ef
k + âθ

(
H⊺

kR−1
k

δk

)
. (6)
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Learning data assimilation from artificial intelligence: first results Sensitivity analysis and first results

Sensitivity to the training (truncation) depth Niter

▶Training through Niter = 1 cycle cannot learn about the direct impact of the dynamics on DA.

▶Training through Niter chained cycles is expected to be crucial to the accuracy and robustness
of the learned aθ [Bocquet et al. 2025].
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▶Training depth does matter!
As expected, Niter ≥ 2 cycles are required to see significant benefits.
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Learning data assimilation from artificial intelligence: first results Sensitivity analysis and first results

Sensitivity to observation error magnitude

▶Next, we carry out a series of experiments that are not central to our message here but further
ground the viability of such learned aθ (assuming here Rk

∆= Ix).

▶ Impact of the observation noise magnitude on the data assimilation tests:
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Learning data assimilation from artificial intelligence: first results Sensitivity analysis and first results

Sensitivity to observation sparsity

▶ Impact of the sparsity of the observation dataset on the data assimilation tests:
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▶ aθ trained with time-dependent, random, observation numbers and positions.
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Learning data assimilation from artificial intelligence: first results Investigation and interpretation

Operator expansion of the analysis

▶We look for a classical Kalman update that would be a good match to aθ seen as a
mathematical map, at least for small analysis increments.

▶To that end, we define the time-dependent normalised scalar anomalies

bk =
1

√
Nx

∥aθ(xk, 0)∥ , (7)

along with the associated mean bias b and the standard deviation s of bk in time.
−→ We obtain b ≃ 5 × 10−3 and s ≃ 10−3, which are indeed very small compared to the typical
aRMSE of an either DAN or EnKF run, i.e., 0.20.

▶Next, expanding with respect to the innovation, the following functional form for aθ is assumed:

aθ(x, H⊺R−1δ) ≈ K(x) · δ, (8)

owing to the fact that no state update is needed when the innovation vanishes, and only keeping
the leading order term in δ.
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Learning data assimilation from artificial intelligence: first results Investigation and interpretation

Identifying the operators in the expansion

▶ Innovations {δj}j=1,...,Np
are sampled from δj ∼ N(0, R).

This yields a set of corresponding incremental updates
{

aj = aθ(x, H⊺R−1δj)
}

j=1,...,Np
.

K(x) is then estimated with the least squares problem

Lx(K) =
Np∑
j=1

∥∥aj − ā − K(x) ·
(

δj − δ̄
)∥∥2

, (9)

where ā = N−1
p

∑Np
j=1 aj and δ̄ = N−1

p
∑Np

j=1 δj .

▶Within the best linear unbiased estimator framework, K is related to Pa through
K = PaH⊺R−1 so that from Eq. (8),

aθ(x, H⊺R−1δ) ≈ PaH⊺R−1δ, (10)

which suggests that an expansion in the second variable ζ ∈ RNx of aθ yields

aθ(x, ζ) ≈ Pa(x) · ζ. (11)

Hence, we can obtain a numerical estimation of an equivalent Pa(x).
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Learning data assimilation from artificial intelligence: first results Investigation and interpretation

What is learned? Supporting numerical results

▶The surrogate Pa, denoted Pa
DAN and estimated from Eq. (11), is compared to that of a

concurrent well-tuned EnKF with Ne = 40, whose analysis error covariance matrix is Pa
EnKF.
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▶Time-averaged eigenspectra of Pa
DAN and Pa

EnKF. They are remarkably close to each other for
the first 10 modes. Beyond these modes the aθ operator is likely to selectively apply some
multiplicative inflation, as one would expect from such stable DA runs.
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Learning data assimilation from artificial intelligence: first results Investigation and interpretation

Main interpretation

▶Conclusion 1: aθ depends on the innovation but also directly on xf
k when Ne = 1, as opposed

to the incremental update of the EnKF: aθ extracts important information from xf
k.

▶Conclusion 2: aθ manages to assess a Pa
DAN with Ne = 1 which is very close to Pa

EnKF with
Ne = 40, for the dominant axes, and applies multiplicative inflation on the less unstable modes.2
We conclude that aθ directly learns about the dynamics features. Hence, for aθ , critical pieces of
information on Pa

k are encoded, and thus exploitable, in xf
k alone.

−→ Supported by results from Sacco et al. 2024; Sakov 2025.

▶Explanation, conclusion 3: Furthermore, if the DA run (the forecast and analysis cycle) is
considered as an ergodic dynamical system of its own,3 the multiplicative ergodic theorem
guarantees the existence of a mapping between xf

k and Pa
k that aθ is able to guess. We believe

that a generalised variant of the multiplicative ergodic theorem for non-autonomous random
dynamics should be applicable.4

2[Bocquet et al. 2015]
3[Carrassi et al. 2008]
4[Arnold 1998; Flandoli et al. 2021]
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Learning data assimilation from artificial intelligence: advanced results Scalability and locality

Locality and scalability – 1/2

▶ aθ is now trained without changing the architecture and the hyperparameters (Nf = 40), but
with a changing state space dimension Nx ∈ [20, 160]. Almost as good as well tuned EnKFs with
changing dimension Nx and Ne = Nx!
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−→ We conjecture that aθ extracts local pieces of information from xf
k.

▶ aθ , learned from Lorenz 96 with Nx = 40 is now tested on Lorenz 96 models with Nx ranging
from 20 to 160 (same weights and biases!). The performance is still on par with retraining!
We called this a transdimensional transfer .
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Learning data assimilation from artificial intelligence: advanced results Scalability and locality

Locality and scalability – 2/2

▶These local patterns (for aθ , not M) can be pictured from the sensitivity:

S =
〈

C :
[
∇x∇ζaθ(x, ζ)|ζ=0

]〉
x∈T

=
〈

C : [∇xPa(x)]
〉

x∈T
, (12)

where T is a long L96 trajectory, and C is a tensor that leverages translational invariance of the
L96 model: [C]nmk

ij = 1
Nx

δn,i+kδm,j+k.
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Learning data assimilation from artificial intelligence: advanced results Learning the analysis operator from observations only

Semi-supervised learning

▶What if we do not have access to the truth xt
k but to the observations only yk?

▶Assume (i) Hk is linear, (ii) yk ⊥ yk+1, and the estimator zθ
k+1 only depends on (xk, yk).

▶We define the semi-supervised loss function as

L(θ) =
Nc∑

k=1

∥∥yk − Hkzθ
k

∥∥2
=

Nc∑
k=1

Lk(θ). (13)

But we have from the above assumptions:

Ey [Lk(θ)] = Ey

[∥∥yk − Hkxt
k

∥∥2
]

+ Ey

[∥∥Hk

(
xt

k − zθ
k

)∥∥2
]

(14a)

= Cst + Ey

[∥∥Hk

(
xt

k − zθ
k

)∥∥2
]

(14b)

▶Hence, generalising [McCabe et al. 2021] to non-trivial Hk, we can learn zθ
k from the observation only,

with further assumptions on {Hk}k=1,...,K . For instance, we can choose zθ
k such that:5

Lk(θ) =
∥∥yk+1 − Hk+1M

{
xf

k + aθ

(
xf

k, H⊺
kR−1

k

(
yk − Hkxf

k

))}∥∥2
. (15)

5[Bocquet et al. 2025]
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Learning data assimilation from artificial intelligence: advanced results Learning nonlinearity

Data assimilation networks in stronger nonlinear conditions

▶Testing DANs as the update time-step ∆t is increased , with the L96 model.

▶Comparison with well tuned EnKF , IEnKF , and well-tuned static background DA methods.
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▶Performing at least as well as the IEnKF, without an ensemble, without any nonlinear iterative
solver, without inflation and localisation!

▶ In addition to the MET map, DANs also implicitly learn non-Gaussian priors.
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Conclusions

Conclusions

▶One can learn robust DA methods, without an ensemble, without inflation, that are as accurate
as the very best baseline methods (EnKF), including in stronger nonlinear regimes (IEnKF).

▶We have carried similar numerical experiments with the Kuramoto–Sivashinski model and a
single-layer QG model on the sphere, with similar conclusions.

▶The performance is achieved through (i) implicitly learning the map xf 7→ Pf(xf), and (ii)
through implicitly learning non-Gaussian priors!

▶This suggests that end-to-end approaches such as GraphDOP that only have a snapshot of the
physical system, can still implicitly rely on dynamical and non-Gaussian priors!

▶Will such multiplicative ergodic theorem still be valid in more anisotropic, non-autonomous,
forced, multivariate, heterogeneously observed systems?

▶ In any case, this promotes a rethinking of the popular sequential DA schemes for chaotic
dynamics.

Talk mainly based on:

▶ M. Bocquet, A. Farchi, T. S. Finn, C. Durand, S. Cheng, Y. Chen, I. Pasmans, and A. Carrassi. “Accurate deep
learning-based filtering for chaotic dynamics by identifying instabilities without an ensemble”. In: Chaos 29 (2024), p.
091104.

▶ M. Bocquet, T. S. Finn, S. Cheng, W. Yu, and A. Farchi. “On the performance of data assimilation neural networks in
nonlinear conditions”. In: (2025). In preparation.
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