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Sampling Velocity Given Tracer Positions

> Infer ocean currents conditioned on data from passive tracers (e.g., sea ice floes)

» Relies on a model relating velocity to observations
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Sampling Images Given Text

> Generate a distribution of images conditioned on a text prompt
> For example, using Stable Diffusion XL: Podell et al. [3] (2023)
» Relies on a model to link text and images

A cat and a frog A large aircraft taking off




Aligning Text and Images
> Key contrastive learning methodology CLIP: Radford et al. [4] (2021)
» 44135 Google Scholar citations as of October 6th 2025
> Cosine similarity between a, b € S¢=1: (a, b)
> CLIP represents text as a € S~1 and image as b € S*~!: then calculate (a, b).

The large, white jumbo jet is |
parked on an airport runway.

A table with a bunch of
bananas hanging from a holder

Two woman on the beach
holding their surfboards

The wing of an airplane
flying above a beach.
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Setup for Contrastive Learning

Data is generated from a common reality

Text: vecld
Images: veV
Distribution: u(du, dv)
Data pairs: {(uv', v}V, ~ pi.id.

Embed data into a common low-dimensional space

gu: U x O — S
g Vx6 st

Encoders are represented using data-dependent architectures:
» Text: Byte-pair encoding and transformers
» Images: Convolution layers and transformers

» [2 normalization to map to the sphere



Contrastive Learning Problem

CLIP Objective Function Radford et al [4] (2021)

Find 0 = (04,6, 7) using only samples from 1

N
cI|p Z gu U 9 gv v/ ;0 ))/
%Zlog (Z exp(<gu(ui;9u),gv(vj;9v)>/7))
i=1 j=1
LN JN _ .
T oN Z log (Z exp((gu(u'; 0u), 8 (V/; 9v)>/T)>
i i=1

0* = arg max Lchp(G)
0

Objective aligned pair samples and penalizes unaligned pairs



POpUlation—level Picture | B, Stuart and Tran (2025) [1]

Data Notation

Data Measure: (du, dv)
Data Marginals:  p,(du), p,(dv)
Data Conditionals: 1, (du|v), j1,,(dv|u)

Target Notation

Target Measure: v(du, dv;0) = p(u, v; 0)u,(du)p,(dv)

p(u, v; 0) < exp((gu(u; 0u), g (v; 0y))/T)
Target Conditionals: v, (dulv;0) = p(u|v; 0)u,(du)

ajo(dv]u; 0) = p(v]u; )y (dv)

Conditionals are weighted by the marginal data measures.



POpUlation—level Picture Il B, Stuart and Tran (2025) [1]

Population Objective Function

1
Lcond(e) = EE(U,V)N[I, log ,0(U|V; 9) + log p(V|U; 9)} )
= ]E(u,v)fvu<gu(U; GU)v gV(V; 9V)>/T
SEyop, 108 Bureop, exp((gu('; 04), 80(vi 04))/7)

1
_ 5IEL,NMU log By, exp((gu(u: 0u), 8v(V';64))/7).

Geond = arg max Lcond(a)-
0
In practice, we minimize an empirical objective Lé\fmd )| —

Theorem: Related to empirical CLIP Objective
Cllp(e) cond( ) |Og(N)

For any N, the minimizers are the same, but only LY

cond 1 well-defined in the population loss limit.



POpUlation—level Picture Il B, Stuart and Tran (2025) [1]

Recall: KL divergence Dy(p1]|p2) = [ log Zlgzg,u (du)

Theorem: CLIP minimizes KL between conditionals

1 1
Jcond(e) = EEV’VN/V [Dk|(ﬂu|v| |Vu|v('; 0))] + EEUNMu [Dk|(uv|u| |Vv|u('; 0))]
Assuming pi,), < py and py, < py, then:

arg min Jeond(6) = arg min Leona(6)
0 0

The non-parametric minimizer is v, (+; 0) = p), and vy, (5 0) = v,
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Generalizations of CLIP |

Alignment Metric
Joint v(u, v; 0) x p(u, v; 0)u,(du)p,(dv) is well-defined for any p such that

/ o, v; )t du)uy (dv) < o0
Uxy

Examples:

» Normalized encoders: |g,(u;0,)|2 =1 and |g,(v; 8,)]2 = 1 with

1
p(u, v; 0) = exp ((gu(u; 0u), v (v 0y))) o< exp <2|gu(u: 0u) — gv(v; 9v)l2>
» Un-normalized encoders with:

pluvit) o oxp (~3leu(uifl) — (Vi) ).



Generalizations of CLIP Il

Loss Function

Given a divergence D and weights Ay, A, > 0:

Au

Av
JCO"d»D(a; >‘U7 )‘V) = TEVNMV [D(MU|VHVU|V('; 9))] + 7EUNM [D(ﬂv\u‘ |Vv\u('; 9))]

ezond = argmin Jcond,D(g; Aus )\v)
0

Examples:
» Choose (A, Ay) = (1,0) to match the u|v conditional
» Choose divergence D computable from samples, e.g. maximum mean discrepancy:

D(lulv N2) = E(u,u')~M1®u1k(u7 ul) - 2E(U,V)NP«1®M2 k(ua V) + IEE(V,V')"’MZ@}Qk(V7 VI)



Generalizations of CLIP IlI

Joint loss function

Jjoint(g) = Dkl('uHV(.; 9))

Gj"‘oint = argomin Jjoint(6)

Implementable loss function

I—joint(e) = E(u,v)~u<gu(U; Qu), gV(V; 0V)>/T
— log E(u,v)wuu@)uv exp(<gu(U; QU)7 gV(V; 9V)>/T)
Oioint = arg max Lioint (0)

Objective maximizes alignment of paired data and minimizes un-alignment of un-paired data.

j,:)Iint is more efficient to evaluate than L")

Empirical approximation L &
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Low-Rank Matrix Approximations |

Goal: Analyze closed-form solutions for CLIP optimization

Setting: Gaussian data distribution ;1 = A/(0,C) with block covariance matrix

CUU CUV
€= [CW cw]

Model: Linear encoders project u € R™ and v € R™ into R’ with ¢ < min(n,, n,)

gu(u) = Gu, G e R™*¢
g (v)=Hv HeR™

CLIP Probabilistic Model:

(1, ;0) o exp (G, Hv)) pra( )y (v)
= exp ((u, AV)) pru () (v), A= GTH.



Low-Rank Matrix Approximations |l

Theorem: Minimizing Two-Sided Loss

Minimizing Leond over A with ¢ = min(ny, n,) has solution
A=C.lCunC)
resulting in the conditional distributions

Vo (u|v; 0%) = N(CuCipt Vi Cuu)
VV‘U(VIU; 9*) = N(Cvucu_ulU; va)

Corollary: Conditional means of 1, f4,|,, but not variances, are recovered.

Theorem: With Dimension Reduction

Minimizing Leong over A with ¢ < min(ny, n,) has solution

1 1 1 1
A= Cuu2 (Cuu2 Cuvcvv2 )chv2



Visualizations of CLIP Generalizations |

» Two-dimensional Gaussian data distribution = N(0,C)

» Used un-normalized linear encoders to preserve Gaussian structure

p(u, v

—2.5 0.0 2.5



Visualizations of CLIP Generalizations |

» Two-dimensional Gaussian data distribution = N(0,C)

» Used un-normalized linear encoders to preserve Gaussian structure

p(u, v

Cosine Distance, Conditional Loss . Cosine Distance, Joint Loss
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Visualizations of CLIP Generalizations |
» Two-dimensional Gaussian data distribution = N(0,C)
» Used un-normalized linear encoders to preserve Gaussian structure

p(u, v

Cosine Distance, Conditional Loss Cosine Distance, Joint Loss

v
o

—4 —4 —4

—2.5 0.0 2.5

Takeaway:

» Conditional means, but not variance are matched with two-sided conditional loss



Visualizations of CLIP Generalizations Il

CLIP with two-sided conditional loss
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Gaussian Example |
» Reality: w ~ N(0, C) is an un-observed Gaussian process in L2((0,1); R)

» u € R is a noisy pointwise evaluation of w at uniformly-spaced grid locations

» v € R is five leading Fourier coefficients of w

w conditioned on v u conditioned on v v conditioned on u

mm= Conditional Mean
= = 095% Confidence Interval

—0.050 —0.050

0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00 1 2 3 4 5
z T Index

Note: p,, and p,|, are Gaussian with closed-form conditional means and covariances



Gaussian Example |l

» Used un-normalized linear encoders to represent Gaussian conditionals
» Minimized LY , to learn encoders for both modalities
» Compared the approximation to the true conditional expectations for u|v and v|u

» Varied the batch size, total training samples N and embedding dimension /

u conditioned on v u conditioned on v u conditioned on v
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MNIST Example

» Data modalities: images u € U = [0, 1]28*2?8 and digits v € V = {0,...,9}
» Performed classifications using models learned with different loss functions

Two-Sided Conditionals One-Sided: Label Given Image  One-Sided: Image Given Label
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Lagrangian Data Assimilation

Original problem formulation: Kuznetsov, Ide and Jones (2003)[2]
» Velocity Field (Image); Lagrangian Trajectory (Text).
» Retrieval: identify the most likely velocity from a database given a trajectory

Paired potentials (background) and trajectories (red)
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Lagrangian Data Assimilation

» CLIP model can align trajectory data (e.g., time-series or text) with
time-dependent potential functions (e.g., images)

» Model predicts Fourier representation of the potential directly from trajectories
Paired potentials (background) and trajectories (red)

1.0

Lagrangian trajectory Retrieved field at t =0
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Lagrangian Data Assimilation

» Measured accuracy of retrieval between both modalities
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Conclusions

Main Messages

» Contrastive learning relates two data modalities by tilting a product distribution
> Generalization yields new probabilistic loss functions and alignment metrics
» Encoders have closed-form low-rank matrix solutions in linear-Gaussian settings

» Application to Lagrangian data assimilation

Outlook

» Extending framework to more than two modalities
» Theoretical study of compositional generalization

» Other applications in science and engineering



References |

[1]

2]

(3]

[4]

R. Baptista, A. M. Stuart, and S. Tran.
A mathematical perspective on contrastive learning.
arXiv:2505.24134, 2025.

L. Kuznetsov, K. Ide, and C. K. Jones.
A method for assimilation of Lagrangian data.
Monthly Weather Review, 131(10):2247-2260, 2003.

D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Miiller, J. Penna, and R. Rombach.
SDXL: Improving latent diffusion models for high-resolution image synthesis.
arXiv:2307.01952, 2023.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al.

Learning transferable visual models from natural language supervision.

In International Conference on Machine Learning, pages 8748-8763. PMLR, 2021.



Visualizations of CLIP Generalizations IV

» Evaluated approximation with commonly-used normalized encoders

» Encoders capture the sign of the correlation between v and v

Normalized CLIP
0.6 0.6
e Truth I\ I\
— \ \
Model 1 1 \
=) S)
= 0.4+ 1 = 0.4+ |
Il Il
=2 3 >
3 1 = 1
202 | TS 02 |
:‘: 1 § |
| |
- -
0.0 1 0.0 1
—-2.5 0.0 2.5 —-2.5 0.0 2.5 A
u v u



MNIST Example I

P> Generated images conditioned on a digit using models learned with different losses

> 16 images are sampled from the conditional distribution v,

Two-Sided Conditionals

One-Sided: Label Given Image

Takeaway: One-sided loss for classification shows mode collapse onto a single image
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