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Sampling Velocity Given Tracer Positions

▶ Infer ocean currents conditioned on data from passive tracers (e.g., sea ice floes)

▶ Relies on a model relating velocity to observations
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Sampling Images Given Text
▶ Generate a distribution of images conditioned on a text prompt
▶ For example, using Stable Diffusion XL: Podell et al. [3] (2023)
▶ Relies on a model to link text and images

A cat and a frog A large aircraft taking off

An elephant in the jungle A skateboarder in California
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Aligning Text and Images
▶ Key contrastive learning methodology CLIP: Radford et al. [4] (2021)

▶ 44135 Google Scholar citations as of October 6th 2025

▶ Cosine similarity between a, b ∈ Sℓ−1 : ⟨a, b⟩
▶ CLIP represents text as a ∈ Sℓ−1 and image as b ∈ Sℓ−1: then calculate ⟨a, b⟩.

The large, white jumbo jet is
parked on an airport runway.

A table with a bunch of
bananas hanging from a holder

Two woman on the beach
holding their surfboards

The wing of an airplane
flying above a beach.
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Setup for Contrastive Learning

Data is generated from a common reality

Text: u ∈ U
Images: v ∈ V

Distribution: µ(du, dv)

Data pairs: {(ui , v i )}Ni=1 ∼ µ i.i.d.

Embed data into a common low-dimensional space

gu : U ×Θ → Sℓ−1

gv : V ×Θ → Sℓ−1

Encoders are represented using data-dependent architectures:

▶ Text: Byte-pair encoding and transformers

▶ Images: Convolution layers and transformers

▶ L2 normalization to map to the sphere
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Contrastive Learning Problem

CLIP Objective Function Radford et al [4] (2021)

Find θ = (θu , θv , τ) using only samples from µ

LNclip(θ) :=
1

N

N∑
i=1

⟨gu(ui ; θu), gv (v i ; θv )⟩/τ

− 1

2N

N∑
i=1

log

 N∑
j=1

exp(⟨gu(ui ; θu), gv (v j ; θv )⟩/τ)


− 1

2N

N∑
j=1

log

(
N∑
i=1

exp(⟨gu(ui ; θu), gv (v j ; θv )⟩/τ)
)

θ⋆ = argmax
θ

LNclip(θ).

Objective aligned pair samples and penalizes unaligned pairs
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Population-level Picture I B, Stuart and Tran (2025) [1]

Data Notation

Data Measure: µ(du, dv)

Data Marginals: µu(du), µv (dv)

Data Conditionals: µu|v (du|v), µv |u(dv |u)

Target Notation

Target Measure: ν(du, dv ; θ) = ρ(u, v ; θ)µu(du)µv (dv)

ρ(u, v ; θ) ∝ exp
(
⟨gu(u; θu), gv (v ; θv )⟩/τ

)
Target Conditionals: νu|v (du|v ; θ) = ρ(u|v ; θ)µu(du)

νv |u(dv |u; θ) = ρ(v |u; θ)µv (dv)

Conditionals are weighted by the marginal data measures.
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Population-level Picture II B, Stuart and Tran (2025) [1]

Population Objective Function

Lcond(θ) =
1

2
E(u,v)∼µ

[
log ρ(u|v ; θ) + log ρ(v |u; θ)

]
,

= E(u,v)∼µ⟨gu(u; θu), gv (v ; θv )⟩/τ

− 1

2
Ev∼µv logEu′∼µu exp

(
⟨gu(u′; θu), gv (v ; θv )⟩/τ

)
− 1

2
Eu∼µu logEv ′∼µv exp

(
⟨gu(u; θu), gv (v ′; θv )⟩/τ

)
.

θcond = argmax
θ

Lcond(θ).

In practice, we minimize an empirical objective LNcond ≈ Lcond

Theorem: Related to empirical CLIP Objective

LNclip(θ) = LNcond(θ)− log(N)

For any N, the minimizers are the same, but only LNcond is well-defined in the population loss limit.
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Population-level Picture III B, Stuart and Tran (2025) [1]

Recall: KL divergence Dkl(µ1||µ2) =
∫
log µ1(u)

µ2(u)
µ1(du)

Theorem: CLIP minimizes KL between conditionals

Jcond(θ) =
1

2
Ev∼µv

[
Dkl(µu|v ||νu|v (·; θ))

]
+

1

2
Eu∼µu

[
Dkl(µv |u||νv |u(·; θ))

]
Assuming µu|v ≪ µu and µv |u ≪ µv , then:

argmin
θ

Jcond(θ) = argmin
θ

Lcond(θ)

The non-parametric minimizer is νu|v (·; θ) = µu|v and νv|u(·; θ) = νv|u .
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Generalizations of CLIP I

Alignment Metric

Joint ν(u, v ; θ) ∝ ρ(u, v ; θ)µu(du)µv (dv) is well-defined for any ρ such that∫
U×V

ρ(u, v ; θ)µu(du)µv (dv) < ∞

Examples:

▶ Normalized encoders: |gu(u; θu)|2 = 1 and |gv (v ; θv )|2 = 1 with

ρ(u, v ; θ) = exp (⟨gu(u; θu), gv (v ; θv )⟩) ∝ exp

(
−1

2
|gu(u; θu)− gv (v ; θv )|2

)
▶ Un-normalized encoders with:

ρ(u, v ; θ) ∝ exp

(
−1

2
|gu(u; θu)− gv (v ; θv )|2

)
.
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Generalizations of CLIP II

Loss Function

Given a divergence D and weights λu, λv ≥ 0:

Jcond,D(θ;λu, λv ) :=
λu

2
Ev∼µv

[
D(µu|v ||νu|v (·; θ))

]
+

λv

2
Eu∼µu

[
D(µv |u||νv |u(·; θ))

]
θ∗cond = argmin

θ
Jcond,D(θ;λu, λv )

Examples:

▶ Choose (λu, λv ) = (1, 0) to match the u|v conditional

▶ Choose divergence D computable from samples, e.g. maximum mean discrepancy:

D(µ1, µ2) = E(u,u′)∼µ1⊗µ1
k(u, u′)− 2E(u,v)∼µ1⊗µ2

k(u, v) + E(v ,v ′)∼µ2⊗µ2
k(v , v ′)
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Generalizations of CLIP III

Joint loss function

Jjoint(θ) = Dkl(µ||ν(·; θ))
θ∗joint = argmin

θ
Jjoint(θ)

Implementable loss function

Ljoint(θ) = E(u,v)∼µ⟨gu(u; θu), gv (v ; θv )⟩/τ
− logE(u,v)∼µu⊗µv

exp
(
⟨gu(u; θu), gv (v ; θv )⟩/τ

)
θ∗joint = argmax

θ
Ljoint(θ)

Objective maximizes alignment of paired data and minimizes un-alignment of un-paired data.

Empirical approximation LNjoint is more efficient to evaluate than LNclip.
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Low-Rank Matrix Approximations I

Goal: Analyze closed-form solutions for CLIP optimization

Setting: Gaussian data distribution µ = N (0, C) with block covariance matrix

C =

[
Cuu Cuv
Cvu Cvv

]
Model: Linear encoders project u ∈ Rnu and v ∈ Rnv into Rℓ with ℓ ≤ min(nu, nv )

gu(u) = Gu, G ∈ Rnu×ℓ,

gv (v) = Hv H ∈ Rnv×ℓ.

CLIP Probabilistic Model:

ν(u, v ; θ) ∝ exp (⟨Gu,Hv⟩)µu(u)µv (v)

= exp (⟨u,Av⟩)µu(u)µv (v), A = G⊤H.
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Low-Rank Matrix Approximations II

Theorem: Minimizing Two-Sided Loss

Minimizing Lcond over A with ℓ = min(nu, nv ) has solution

A = C−1
uu CuvC−1

vv

resulting in the conditional distributions

νu|v (u|v ; θ∗) = N (CuvC−1
vv v ; Cuu)

νv |u(v |u; θ∗) = N (CvuC−1
uu u; Cvv )

Corollary: Conditional means of µu|v , µv |u, but not variances, are recovered.

Theorem: With Dimension Reduction

Minimizing Lcond over A with ℓ < min(nu, nv ) has solution

A = C− 1
2

uu (C− 1
2

uu CuvC
− 1

2
vv )ℓC

− 1
2

vv
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Visualizations of CLIP Generalizations I

▶ Two-dimensional Gaussian data distribution µ = N (0, C)
▶ Used un-normalized linear encoders to preserve Gaussian structure
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Visualizations of CLIP Generalizations II

CLIP with two-sided conditional loss
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Gaussian Example I

▶ Reality: w ∼ N (0,C ) is an un-observed Gaussian process in L2((0, 1);R)
▶ u ∈ R12 is a noisy pointwise evaluation of w at uniformly-spaced grid locations

▶ v ∈ R5 is five leading Fourier coefficients of w
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Gaussian Example II

▶ Used un-normalized linear encoders to represent Gaussian conditionals

▶ Minimized LNcond to learn encoders for both modalities

▶ Compared the approximation to the true conditional expectations for u|v and v |u
▶ Varied the batch size, total training samples N and embedding dimension ℓ
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MNIST Example

▶ Data modalities: images u ∈ U = [0, 1]28×28 and digits v ∈ V = {0, . . . , 9}
▶ Performed classifications using models learned with different loss functions
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Lagrangian Data Assimilation

Original problem formulation: Kuznetsov, Ide and Jones (2003)[2]

▶ Velocity Field (Image); Lagrangian Trajectory (Text).

▶ Retrieval: identify the most likely velocity from a database given a trajectory

Paired potentials (background) and trajectories (red)
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Lagrangian Data Assimilation

▶ CLIP model can align trajectory data (e.g., time-series or text) with
time-dependent potential functions (e.g., images)

▶ Model predicts Fourier representation of the potential directly from trajectories

Paired potentials (background) and trajectories (red)
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Lagrangian Data Assimilation
▶ Measured accuracy of retrieval between both modalities
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Conclusions

Main Messages

▶ Contrastive learning relates two data modalities by tilting a product distribution

▶ Generalization yields new probabilistic loss functions and alignment metrics

▶ Encoders have closed-form low-rank matrix solutions in linear-Gaussian settings

▶ Application to Lagrangian data assimilation

Outlook

▶ Extending framework to more than two modalities

▶ Theoretical study of compositional generalization

▶ Other applications in science and engineering
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Visualizations of CLIP Generalizations IV

▶ Evaluated approximation with commonly-used normalized encoders

▶ Encoders capture the sign of the correlation between u and v
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MNIST Example II

▶ Generated images conditioned on a digit using models learned with different losses

▶ 16 images are sampled from the conditional distribution νu|v

Two-Sided Conditionals One-Sided: Label Given Image One-Sided: Image Given Label

Takeaway: One-sided loss for classification shows mode collapse onto a single image
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